The Model-based Approach to Computer-aided Medical Decision Support

Lecture 2: Probabilistic Reasoning and Independence

Peter Lucas

peterl@cs.ru.nl

Institute for Computing and Information Sciences Radboud University Nijmegen The Netherlands

Have you got Mexican Flu?

$$\begin{split} P(m,c,s) &= 0.009215 \quad P(\bar{m},\bar{c},\bar{s}) = 0.97912 \\ P(m,\bar{c},s) &= 0.000485 \bullet M: \text{ mexican flu; } C: \\ P(m,c,\bar{s}) &= 0.000285 \quad \text{chills; } S: \text{ sore throat} \\ P(m,\bar{c},\bar{s}) &= 1.5 \cdot 10^{-5} \bullet \text{ Probability of mexican} \\ P(\bar{m},c,s) &= 9.9 \cdot 10^{-6} \quad \text{Probability of mexican} \\ P(\bar{m},c,s) &= 0.0098901 \bullet \text{Probability of mexican} \\ P(\bar{m},c,\bar{s}) &= 0.0009801 \bullet \text{Probability of mexican} \\ P(\bar{m},c,\bar{s}) &= 0$$

Have you got Mexican Flu?

P(m, c, s) = 0.009215 $P(\bar{m}, \bar{c}, \bar{s}) = 0.97912$ $P(m, \overline{c}, s) = 0.000485$ • M: mexican flu; C: chills: S: sore throat $P(m, c, \bar{s}) = 0.000285$ $P(m, \bar{c}, \bar{s}) = 1.5 \cdot 10^{-5}$ Probability of mexican flu and sore throat? $P(\bar{m}, c, s) = 9.9 \cdot 10^{-6}$ 0.0097 $P(\bar{m}, \bar{c}, s) = 0.0098901$ Probability of mexican $P(\bar{m}, c, \bar{s}) = 0.0009801$ flu given sore throat? 0.495

Probabilistic Reasoning

Joint probability distribution $P(X_1, X_2, ..., X_n)$ • marginalisation:

$$P(Y) = \sum_{Z} P(Y, Z), \text{ with } X = Y \cup Z$$

• conditional probabilities:

$$P(Y \mid Z) = \frac{P(Y, Z)}{P(Z)}$$

Bayes' theorem:

$$P(Y \mid Z) = \frac{P(Z \mid Y)P(Y)}{P(Z)}$$

Probabilistic Reasoning (cont)

Examples:

 $P(m, s) = P(m, c, s) + P(m, \bar{c}, s) = 0.009215 + 0.000485 = 0.0097$ $P(m \mid s) = P(m, s) / P(s) = 0.0097 / 0.0196 = 0.495$ Note that:

Mainly interested in conditional probability distributions:

$$P(Z \mid \mathcal{E}) = P^{\mathcal{E}}(Z)$$

for (possibly empty) evidence \mathcal{E} (instantiated variables)

- Tendency to focus on conditional probability distributions of single variables
- Many efficient reasoning algorithms exist

Bayesian Networks

P(CH, FL, RS, DY, FE, TEMP)

Evidence Propagation

Nothing known:

• Temperature >37.5 °C:

Evidence Propagation

• Temperature >37.5 °C:

• I just returned from China:

Definition Bayesian Network

A Bayesian network \mathcal{B} is a pair $\mathcal{B} = (G, P)$, where:

- (Qualitative part) G = (V(G), A(G)) is an acyclic directed graph, with
 - $V(G) = \{v_1, v_2, \dots, v_n\}$, a set of vertices (nodes)
 - $A(G) \subseteq V(G) \times V(G)$ a set of arcs
- (Quantitative part) $P(X_{V(G)})$ is a joint probability distribution, such that

$$P(X_{V(G)}) = \prod_{v \in V(G)} P(X_v \mid X_{\pi(v)})$$

where $\pi(v)$ denotes the set of parents of vertex v

A Bayesian Network

P(FL, MY, FE)

Thus: P(FL, MY, FE) = P(MY|FL, FE)P(FE|FL)P(FL)Example: $P(\neg fl, my, fe) = 0.20 \cdot 0.1 \cdot 0.9 = 0.018$

