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Have you got Mexican Flu?

P (m, c, s) = 0.009215

P (m, c̄, s) = 0.000485

P (m, c, s̄) = 0.000285

P (m, c̄, s̄) = 1.5 · 10−5

P (m̄, c, s) = 9.9 · 10−6

P (m̄, c̄, s) = 0.0098901

P (m̄, c, s̄) = 0.0009801

P (m̄, c̄, s̄) = 0.97912

M : mexican flu;C:
chills; S: sore throat

Probability of mexican
flu andsore throat?

Probability of mexican
flu given sore throat?
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Have you got Mexican Flu?

P (m, c, s) = 0.009215

P (m, c̄, s) = 0.000485

P (m, c, s̄) = 0.000285

P (m, c̄, s̄) = 1.5 · 10−5

P (m̄, c, s) = 9.9 · 10−6

P (m̄, c̄, s) = 0.0098901

P (m̄, c, s̄) = 0.0009801

P (m̄, c̄, s̄) = 0.97912

M : mexican flu;C:
chills; S: sore throat

Probability of mexican
flu andsore throat?
0.0097

Probability of mexican
flu given sore throat?
0.495
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Probabilistic Reasoning
Joint probability distributionP (X1, X2, . . . , Xn)

marginalisation:

P (Y ) =
∑

Z

P (Y, Z), with X = Y ∪ Z

conditional probabilities:

P (Y | Z) =
P (Y, Z)

P (Z)

Bayes’ theorem:

P (Y | Z) =
P (Z | Y )P (Y )

P (Z)
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Probabilistic Reasoning (cont)
Examples:
P (m, s)=P (m, c, s)+P (m, c̄, s)=0.009215+0.000485=0.0097

P (m | s)=P (m, s)/P (s)=0.0097/0.0196=0.495

Note that:

Mainly interested inconditionalprobability
distributions:

P (Z | E) = P E(Z)

for (possibly empty)evidenceE (instantiated
variables)

Tendency to focus on conditional probability
distributions of single variables

Many efficient reasoning algorithms exist
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Bayesian Networks

flu (FL)

(yes/no)

SARS(RS)

(yes/no)

fever(FE)

(yes/no)

dyspnoea(DY)

(yes/no)

TEMP

(≤ 37.5/> 37.5)

VisitToChina(CH)

(yes/no)

P (CH, FL, RS, DY, FE, TEMP)

P (FL = y) = 0.1

P (CH = y) = 0.1

P (RS= y | CH = y) = 0.3

P (RS= y | CH = n) = 0.01

P (FE = y | FL = y, RS= y) = 0.95

P (FE = y | FL = n, RS= y) = 0.80

P (FE = y | FL = y, RS= n) = 0.88

P (FE = y | FL = n, RS= n) = 0.001

P (DY = y | RS= y) = 0.9

P (DY = y | RS= n) = 0.05

P (TEMP ≤ 37.5 | FE = y) = 0.1

P (TEMP≤ 37.5 | FE = n) = 0.99
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Evidence Propagation
Nothing known:

NO
YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP

Temperature>37.5 ◦C:
NO

YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP
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Evidence Propagation
Temperature>37.5 ◦C:

NO
YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP

I just returned from China:
NO

YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP
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Definition Bayesian Network
A Bayesian networkB is a pairB = (G,P ), where:

(Qualitative part)G = (V (G), A(G)) is an
acyclic directed graph, with

V (G) = {v1, v2, . . . , vn}, a set ofvertices
(nodes)
A(G) ⊆ V (G) × V (G) a set ofarcs

(Quantitative part)P (XV (G)) is ajoint probability
distribution, such that

P (XV (G)) =
∏

v∈V (G)

P (Xv | Xπ(v))

whereπ(v) denotes the set of parents of vertexv
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A Bayesian Network

Flu (FL)

(yes/no)

Fever (FE)

(yes/no)

Myalgia (MY)

(yes/no)

P (FL, MY , FE)

