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» Modelling objective, e.q.,

s uncertain does or does not play a signicant
role;

s White or black box approach: is there
sufficient knowledge about the domain?

» Avallability of domain experts and data
o Sufficient time available?

o Complexity of the problem: is it decomposable?
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Bayesian networks: a@eclarative
knowledge-representation formalism, i.e.:

o mathematical basis
» problem to be solved determined by (1) entered

evidence: (including potential decisions); (2)
given hypothesi&: P(h | e)

Examples:

K

9

Description of population (i.e., distributions)

Classification and diagnosis hypothesiith
maximumpP(h | e)

Prediction (time dimension)
Decision making based avhat-if scenario’s
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o Marginal probabilitie for every vertex/,
e.g.,P(WILSON’S DISEASE= yes

» Gives description of the population on which the
assessed probabilities are based
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» Marginal probabilitiesP*(V) = P(V | &) for

every vertex/, e.g.,
WILSON’'S DISEASE= yes | £) for entered

evidencef (red vertices)

o Gives description of theubpopulation of the
original population or individual cases
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» Marginal probabilitiesP*

= |1 £), e.q.,

Kayer-Fleischer Rings- yes | £) with £

evidence

» Gives description of the findings associated with
a given class or category, such as Wilson’s disease
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o Principle: start modellingjualitatively

causal
graph

refinement

gualitative
probabilistic network

guantitative
network

Bayesian
network

variables/
relationships

domains of
variables/

gualitative

probabilistic
information

numerical
assessment
experts/dataset

evaluation
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» ldentify factors that are relevant

o Determine how those factors are causally related
to each other

#® The arccause — effect does mean thatuse IS a
factor involved in causingftect

effect
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» An effect that has two or more ingoing arcs from
other vertices iIs aommon effecof those causes

o Kinds of causal interaction
s SyNnergy:POLUTION — CANCER «— SMOKING
s Preventlon:vACCINE — DEATH «— SMALLPOX
s XOR: ALKALI — DEATH «— ACID

effect
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» A cause that has two or more outgoing arcs to

other vertices iIs aommon cause (factoof those
effects

o The effects of a common cause are usually
observables (e.g. manifestations of failure of a
device or symptoms in a disease)
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#» FEVERAaANAPNEUMONIA are two alternative
causes of fever (but may enhance each other)

# FLU has two common effectsaYALGIA and
FEVER

o High bodyTEMPerature is amdirect effectof
FLU andPNEUMONIA, caused byEVER
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» Conditional independence& 1L Y | Z

o

9

9

FLU 1L TEMP | FEVER
FEVER 1l MYALGIA | FLU
PNEUMONIA Il FLU | &
PNEUMONIA { FLU | FEVER
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o Factors arenutually exclusivgcannot occur
together with absolute certainty): put as values in

the same variable, or
» Factors may co-occur: multiple variables

DISEASE
pneu/flu

PNEUMONIA
yes/no

(a) Single variable (b) Multiple variables
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» Discrete values
» Mutually exclusive and exhaustive
s Types:

&

&

&

&

binary, e.g.FLU = yesno, true/false, 0/1
ordinal, e.g.JNCOME = low, medium, high
nominal, e.g.COLOR = brown, green, red
integral, e.g.AGE = {1,...,120}

o Continuous values
o Discretisation (of continuous and integral values)

s E

xample fOITEMP:

—50,+5) — cold

-5, +20) — mild

+20, +50] — hot
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gualitative
orders and
equalities

> 4

divorcing/causal
independence

EVALUATION $

check
consistency

quantitative
assessment
experts/dataset

probability
distribution

compare
prediction with
literature

compare with
test dataset
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» Qualitative probabillities:
s Qualitative orders:

AGE

P(General Health StatysaGe)

10-69
70-79
80-89

> 90

good> average> poor
average> good> poor
average> poor > good
poor> average> good

s Equalities:

P(CANCER = T'1|AGE = 15 — 29) =
P(CANCER = T2|AGE = 15 — 29)
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» Quantitative, subjective probabillities:

P(GHS| AGE)
AGE | good average poot
10-69| 0.99 0.008 0.002
70-79/0.3 0.5 0.2

80-89/ 0.1 0.5 0.4
>90(0.1 0.3 0.6
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RABIES

BRONCH

» The number of parameters for the effect given
causes grows exponentially? for binary causes

» Unlikely evidence combination:
P(FEVER|FLU, RABIES, EAR_INFECTION) =7

Problem:for many BNstoo manyprobabilities have
to be assessed

ACAI'09 —p. 19/28



Solution:use simpler probabllistic model, such that
either
» thestructure becomes simpleas.g.,

s haive (Independent) form BN
s TreeAugmented BayesiaNetwork (TAN)

ofr,

» theassessment of the conditional probabilities
becomes simplgieven though the structure is
still complex), e.q.,

s parent divorcing
» causal independence BN
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o ('Is aclass variable

» [, areevidence variableand& C {Fy, ..., E,}.
We havel; 1l E; | C, fori # 5. Hence, using
Bayes’ rule:

P(C|E) = P(SLC(?,)P(O) with:
re|c) = [ PE|C) by cond. ind.

BéE
P(E) = Y P(E|C)P(C) marg. & cond.
C
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o\

» Extension of Naive Bayes: reduce the number of
Independent assumptions

» Each node has at most two parents (one is the
class node)
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Post-therap
Survival

Drug Drug
Treatmen Treatmen
Genera Genera
Health Health

(a) Original network (b) Divorced network

Reduction in number of probabillities to assess:

o l|dentify a potential common effect of two or
more parent vertices of a vertex

# Introduce a new variable into the network,
representing the common effect

Survival
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with:

» causevariablesC';, intermediatevariables/;, and
theeffectvariable~

o P(E ’ ]17---7]77,) ~ {0,1}
o Interaction functionf, defined such that

e ifPe|l,... . I)=1
—e If Ple|I1,...,1,) =0

ACAI'09 — n. 24/28

f(]l,...,]n):{




Note that ad; L [; | @, andl; 1L C; | C;, fori # j,
It holds that:

P(ly,.... I, | Cy,...,Cn) = || P(Ix | C)
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on B

» Interactions among causes, as represented by the
function f andP(E | I1, I5), is a logical OR
» Meaning: presence of any one of the causgs
with absolute certainty will cause the effect
(i.e., E = true)
P(e|Cy,Ca) = > Plell, ) |[ P(IxICk)

I1VIy=e k=1,2

= P(i1|C1)P(i2|Cs) + P(—i1|C1)P(i2|Cs)
—|—P(11’01)P(—l7,2’02)
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AND @

» Interactions among causes, as represented by the
function f andP(FE | I1, I5), is a logical AND

» Meaning: presence of all caus€swith absolute
certainty will cause the effeet(i.e. £ = true);
otherwise,—¢

P(@‘Cl, 02) —
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Model refinement is necessary:

o How:
» Manual
o Automatic: sensitivity analysis

» \What:
o Probability adjustment
» Removing irrelevant factors
s Adding previously hidden, unknown factors
N

Causal relationships adjustment, e.g.,
iIncluding, removing independence relations
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