ACAI'09 - p. 9/34

Markov Properties

Independence and Reasoning

Independence and Reasoning

Conclusion: the arc from FEVER to MYALGIA can be removed, and hence only

 $P(\mathbf{MY} \mid \mathbf{FL}) \ (= P(\mathbf{MY} \mid \mathbf{FL}, \mathbf{FE}))$

need be specified

Independence Relation

Let $X, Y, Z \subseteq V$ be sets of (random) variables, and let P be a probability distribution of V then X is called conditionally independent of Y given Z, denoted as

$X \perp P Y \mid Z$, iff $P(X \mid Y, Z) = P(X \mid Z)$

Note: This relation is completely defined in terms of the probability distribution *P*, but there is *a relationship to graphs*, for example:

 $\{X_2\} \perp\!\!\!\perp_P \{X_3\} \mid \{X_1\}$

How to Define Independences?

- List all the instances of \bot
- List some of the instances of \perp and add axioms from which other instances can be derived
- Define a joint probability distribution P and look into the numbers to see which instances of the independence relation $\perp \perp$ hold (this yields $\perp \perp_P$)
- Use a graph to encode $\bot\!\!\!\!\bot$, which yields $\bot\!\!\!\!\bot_G$ (so, what type of graph directed, undirected, chain?)

Explicit Enumeration

Consider $V = \{1, 2, 3, 4\}$ and $\bot\!\!\!\bot$:

$\{1\} \perp\!\!\!\perp \{4\} \mid \varnothing$	$\{4\} \perp\!\!\!\perp \{2\} \mid \{1\}$	$\{2\} \perp\!\!\!\perp \{4\} \mid \varnothing$
$\{4\} \perp\!\!\!\perp \{3\} \mid \{1\}$	$\{3\} \perp\!\!\!\perp \{4\} \mid \varnothing$	$\{4\} \perp\!\!\!\perp \{2,3\} \mid \{1\}$
$\{4\} \perp\!\!\!\perp \{1\} \mid \varnothing$	$\{1\} \perp\!\!\!\perp \{4\} \mid \{2\}$	$\{4\} \perp\!\!\!\perp \{2\} \mid \varnothing$
$\{3\} \perp\!\!\!\perp \{4\} \mid \{2\}$	$\{4\} \perp\!\!\!\perp \{3\} \mid \varnothing$	$\{1,3\} \perp\!\!\!\perp \{4\} \mid \{2\}$
$\{1,2\} \perp\!\!\!\perp \{4\} \mid \varnothing$	$\{4\} \perp\!\!\!\perp \{1\} \mid \{2\}$	$\{1,3\} \perp\!\!\!\perp \{4\} \mid \varnothing$
$\{4\} \perp\!\!\!\perp \{3\} \mid \{2\}$	$\{2,3\} \perp\!\!\!\perp \{4\} \mid \varnothing$	$\{4\} \perp\!\!\!\perp \{1,3\} \mid \{2\}$
$\{4\} \perp\!\!\!\perp \{1,2\} \mid \varnothing$	$\{1\} \perp\!\!\!\perp \{4\} \mid \{3\}$	$\{4\} \perp\!\!\!\perp \{1,3\} \mid \varnothing$
$\{2\} \perp\!\!\!\perp \{4\} \mid \{3\}$	$\{4\} \perp\!\!\!\perp \{2,3\} \mid \varnothing$	$\{1,2\} \perp\!\!\!\perp \{4\} \mid \{3\}$
$\{1,2,3\} \perp\!\!\!\perp \{4\} \mid \varnothing$	$\{1\} \perp\!\!\!\perp \{2\} \mid \{4\}$	$\{4\} \perp\!\!\!\perp \{1,2,3\} \mid \varnothing$
$\{2\} \perp\!\!\!\perp \{1\} \mid \{4\}$	$\{1\} \perp\!\!\!\perp \{2\} \mid \varnothing$	$\{3\} \perp\!\!\!\perp \{4\} \mid \{1,2\}$
$\{2\} \perp\!\!\!\perp \{1\} \mid \varnothing$	$\{4\} \perp\!\!\!\perp \{3\} \mid \{1,2\}$	$\{1,4\} \perp\!\!\!\perp \{2\} \mid \varnothing$
$\{2\} \perp\!\!\!\perp \{4\} \mid \{1,3\}$	$\{2,4\} \perp\!\!\!\perp \{1\} \mid \varnothing$	$\{4\} \perp\!\!\!\perp \{2\} \mid \{1,3\}$
$\{2\} \perp\!\!\!\perp \{1,4\} \mid \varnothing$	$\{1\} \perp\!\!\!\perp \{4\} \mid \{2,3\}$	$\{1\} \perp\!\!\!\perp \{2,4\} \mid \varnothing$
$\{4\} \perp\!\!\!\perp \{1\} \mid \{2,3\}$	$\{2\} \perp\!\!\!\perp \{4\} \mid \{1\}$	$\{4\} \perp\!\!\!\perp \{1,2\} \mid \{3\}$
$\{3\} \perp\!\!\!\perp \{4\} \mid \{1\}$	$\{4\} \perp\!\!\!\perp \{1\} \mid \{3\}$	$\{2,3\} \perp\!\!\!\perp \{4\} \mid \{1\}$
$\{4\} \perp\!\!\!\perp \{2\} \mid \{3\}$		

