The Model-based Approach to Computer-aided Medical Decision Support

Lecture 3: Building Bayesian Networks

Peter Lucas

peterl@cs.ru.nl

Institute for Computing and Information Sciences
Radboud University Nijmegen
The Netherlands

Suitability Bayesian Networks

- Modelling objective, e.g.,
 - uncertain does or does not play a signicant role;
 - white or black box approach: is there sufficient knowledge about the domain?
- Availability of domain experts and data
- Sufficient time available?
- Complexity of the problem: is it decomposable?

Problem Solving

Bayesian networks: a declarative knowledge-representation formalism, i.e.:

- mathematical basis
- problem to be solved determined by (1) entered evidence e (including potential decisions); (2) given hypothesis h: $P(h \mid e)$

Examples:

- Description of population (i.e., distributions)
- Classification and diagnosis hypothesis h with maximum $P(h \mid e)$
- Prediction (time dimension)
- Decision making based on what-if scenario's

Prior Information

- Marginal probabilities P(V) for every vertex V, e.g., $P(WILSON'S\ DISEASE = yes)$
- Gives description of the population on which the assessed probabilities are based

Diagnostic Problem Solving

- Marginal probabilities $P^*(V) = P(V \mid \mathcal{E})$ for every vertex V, e.g., $P(\text{WILSON'S DISEASE} = yes \mid \mathcal{E})$ for entered evidence \mathcal{E} (red vertices)
- Gives description of the subpopulation of the original population or individual cases

Prediction Associated Findings

- Marginal probabilities $P^*(V) = P(V \mid \mathcal{E})$, e.g., $P(\text{Kayer-Fleischer Rings} = yes \mid \mathcal{E})$ with \mathcal{E} evidence
- Gives description of the findings associated with a given class or category, such as Wilson's disease

Design of Bayesian Network

Principle: start modelling qualitatively

Terminology

- Parent SARS of child FEVER
- SARS is ancestor of TEMP
- DYSPNOEA is descendant of VISITTOCHINA
- Query node, e.g., FEVER
- Evidence, e.g., VISITTOCHINA and TEMP
- Markov blanket, e.g., for SARS: {VISITTOCHINA,DYSPNOEA,FEVER,FLU}

Causal graph: Topology

- Identify factors that are relevant
- Determine how those factors are causally related to each other
- The arc cause → effect does mean that cause is a factor involved in causing effect

Causal graph: Common Effects

- An effect that has two or more ingoing arcs from other vertices is a common effect of those causes
- Kinds of causal interaction
 - Synergy: POLUTION → CANCER ← SMOKING
 - Prevention: VACCINE → DEATH ← SMALLPOX
 - XOR: ALKALI \longrightarrow DEATH \longleftarrow ACID

Causal graph: Common Causes

- A cause that has two or more outgoing arcs to other vertices is a common cause (factor) of those effects
- The effects of a common cause are usually observables (e.g. manifestations of failure of a device or symptoms in a disease)

Causal Graph: Example

- FEVER and PNEUMONIA are two alternative causes of fever (but may enhance each other)
- FLU has two common effects: MYALGIA and FEVER
- High body TEMPerature is an indirect effect of FLU and PNEUMONIA, caused by FEVER

Check Independences

- Conditional independence: $X \perp \!\!\! \perp Y \mid Z$
 - FLU ⊥⊥ TEMP | FEVER
 - FEVER ⊥ MYALGIA | FLU
 - PNEUMONIA ⊥ FLU | Ø
 - PNEUMONIA ↓ FLU | FEVER

Choose Variables

- Factors are mutually exclusive (cannot occur together with absolute certainty): put as values in the same variable, or
- Factors may co-occur: multiple variables

Choose Value Domains

- Discrete values
 - Mutually exclusive and exhaustive
 - Types:
 - binary, e.g., FLU = yes/no, true/false, 0/1
 - ordinal, e.g., INCOME = low, medium, high
 - nominal, e.g., COLOR = brown, green, red
 - integral, e.g., $AGE = \{1, ..., 120\}$
- Continuous values
- Discretisation (of continuous and integral values)
 - Example for TEMP:

$$[-50, +5) \rightarrow cold$$

 $[+5, +20) \rightarrow mild$
 $[+20, +50] \rightarrow hot$

Probability Assessment

Expert Judgements

- Qualitative probabilities:
 - Qualitative orders:

AGE	$P(General Health Status \mid AGE)$		
10-69	good > average > poor		
70-79	average > good > poor		
80-89	average > poor > good		
≥ 90	poor > average > good		

• Equalities:

$$P(\text{CANCER} = T1 | \text{AGE} = 15 - 29) = P(\text{CANCER} = T2 | \text{AGE} = 15 - 29)$$

Expert Judgements (cont.)