P (FL = y) = 0.1

P (FE = y|FL = y) = 0.95

P (FE = y|FL = n) = 0.1

P (MY = y|FL = y, FE = y) = 0.96

P (MY = y|FL = y, FE = n) = 0.96

P (MY = y|FL = n, FE = y) = 0.20

P (MY = y|FL = n, FE = n) = 0.20

Thus:
P (FL,MY ,FE) = P (MY |FL,FE)P (FE|FL)P (FL)

Example:P (¬fl,my, fe) = 0.20 · 0.1 · 0.9 = 0.018
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Markov Properties
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Independence and Reasoning

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA
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Independence and Reasoning
Conclusion: the arc from FEVER to MYALGIA can
be removed, and hence only

P (MY | FL) (= P (MY | FL,FE))

need be specified

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA
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Independence Relation
LetX,Y, Z ⊆ V besets of (random) variables, and
let P be a probability distribution ofV thenX is
calledconditionally independentof Y givenZ,
denoted as

X ⊥⊥P Y | Z, iff P (X | Y, Z) = P (X | Z)

Note: This relation is completely defined in terms of
the probability distributionP , but there isa
relationship to graphs, for example:

{X2} ⊥⊥P {X3} | {X1}
X1

y/n

X2

y/n

X3

y/n
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How to Define Independences?
List all the instances of⊥⊥

List some of the instances of⊥⊥ and add axioms
from which other instances can be derived

Define a joint probability distributionP and look
into the numbers to see which instances of the
independence relation⊥⊥ hold (this yields⊥⊥P )

Use a graphto encode⊥⊥, which yields⊥⊥G (so,
what type of graph — directed, undirected,
chain?)
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Explicit Enumeration
ConsiderV = {1, 2, 3, 4} and⊥⊥:

{1} ⊥⊥ {4} | ∅ {4} ⊥⊥ {2} | {1} {2} ⊥⊥ {4} | ∅

{4} ⊥⊥ {3} | {1} {3} ⊥⊥ {4} | ∅ {4} ⊥⊥ {2, 3} | {1}

{4} ⊥⊥ {1} | ∅ {1} ⊥⊥ {4} | {2} {4} ⊥⊥ {2} | ∅

{3} ⊥⊥ {4} | {2} {4} ⊥⊥ {3} | ∅ {1, 3} ⊥⊥ {4} | {2}

{1, 2} ⊥⊥ {4} | ∅ {4} ⊥⊥ {1} | {2} {1, 3} ⊥⊥ {4} | ∅

{4} ⊥⊥ {3} | {2} {2, 3} ⊥⊥ {4} | ∅ {4} ⊥⊥ {1, 3} | {2}

{4} ⊥⊥ {1, 2} | ∅ {1} ⊥⊥ {4} | {3} {4} ⊥⊥ {1, 3} | ∅

{2} ⊥⊥ {4} | {3} {4} ⊥⊥ {2, 3} | ∅ {1, 2} ⊥⊥ {4} | {3}

{1, 2, 3} ⊥⊥ {4} | ∅ {1} ⊥⊥ {2} | {4} {4} ⊥⊥ {1, 2, 3} | ∅

{2} ⊥⊥ {1} | {4} {1} ⊥⊥ {2} | ∅ {3} ⊥⊥ {4} | {1, 2}

{2} ⊥⊥ {1} | ∅ {4} ⊥⊥ {3} | {1, 2} {1, 4} ⊥⊥ {2} | ∅

{2} ⊥⊥ {4} | {1, 3} {2, 4} ⊥⊥ {1} | ∅ {4} ⊥⊥ {2} | {1, 3}

{2} ⊥⊥ {1, 4} | ∅ {1} ⊥⊥ {4} | {2, 3} {1} ⊥⊥ {2, 4} | ∅

{4} ⊥⊥ {1} | {2, 3} {2} ⊥⊥ {4} | {1} {4} ⊥⊥ {1, 2} | {3}

{3} ⊥⊥ {4} | {1} {4} ⊥⊥ {1} | {3} {2, 3} ⊥⊥ {4} | {1}

{4} ⊥⊥ {2} | {3}
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As an Undirected Graph