As an Undirected Graph

Basic idea:

- Each variable V is represented as a vertex in an undirected graph G = (V(G), E(G)), with set of vertices V(G) and set of edges E(G)
- the independence relation \coprod_G is encoded as the absence of edges; a missing edge between vertices u and v indicates that random variables X_u and X_v are (conditionally) independent = (u-)separation

Example

Consider the following undirected graph G:

- $\{1\} \perp _G \{3,6\} \mid \{2\}$
- $\{4\} \perp _G \{6\} \mid \{2,5\}$
- $\ \, \bullet \ \, \{4\} \perp _G \{6\} \mid \{1,2,3,5\}$
- {1} $\not \perp_G$ {5} | {4}, as the path 1 2 5 does not contain 4
- $\{1, 5, 6\} \perp _{G} \{7\} \mid \emptyset$

D-map and I-map for $\perp \!\!\!\perp_P$

Let P be probability distribution of X. Let G = (V(G), E(G)) be an undirected graph, then for each $U, W, Z \subseteq V(G)$:

G is called an undirected dependence map,
D-map for short, if

$$X_U \perp\!\!\!\perp_P X_W \mid X_Z \Rightarrow U \perp\!\!\!\perp_G W \mid Z$$

G is called an undirected independence map,
I-map for short, if

$$U \perp\!\!\!\perp_G W \mid Z \Rightarrow X_U \perp\!\!\!\perp X_W \mid X_Z$$

• *G* is called an undirected perfect map, or P-map for short, if *G* is both a D-map and an I-map

Examples D-maps

Let $V = \{1, 2, 3, 4\}$ be a set and X_V the corresponding set of random variables, and consider the independence relation \coprod_P , defined by

$$\{X_1\} \perp P \{X_4\} \mid \{X_2, X_3\} \{X_2\} \perp P \{X_3\} \mid \{X_1, X_4\}$$

The following undirected graphs are examples of D-maps: ① ①

Examples of I-maps

Let $V = \{1, 2, 3, 4\}$ be a set with random variables X_V , and consider the independence relation \coprod_P :

$$\{X_1\} \perp P \{X_4\} \mid \{X_2, X_3\} \{X_2\} \perp P \{X_3\} \mid \{X_1, X_4\}$$

The following undirected graphs are examples of I-maps: 1 1

3

 $\widehat{\mathbf{3}}$

2

3

3

(So, what is the P-map?)

Markov Network

A pair $\mathcal{M} = (G, P)$, where

- G = (V(G), E(G)) is an *undirected* graph with set of vertices V(G) and set of edges E(G),
- *P* is a joint probability distribution of $X_{V(G)}$, and
- G is an *I-map* of P

is said to be a Markov network Example $\mathcal{M} = (G, \phi) = (G, P)$: Potential: (1) (2) $\phi(X_1, X_2, X_3) = \psi(X_1, X_2) \tau(X_2, X_3)$, or joint probability distribution: $P(X_1, X_2, X_3) = \frac{P(X_1, X_2) P(X_2, X_3)}{P(X_2)}$

Expressiveness

Directed vs undirected

Directed graphs are more subtle when it comes to expressing independence information than undirected graphs

d-Separation: 3 Situations

A chain k (= path in undirected underlying graph) in an acyclic directed graph G = (V(G), A(G)) can be blocked: Diverging(1) (3).....

