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Joint probability distributionP (X5, Xs, ..., X,)
» marginalisation:

P(Y)=)» P(Y,Z), withX =Y UZ
A

» conditional probabilities:

PY | Z)=
» Bayes’ theorem:

P(Y | Z) =

P(Z|Y)P(Y)
P(Z)
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Examples:

P(m, s)=P(m,c,s)+P(m,¢, s)=0.009215+0.000485=0.0097

P(m | s)=P(m,s)/P(s)=0.0097/0.0196=0.495

Note that:

o Mainly interested irconditionalprobability
distributions:
P(Z | &) = P(Z)

for (possibly emptykvidencef (instantiated
variables)

» Tendency to focus on conditional probability
distributions of single variables

o Many efficient reasoning algorithms exist
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P(CH, FL, RS, DY, FE, TEMP)

P(FE=1y | FL = y,RS=y) = 0.95
P(FE=1y | FL = n,RS= y) = 0.80
P(FE=1y | FL = y,RS=n) = 0.88
P(FE=y |FL=n,RS=n) = 0.001
P(FL =1y) = 0.1
flu (FL) fever (FE) TEMP
(yesho) ’ (yesho) | (< 37.5/> 37.5)

P(TEMP < 37.5 | FE=1y) = 0.1

P(RS=y|CH=y) =0.3
P(TEMP < 37.5 | FE= n) = 0.99

P(RS=1y | CH=n)=0.01

SARS(RS
/ P(DY =y | RS=n) =0.05
— . dyspnoedDY)
VisitToChina(CH) P(CH=1y)=0.1 (yesho)

(yesho)
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» Nothing known:
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o Temperature-37.5 °C:

FLU
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» | just returned from China:

FLU
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ACAI'09 —p. 7/34



A Bayesian networlB is a pairB = (G, P), where:
» (Qualitative partz = (V(G), A(G)) is an
acyclic directed graphwith

s V(G)={v,v9,...,v,}, asetolfvertices
(nodes)

s A(G) CV(G) x V(G) asetofarcs

» (Quantitative part)’( Xy (¢)) is ajoint probability
distribution such that

HPX\X

wherer(v) denotes the set of parents of veriex
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P(FL, MY, FE)

P(MY = y|FL = y, FE = y) = 0.96
P(MY = y|FL = y,FE = n) = 0.96
P(MY = y|FL = n, FE= ¢) = 0.20
P(MY =y|FL =n,FE=n) =0.20

Myalgia (MY)
(yesho)
P(FL=y) =0.1
Flu (FL) P(FE=y|FL =y) = 0.95
(yesho) P(FE= y|FL =n) = 0.1
Fever (FE)
(yesho)

Thus:
P(FL,MY ,FE) = P(MY |FL, FE) P(FE|FL)P(FL)

Example:P(—fl, my,fe) = 0.20- 0.1 - 0.9 = 0.018
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FLU MYALGIA
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FEVER
] =
ves Il ]
FLU MYALGIA FLU MYALGIA
~o I » Il | oI gy =
ves ] ves N | ves[ ] Tves ]
FEVER FEVER
N[ ] o I
ves [ ves[__ ]
FLU MYALGIA FLU MYALGIA
o I L I | o I gy
ves[_ ] = ves Il YES Tyveslll ]
FEVER FEVER
N[ ] o I
ves [ ves[ ]

ACAI'09 —pn. 11/34



Conclusion: the arc from FEVER to MYALGIA can

be removed, and hence only
P(MY | FL) (= P(MY | FL,FE))

need be specified

FLU MYALGIA FLU MYALGIA
o I | g 2 ==y 00 = . no
2 — G7] e R  — A7 a—
FEVER FEVER
No I |
= — N a—
V] MYALGIA FLU MYALGIA
e — _voNEEE ] ol L] —
[ e | vesHEN >ves I |
FEVER FEVER
) E—
I es I
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Let X, Y, Z C V besets of (random) variableand
let P be a probability distribution oV then X is
calledconditionally independerdf Y given Z,
denoted as

X UpY|Z, iff PX|Y,Z2)=PX]|Z)

Note: This relation is completely defined in terms of
the probability distributionP, but there isa
relationship to graphsfor example:

X1
y/n

{Xo} 1Lp {X3}|{X1}
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List all the instances ofl

List some of the instances af and add axioms
from which other instances can be derived

Define a joint probability distributio® and look
Into the numbers to see which instances of the
Independence relatiai. hold (this yieldsll p)

Use a graplto encodell, which yields L~ (so,
what type of graph — directed, undirected,
chain?)
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i1y L 4p |2
{4) 1L {3} [{1}
{4y L {1} | @
131 L 14} [ 12}
11,2} L {4} | @
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14 L {312
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Basic idea:

o Each variabld/ is represented as a vertex in an
undirected grapl’ = (V(G), E(G)), with set of
verticesV (G) and set of edgeB (G)

» theindependence relation  Is encoded as the

absence of edgga missing edge between
verticesu andv indicates that random variables

X, and.X, are (conditionally) independent
(u-)separation
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Consider the following undirected gragh