Basic idea:

Each variableV is represented as a vertex in an
undirected graphG = (V (G), E(G)), with set of
verticesV (G) and set of edgesE(G)

theindependence relation⊥⊥G is encoded as the
absence of edges; a missing edge between
verticesu andv indicates that random variables
Xu andXv are (conditionally) independent=
(u-)separation
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Example
Consider the following undirected graphG:

2 5

6

4

3

1 7

{1} ⊥⊥G {3, 6} | {2}

{4} ⊥⊥G {6} | {2, 5}

{4} ⊥⊥G {6} | {1, 2, 3, 5}

{1} 6⊥⊥G {5} | {4}, as the path1− 2− 5 does not
contain4

{1, 5, 6} ⊥⊥G {7} | ∅
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D-map and I-map for ⊥⊥P

Let P be probability distribution ofX. Let
G = (V (G), E(G)) be an undirected graph, then for
eachU,W,Z ⊆ V (G):

G is called an undirecteddependence map,
D-mapfor short, if

XU ⊥⊥P XW | XZ ⇒ U ⊥⊥G W | Z

G is called an undirectedindependence map,
I-mapfor short, if

U ⊥⊥G W | Z ⇒ XU ⊥⊥ XW | XZ

G is called an undirectedperfect map, or P-map
for short, ifG is both a D-map and an I-map
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Examples D-maps
Let V = {1, 2, 3, 4} be a set andXV the
corresponding set of random variables, and consider
the independence relation⊥⊥P , defined by

{X1} ⊥⊥P {X4} | {X2, X3}

{X2} ⊥⊥P {X3} | {X1, X4}

The following undirected graphs are examples of
D-maps:

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

1

ACAI’09 – p. 19/34



Examples of I-maps
Let V = {1, 2, 3, 4} be a set with random variables
XV , and consider the independence relation⊥⊥P :

{X1} ⊥⊥P {X4} | {X2, X3}

{X2} ⊥⊥P {X3} | {X1, X4}

The following undirected graphs are examples of
I-maps:

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

1

(So, what is the P-map?)
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Markov Network
A pairM = (G,P ), where

G = (V (G), E(G)) is anundirectedgraph with
set of verticesV (G) and set of edgesE(G),

P is a joint probability distribution ofXV (G), and

G is anI-mapof P

is said to be aMarkov network
ExampleM = (G,φ) = (G,P ):

1 2

3

Potential:
φ(X1, X2, X3) =
ψ(X1, X2)τ(X2, X3),

or joint probability distribution:
P (X1, X2, X3) = P (X1,X2)P (X2,X3)

P (X2)
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Expressiveness
Directed vs undirected
Directed graphsare more subtle when it comes to
expressing independence information thanundirected
graphs

2 3

1

2 3

1

2 3

1

2 3

1

vs
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d-Separation: 3 Situations
A chaink (= path in undirected underlying graph) in
an acyclic directed graphG = (V (G), A(G)) can be
blocked:

1 2 3

Diverging

2 blocks(d-separates) 1 and3: {1} ⊥⊥ {3} | {2}

1 2 3

Serial

2 blocks(d-separates) 1 and3: {1} ⊥⊥ {3} | {2}

1 2 3

Converging

2 d-connects1 and3: {1} 6⊥⊥ {3} | {2}

(same holds for successors of2); note{1} ⊥⊥ {3} | ∅
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Example Blockage

4 5

6

2

1

7

3

The chain4, 2, 5 from 4 to 5 is blocked by{2}

The chain1, 2, 5, 6 from 1 to 6 is blocked by{5},
and also by{2} and{2, 5}

The chain3, 4, 6, 5 from 3 to 5 is blocked by{4}
and{4, 6}, butnot by {6}
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Examples directed I-maps
Consider the following independence relation⊥⊥P :