2 blocks (d-separates) 1 and 3: $\{1\} \perp \{3\} \mid \{2\}$ Serial

 $(1) \rightarrow (2) \rightarrow (3)$

2 blocks (d-separates) 1 and 3: $\{1\} \perp \{3\} \mid \{2\}$

2 d-connects 1 and 3: $\{1\} \not\perp \{3\} \mid \{2\}$ (same holds for successors of 2); note $\{1\} \perp \{3\} \mid \varnothing$

Example Blockage

- The chain 4, 2, 5 from 4 to 5 is blocked by $\{2\}$
- The chain 1, 2, 5, 6 from 1 to 6 is blocked by {5}, and also by {2} and {2, 5}
- The chain 3, 4, 6, 5 from 3 to 5 is blocked by {4} and {4, 6}, but not by {6}

Examples directed I-maps

Consider the following independence relation $\perp P$:

$$\{X_1\} \quad \amalg_P \quad \{X_2\} \mid \varnothing$$
$$\{X_1, X_2\} \quad \amalg_P \quad \{X_4\} \mid \{X_3\}$$

and the following directed I-maps of P:

Find the Independences

Examples:

- FLU ⊥⊥ VisitToChina | Ø
- FLU $\perp \perp$ SARS | \varnothing
- .

Relation Directed–Undirected

- Directed graphs contain independences that become dependences after conditioning (instantiating variables)
- Undirected graphs do not have this property
- However, undirected subgraphs can be generated, by making potentially dependent parents of a child dependent

Example:

Moral Graph

Moralisation

9

Let G be an ADG; its associated undirected moral graph G^m can be constructed by moralisation:

- 1. add lines to all non-connected vertices, which have a common child, or descendant of a common child, and
- 2. replace each arc with a line in the resulting graph

Moralisation

9

Let G be an ADG; its associated undirected moral graph G^m can be constructed by moralisation:

- 1. add lines to all non-connected vertices, which have a common child, or descendant of a common child, and
- 2. replace each arc with a line in the resulting graph

Comments

- Resulting undirected (moral) graph is an I-map of the associated probability distribution
- However, it contains too many dependences! Example: $\{1\} \perp \!\!\!\perp_G^d \{3\} \mid \varnothing$, whereas $\{1\} \not\perp_{G^m} \{3\} \mid \varnothing$

Moral Graph

- Conclusion: make moralisation 'dynamic' (i.e. a function of the set on which we condition)
- For this the notion of 'ancestral set' is required

Ancestral Set

Let G = (V(G), A(G)) be an acyclic directed graph, then if for $W \subseteq V(G)$ it holds that $\pi(v) \subseteq W$ for all $v \in W$, then W is called an ancestral set of W. An(W) denotes the smallest ancestral set containing W

'Dynamic' Moralisation

Let P be a joint probability distribution of a Bayesian network $\mathcal{B} = (G, P)$, then

 $X_U \perp\!\!\!\perp_P X_V \mid X_W$

holds iff U and V are (u-)separated by W in the moral induced subgraph G^m with vertices $An(U \cup V \cup W)$ Example:

'Dynamic' Moralisation

Let P be a joint probability distribution of a Bayesian network $\mathcal{B} = (G, P)$, then

 $X_U \perp\!\!\!\perp_P X_V \mid X_W$

holds iff U and V are (u-)separated by W in the moral induced subgraph G^m with vertices $An(U \cup V \cup W)$ Example:

Example (1) $\{10\} \not \perp_{G}^{d} \{13\} \mid \{7,8\}$

Example (1)

Example (2) $\{10\} \perp _{G}^{d} \{13\} \mid \varnothing$

Example (2)

 $\{10\} \not\sqcup_{G^m_{\operatorname{An}(\{10,13\})}} \{13\} \mid \varnothing$

Conclusions

- Conditional independence is defined as a logic that supports:
 - symbolic reasoning about dependence and independence information
 - makes it possible to abstract away from the numerical detail of probability distributions
 - the process of assessing probability distributions
- Looking at graphs makes it easier to find probability distributions that are equivalent (important in learning)
- Conditional independence is currently being extended towards causal independence (a logic of causality) = maximal ancestral graphs