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Suitability Bayesian Networks
Modelling objective, e.g.,

uncertain does or does not play a signicant
role;
white or black box approach: is there
sufficient knowledge about the domain?

Availability of domain experts and data

Sufficient time available?

Complexity of the problem: is it decomposable?
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Problem Solving
Bayesian networks: adeclarative
knowledge-representation formalism, i.e.:

mathematical basis

problem to be solved determined by (1) entered
evidencee (including potential decisions); (2)
given hypothesish: P (h | e)

Examples:

Description of population (i.e., distributions)

Classification and diagnosis hypothesish with
maximumP (h | e)

Prediction (time dimension)

Decision making based onwhat-if scenario’s
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Prior Information

Marginal probabilitiesP (V ) for every vertexV ,
e.g.,P (WILSON’S DISEASE= yes)

Gives description of the population on which the
assessed probabilities are based
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Diagnostic Problem Solving

Marginal probabilitiesP ∗(V ) = P (V | E) for
every vertexV , e.g.,
P (WILSON’S DISEASE= yes | E) for entered
evidenceE (red vertices)

Gives description of thesubpopulation of the
original population or individual cases
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Prediction Associated Findings

Marginal probabilitiesP ∗(V ) = P (V | E), e.g.,
P (Kayer-Fleischer Rings= yes | E) with E
evidence

Gives description of the findings associated with
a given class or category, such as Wilson’s disease
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Design of Bayesian Network
Principle: start modellingqualitatively
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qualitative

probabilistic network
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Bayesian
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Terminology
NO

YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP

ParentSARSof child FEVER

SARS is ancestorof TEMP

DYSPNOEA is descendantof V ISITTOCHINA

Query node, e.g.,FEVER

Evidence, e.g., VISITTOCHINA andTEMP

Markov blanket, e.g.,
for SARS:
{V ISITTOCHINA ,DYSPNOEA,FEVER,FLU}
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Causal graph: Topology
cause1

causen

... effect

Identify factors that are relevant

Determine how those factors are causally related
to each other

The arccause→ effect does mean thatcause is a
factor involved in causingeffect
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Causal graph: Common Effects
cause1

causen

... effect

An effect that has two or more ingoing arcs from
other vertices is acommon effectof those causes

Kinds of causal interaction
Synergy:POLUTION −→ CANCER←− SMOKING

Prevention:VACCINE −→ DEATH←− SMALLPOX

XOR: ALKALI −→ DEATH←− ACID
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Causal graph: Common Causes

cause

effect1

effectn

...

A cause that has two or more outgoing arcs to
other vertices is acommon cause (factor)of those
effects

The effects of a common cause are usually
observables (e.g. manifestations of failure of a
device or symptoms in a disease)
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Causal Graph: Example

FLU

PNEUMONIA

FEVER

MYALGIA

TEMP

FEVER andPNEUMONIA are two alternative
causes of fever (but may enhance each other)

FLU has two common effects:MYALGIA and
FEVER

High bodyTEMPerature is anindirect effectof
FLU andPNEUMONIA, caused byFEVER
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Check Independences

FLU

PNEUMONIA

FEVER

MYALGIA

TEMP

Conditional independence:X ⊥⊥ Y | Z

FLU ⊥⊥ TEMP | FEVER

FEVER⊥⊥ MYALGIA | FLU

PNEUMONIA ⊥⊥ FLU | ∅

PNEUMONIA 6⊥⊥ FLU | FEVER
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Choose Variables
Factors aremutually exclusive(cannot occur
together with absolute certainty): put as values in
the same variable, or

Factors may co-occur: multiple variables

DISEASE

pneu/flu

FEVER

MYALGIA

(a) Single variable

FLU

yes/no

FEVER

PNEUMONIA

yes/no

MYALGIA

(b) Multiple variables
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Choose Value Domains
Discrete values

Mutually exclusive and exhaustive
Types:

binary, e.g.,FLU = yes/no, true/false, 0/1
ordinal, e.g.,INCOME = low, medium, high
nominal, e.g.,COLOR = brown, green, red
integral, e.g.,AGE = {1, . . . , 120}

Continuous values

Discretisation (of continuous and integral values)
Example forTEMP:
[−50,+5)→ cold
[+5,+20)→ mild
[+20,+50]→ hot
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Probability Assessment
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Expert Judgements
Qualitative probabilities:

Qualitative orders:

AGE P (General Health Status| AGE)