O || @D
OO
o {1} 1l {3,6} [ {2}
o {4} 1La {6} {25}
o {4} 1ls46}1]11,2,3,5}
e {1} N {5} |{4}, asthe path — 2 — 5 does not
contain4
e {1,5,6} ULs{7}| @
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Let P be probabillity distribution ofX'. Let
G = (V(G), E(G)) be an undirected graph, then for
eachU, W, Z C V(G):

o ( Is called an undirectedependence map
D-mapfor short, if

XUJ_LPX]/[/‘XZ:>UJ_L(;W‘Z

o ( Is called an undirectegidependence map
I-mapfor short, If

UJ_LGw,ZiXUJ_LXw‘XZ

» (G Is called an undirecteperfect mapor P-map
for short, If G I1s both a D-map and an I-map
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LetV ={1,2,3,4} be a set anKy the
corresponding set of random variables, and consider
the independence relatiah p, defined by

{ X1} Lp { Xy} | { X2, X3}
{Xo} 1Lp { X3} | { X1, Xy}

The following undirected graphs are examples of

D-maps: D @/@
@ O €)
@

@

e
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LetV ={1,2, 3,4} be a set with random variables
Xy, and consider the independence relation:

{ X1} Lp { Xy} | { X2, X3}
{Xo} 1Lp { X3} | { X1, Xy}

The following undirected graphs are examples of

l-maps: (T (M)
oSS ONENOSS 6
&

%

(So, what is the P-map?)

ACAI'09 — n. 20/34



A pair M = (G, P), where

s G=(V(G),E(G))is anundirectedgraph with
set of verticed/(G) and set of edges (G),
» P s ajoint probability distribution ofXy, ), and
o (G Isanl-mapof P
IS said to be a&/larkov network
ExampleM = (G, ¢) = (G, P):
Potential:

1 2) o(Xi1, Xo, X3) =
Q (X1, Xo)7T (X9, X3),

or joint probability distribution:

P(X17 X27 XS) — P(Xl’);Q())?Q())(QaXS)
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Directed vs undirected
Directed graphare more subtle when it comes to
expressing independence information thiauirected

graphs

@@@ "

LA
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A chaink (= path in undirected underlying graph) in
an acyclic directed grapy = (V(G), A(G)) can be
blocked Diverging

2 blocks(d-separatgsl and3: {1} 1L {3} | {2}
Serial
2 blocks(d-separatgsl and3: {1} 1L {3} | {2}
Converging

2 d-connectd and3: {1} K {3} | {2}
(same holds for successors®)f note{1} I {3} | &
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o The chaird, 2,5 from 4 to 5 is blocked by{2}

o Thechainl,2,5,6 from 1 to6 is blocked by{5},
and also by{2} and{2,5}

o The chaim, 4,6,5 from 3 to 5 is blocked by{4}
and{4,6}, butnotby {6}
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Consider the following independence relatiar:

{X1} 1lLp {Xo} | @
{ X1, Xo} ALp { X4} |{X3}

and the following directed I-maps @f:
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no I
ves W |
\ FEVER TEMP
no [N | <=37.5 [ |
yes - ‘ > >37.5 . ‘
SARS DYSPNOEA
no | | no [N |
o _ yes Il \ > yes \
VisitToChina -
no [N |

ves [l |

Examples:
s FLU VisitToChina| o
FLU SARS| &

e o ©
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o Directed graphs contain independences that
become dependences after conditioning
(Instantiating variables)

» Undirected graphs do not have this property

o However, undirected subgraphs can be generated
by making potentially dependent parents of a
child dependent

Example:

Original Moral Graph
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Let G be an ADG,; its associated undirectedral
graphG™ can be constructed byoralisation

1. add lines to all non-connected vertices, which
have a common child, or descendant of a
common child, and

2. replace each arc with a line in the resulting graph

ACAI'09 — pn. 28/34



Let G be an ADG,; its associated undirectedral
graphG™ can be constructed byoralisation

1. add lines to all non-connected vertices, which
have a common child, or descendant of a
common child, and

2. replace each arc with a line in the resulting graph

ACAI'09 — pn. 28/34



o Resulting undirected (moral) graph is an I-map of
the associated probability distribution

o However, it contain$oo many dependences!
Example:{1} 1.4 {3} | @, whereas

{1} Lgn {3} | @

Original Moral Graph

» Conclusion: make moralisatiodynamic’ (i.e. a
function of the set on which we condition)

» For this the notion of ‘ancestral set’ is required
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LetG = (V(G), A(G)) be an acyclic directed graph,
then if forW C V(@) it holds thatr(v) C W for all

v € W, thenWW is called
An (W) denotes thema

amncestral seof V.
lestancestral set containing

An({6}) = {3,4,6,9}
An({10,7}) = {7,6,3,4,9,10}
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Let P be a joint probability distribution of a Bayesian
networkB = (G, P), then

XU 1l p XV ‘ XW

holds iff U andV are (u-)separated @y in the moral
induced subgrapt™ with verticesAn(U UV U W)
Example:

X1 Mp X3 ’ Xo; An({1,2,3}) = {1,2,3}

/

Original Moral Graph
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Let P be a joint probability distribution of a Bayesian
networkB = (G, P), then

XU 1l p XV ‘ XW

holds iff U andV are (u-)separated @y in the moral
induced subgrapt™ with verticesAn(U UV U W)
Example:

X7 A p X4 ’ ., AH({l,S}) — {1,3}

O G

Moral Graph

Original
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» Conditional independence is defined as a logic
that supports:

» symbolic reasoning about dependence and
Independence information

» Mmakes it possible to abstract away from the
numerical detail of probability distributions

» the process of assessing probability
distributions

» Looking at graphs makes it easier to find
probability distributions that arequivalent
(Important in learning)

» Conditionalindependence is currently being
extended towardsausaindependence (a logic of
causality) =maximal ancestral graphs
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