• Quantitative, subjective probabilities:

	$P(GHS \mid AGE)$			
AGE	good	average	poor	
10-69	0.99	0.008	0.002	
70-79	0.3	0.5	0.2	
80-89	0.1	0.5	0.4	
≥ 90	0.1	0.3	0.6	

A Bottleneck

- The number of parameters for the effect given n causes grows exponentially: 2^n for binary causes
- Unlikely evidence combination: $P(\text{FEVER}|\text{FLU}, \text{RABIES}, \text{EAR_INFECTION}) = ?$

Problem: for many BNs too many probabilities have to be assessed

Special Form BN

Solution: use simpler probabilistic model, such that either

- the structure becomes simpler, e.g.,
 - naive (independent) form BN
 - Tree-Augmented Bayesian Network (TAN) or,
- the assessment of the conditional probabilities becomes simpler (even though the structure is still complex), e.g.,
 - parent divorcing
 - causal independence BN

Independent (Naive) Form

- C is a class variable
- E_i are evidence variables and $\mathcal{E} \subseteq \{E_1, \dots, E_m\}$. We have $E_i \perp \!\!\!\perp E_j \mid C$, for $i \neq j$. Hence, using Bayes' rule:

$$P(C \mid \mathcal{E}) = \frac{P(\mathcal{E} \mid C)P(C)}{P(\mathcal{E})}$$
 with:
 $P(\mathcal{E} \mid C) = \prod_{E \in \mathcal{E}} P(E \mid C)$ by cond. ind.
 $P(\mathcal{E}) = \sum_{C} P(\mathcal{E} \mid C)P(C)$ marg. & cond.

Tree-Augmented BN (TAN)

- Extension of Naive Bayes: reduce the number of independent assumptions
- Each node has at most two parents (one is the class node)

Divorcing Multiple Parents

Reduction in number of probabilities to assess:

- Identify a potential common effect of two or more parent vertices of a vertex
- Introduce a new variable into the network, representing the common effect

Causal Independence

with:

- cause variables C_j , intermediate variables I_j , and the effect variable E
- $P(E \mid I_1, \dots, I_n) \in \{0, 1\}$
- interaction function f, defined such that

$$f(I_1, ..., I_n) = \begin{cases} e & \text{if } P(e \mid I_1, ..., I_n) = 1 \\ \neg e & \text{if } P(e \mid I_1, ..., I_n) = 0 \end{cases}$$

Causal Independence

$$P(e \mid C_1, \dots, C_n) = \sum_{I_1, \dots, I_n} P(e \mid I_1, \dots, I_n) P(I_1, \dots, I_n \mid C_1, \dots, C_n)$$

$$= \sum_{I_1, \dots, I_n} P(e \mid I_1, \dots, I_n) P(I_1, \dots, I_n \mid C_1, \dots, C_n)$$

$$= \sum_{f(I_1, \dots, I_n) = e} P(e \mid I_1, \dots, I_n) P(I_1, \dots, I_n \mid C_1, \dots, C_n)$$

Note that as $I_i \perp \!\!\! \perp I_j \mid \varnothing$, and $I_i \perp \!\!\! \perp C_j \mid C_i$, for $i \neq j$, it holds that:

$$P(I_1, \dots, I_n \mid C_1, \dots, C_n) = \prod_{k=1}^n P(I_k \mid C_k)$$

Noisy OR

- Interactions among causes, as represented by the function f and $P(E \mid I_1, I_2)$, is a logical OR
- Meaning: presence of any one of the causes C_i with absolute certainty will cause the effect e (i.e., E = true)

$$P(e|C_1, C_2) = \sum_{I_1 \vee I_2 = e} P(e|I_1, I_2) \prod_{k=1,2} P(I_k|C_k)$$

$$= P(i_1|C_1)P(i_2|C_2) + P(\neg i_1|C_1)P(i_2|C_2)$$

$$+P(i_1|C_1)P(\neg i_2|C_2)$$

Noisy AND

- Interactions among causes, as represented by the function f and $P(E \mid I_1, I_2)$, is a logical AND
- Meaning: presence of all causes C_i with absolute certainty will cause the effect e (i.e. E = true); otherwise, $\neg e$

$$P(e|C_1, C_2) = \cdots$$

Model Refinement

Model refinement is necessary:

- How:
 - Manual
 - Automatic: sensitivity analysis
- What:
 - Probability adjustment
 - Removing irrelevant factors
 - Adding previously hidden, unknown factors
 - Causal relationships adjustment, e.g., including, removing independence relations