10-69 good> average> poor
70-79 average> good> poor
80-89 average> poor> good
≥ 90 poor> average> good

Equalities:

P (CANCER = T1|AGE = 15− 29) =
P (CANCER = T2|AGE = 15− 29)
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Expert Judgements (cont.)
Quantitative, subjective probabilities:

P (GHS | AGE)

AGE good average poor

10-69 0.99 0.008 0.002
70-79 0.3 0.5 0.2
80-89 0.1 0.5 0.4
≥ 90 0.1 0.3 0.6
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A Bottleneck

FEV ER

FLU

RABIES EARINF

BRONCH

The number of parameters for the effect givenn
causes grows exponentially:2n for binary causes

Unlikely evidence combination:
P (FEVER|FLU, RABIES, EAR INFECTION) =?

Problem:for many BNstoo manyprobabilities have
to be assessed

ACAI’09 – p. 19/28



Special Form BN
Solution:use simpler probabilistic model, such that
either

thestructure becomes simpler, e.g.,

naive (independent) form BN
Tree-Augmented BayesianNetwork (TAN)

or,

theassessment of the conditional probabilities
becomes simpler(even though the structure is
still complex), e.g.,

parent divorcing
causal independence BN
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Independent (Naive) Form

C

E1

· · ·E2

Em

C is aclass variable
Ei areevidence variablesandE ⊆ {E1, . . . , Em}.
We haveEi ⊥⊥ Ej | C, for i 6= j. Hence, using
Bayes’ rule:

P (C | E) =
P (E | C)P (C)

P (E)
with:

P (E | C) =
∏

E∈E

P (E | C) by cond. ind.

P (E) =
∑

C

P (E | C)P (C) marg. & cond.
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Tree-Augmented BN (TAN)

C

E1

E3E2

E5

E4

Extension of Naive Bayes: reduce the number of
independent assumptions

Each node has at most two parents (one is the
class node)
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Divorcing Multiple Parents
Surgery

Drug

Treatment

General

Health

Survival

(a) Original network

Surgery

Drug

Treatment

General

Health

Post-therapy

Survival

Survival

(b) Divorced network

Reduction in number of probabilities to assess:

Identify a potential common effect of two or
more parent vertices of a vertex

Introduce a new variable into the network,
representing the common effect
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Causal Independence
C1 C2 . . . Cn

I1 I2 . . . In

Ef

with:

causevariablesCj, intermediatevariablesIj, and
theeffectvariableE

P (E | I1, . . . , In) ∈ {0, 1}

interaction functionf , defined such that

f(I1, . . . , In) =

{

e if P (e | I1, . . . , In) = 1

¬e if P (e | I1, . . . , In) = 0
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Causal Independence
C1 C2 . . . Cn

I1 I2 . . . In

Ef

P (e | C1, . . . , Cn) =
∑

I1,...,In

P (e | I1, . . . , In)P (I1, . . . , In | C1, . . . , Cn)

=
∑

f(I1,...,In)=e

P (e | I1, . . . , In)P (I1, . . . , In | C1, . . . , Cn)

Note that asIi ⊥⊥ Ij | ∅, andIi ⊥⊥ Cj | Ci, for i 6= j,
it holds that:

P (I1, . . . , In | C1, . . . , Cn) =
n

∏

k=1

P (Ik | Ck)
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Noisy OR
C1 C2

I1 I2

EOR

Interactions among causes, as represented by the
functionf andP (E | I1, I2), is a logical OR

Meaning: presence of any one of the causesCi

with absolute certainty will cause the effecte
(i.e.,E = true)
P (e|C1, C2) =

∑

I1∨I2=e

P (e|I1, I2)
∏

k=1,2

P (Ik|Ck)

= P (i1|C1)P (i2|C2) + P (¬i1|C1)P (i2|C2)

+P (i1|C1)P (¬i2|C2)
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Noisy AND
C1 C2

I1 I2

EAND

Interactions among causes, as represented by the
functionf andP (E | I1, I2), is a logical AND

Meaning: presence of all causesCi with absolute
certainty will cause the effecte (i.e.E = true);
otherwise,¬e

P (e|C1, C2) = · · ·
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Model Refinement
Model refinement is necessary:

How:
Manual
Automatic:sensitivity analysis

What:
Probability adjustment
Removing irrelevant factors
Adding previously hidden, unknown factors
Causal relationships adjustment, e.g.,
including, removing independence relations
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