{X1} ⊥⊥P {X2} | ∅

{X1, X2} ⊥⊥P {X4} | {X3}

and the following directed I-maps ofP :

1 2

3

4

1 2

3

4
1 2

3

4

1 2

3

4
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Find the Independences
NO

YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP

Examples:

FLU ⊥⊥ VisitToChina| ∅

FLU ⊥⊥ SARS| ∅
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Relation Directed–Undirected
Directed graphs contain independences that
become dependences after conditioning
(instantiating variables)

Undirected graphs do not have this property

However, undirected subgraphs can be generated,
by making potentially dependent parents of a
child dependent

Example:
1 3

2
Original

1 3

2
Moral Graph

ACAI’09 – p. 27/34



Moralisation
LetG be an ADG; its associated undirectedmoral
graphGm can be constructed bymoralisation:

1. add lines to all non-connected vertices, which
have a common child, or descendant of a
common child, and

2. replace each arc with a line in the resulting graph

3 4 5

6 7 8

9

10

11

12

13
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Moralisation
LetG be an ADG; its associated undirectedmoral
graphGm can be constructed bymoralisation:

1. add lines to all non-connected vertices, which
have a common child, or descendant of a
common child, and

2. replace each arc with a line in the resulting graph

3 4 5

6 7 8

9

10

11

12

13
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Comments
Resulting undirected (moral) graph is an I-map of
the associated probability distribution

However, it containstoo many dependences!
Example:{1} ⊥⊥d

G {3} | ∅, whereas
{1} 6⊥⊥Gm {3} | ∅

1 3

2
Original

1 3

2
Moral Graph

Conclusion: make moralisation‘dynamic’ (i.e. a
function of the set on which we condition)

For this the notion of ‘ancestral set’ is required
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Ancestral Set
LetG = (V (G), A(G)) be an acyclic directed graph,
then if forW ⊆ V (G) it holds thatπ(v) ⊆ W for all
v ∈W , thenW is called anancestral setof W .
An(W ) denotes thesmallestancestral set containing
W

3 4 5

6 7 8

9

10

11

12

13

An({6}) = {3, 4, 6, 9}

An({10, 7}) = {7, 6, 3, 4, 9, 10}
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‘Dynamic’ Moralisation
Let P be a joint probability distribution of a Bayesian
networkB = (G,P ), then

XU ⊥⊥P XV | XW

holds iffU andV are (u-)separated byW in the moral
induced subgraphGm with verticesAn(U ∪ V ∪W )
Example:

1 3

2
Original

1 3

2
Moral Graph

X1 6⊥⊥P X3 | X2; An({1, 2, 3}) = {1, 2, 3}
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‘Dynamic’ Moralisation
Let P be a joint probability distribution of a Bayesian
networkB = (G,P ), then

XU ⊥⊥P XV | XW

holds iffU andV are (u-)separated byW in the moral
induced subgraphGm with verticesAn(U ∪ V ∪W )
Example:

1 3

2
Original

1 3
Moral Graph

X1 ⊥⊥P X3 | ∅; An({1, 3}) = {1, 3}
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Example (1)
{10} 6⊥⊥d

G {13} | {7, 8}

3 4 5

6 7 8

9

10

11

12

13
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Example (1)

{10} 6⊥⊥Gm

An({10,7,8,13})
{13} | {7, 8}

3 4 5

6 7 8

9

10

11

12

13
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Example (2)
{10} ⊥⊥d

G {13} | ∅

3 4 5

6 7 8

9

10

11

12

13
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Example (2)

{10} 6⊥⊥Gm

An({10,13})
{13} | ∅

9

10

11

12

13
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Conclusions
Conditional independence is defined as a logic
that supports:

symbolic reasoning about dependence and
independence information
makes it possible to abstract away from the
numerical detail of probability distributions
the process of assessing probability
distributions

Looking at graphs makes it easier to find
probability distributions that areequivalent
(important in learning)

Conditionalindependence is currently being
extended towardscausalindependence (a logic of
causality) =maximal ancestral graphs
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