The Model-based Approach to Computer-aided Medical Decision Support

Lecture 4: Causal Independence

Peter Lucas

peterl@cs.ru.nl

Institute for Computing and Information Sciences Radboud University Nijmegen The Netherlands

Introduction

- Clinical decision support, because . . .
 - doctors make more mistakes than you would accept (as a patient)
 - some of their actions are harmful
- Deployment of:
 - probabilistic graphical models
 - logical methods
 - combinations
- Causal modelling for the management of infectious disease (work together with Stefan Visscher) and detection of breast cancer (work with Marina Velikova)

Problem

- ICU at Utrecht MC
- Diagnosis and antimicrobial treatment of patients with ventilator-associated pneumonia (VAP)
- About 15-20% of ICU patients develop VAP
- Mortality rate: up to 40%
- Up to 50% of antibiotics in ICUs are prescribed for airway infections

Software Infrastructure

Global Model Pneumonia

Detailed Pneumonia Network

Prediction

Specification of Interactions

Compact specification: probability tables

 $P(X_i \mid \operatorname{pa}(X_i))$

can still be large even when taking into account independence information

- Easy way to map domain knowledge to entries into a probability table
- Way to use qualitative knowledge about interactions as constraints to probabilistic information
- Might be useful in developing applications

Qualitative Modelling

People become colonised by bacteria when entering a hospital, which may give rise to pneumonia

Bayesian-network Modelling

Qualitative Quantitative

causal modelling interaction modelling

Cause \rightarrow Effect $P(Inf | BR_A, BR_B, BR_C)$

		BR_A									
			1	t		f					
BR_A BR_B BR_C			BI	R_B		BR_B					
		t		f		t		f			
		BR_C		BR_C		BR_C		BR_C			
Inf	Inf	t	f	t	f	t	f	t	f		
	t	0.8	0.6	0.5	0.3	0.4	0.2	0.3	0.1		
Ť	f	0.2	0.4	0.5	0.7	0.6	0.8	0.7	0.9		

Causal Independence

k=1

$$P(e \mid C_1, \dots, C_n) = \sum_{I_1, \dots, I_n} P(e \mid I_1, \dots, I_n)$$

$$\times \prod^n P(I_k \mid C_k) = \sum \prod^n P(I_k \mid C_k)$$

Note: $P(i_k | \bar{c}_k) = 0$ – absent causes don't contribute

 $f(I_1,...,I_n) = e k = 1$

Boolean Interaction

- Commutative, associative: $\land, \lor, \leftrightarrow, \oslash, \top, \bot$
- Commutative, non-associative:
- Non-commutative, associative: p_1, p_2, n_1, n_2
- Non-commutative, non-associative: \rightarrow , \leftarrow , <, >

Symmetric Boolean Functions

Order of arguments doesn't matter; defined in terms of exact function e_k :

$$f(I_1,\ldots,I_n) = \bigvee_{k=0}^n e_k(I_1,\ldots,I_n) \wedge \gamma_k$$

where γ_k are Boolean constants only dependent of the function f

Example: threshold function τ_l :

$$\tau_l(I_1,\ldots,I_n) = \bigvee_{k=l}^n e_k(I_1,\ldots,I_n)$$

Decomposition by Counting

Threshold function τ_3 :

Qualitative Modelling

By antibiotic treatment M clinicians try to cover O at most 2 of the bacteria giving rise to pneumonia

$$P(O \mid C_1, \ldots, C_n, M)$$

Overall Susceptibility

$$P_{\tau_k}(o|C_1, \dots, C_n, M) = \sum_{k \le l \le n} \sum_{e_l(S_1, \dots, S_n)} \prod_{j=1}^n P(S_j \mid C_j, M)$$

- C_j : causal factor j
- S_j susceptibility to medication
- M: treatment by antimicrobial medication
- O: overall outcome

Various Models

Conditional probability distributions: $P(S_j | C_j, M)$ • susceptibility I model:

$$P(s_j \mid C_j, M) = \begin{cases} 0 & \text{if } C_j = \text{yes}, M = \text{no} \\ 1 & \text{otherwise} \end{cases}$$

- susceptibility II model: $P(s_i | \neg c_i, \neg m) = 1$, whereas $P(s_i | \neg c_i, m) = 0$
- susceptibility III model:

$$P(s_j \mid C_j, M) = \begin{cases} 1 & \text{if } C_j = \text{yes}, M = \text{yes} \\ 0 & \text{otherwise} \end{cases}$$

Model I, Colonised by 1

Model II, Colonised by 1

Model III, Colonised by 1

Model II, Colonised by 2

Property

Let $P(E | C_1, ..., C_n)$ be defined in terms of the Boolean threshold function τ_k using the parameters $P(I_k | C_k)$, then:

Theorem: For each $k, 0 \le k \le n-1$:

$$P_{\tau_k}(e \mid C_1, \dots, C_n) \ge P_{\tau_{k+1}}(e \mid C_1, \dots, C_n)$$

Proof: $P_{\tau_k}(e \mid C_1, \dots, C_n) + \sum_{e_{k+1}(I_1, \dots, I_n)} \prod_{j=1}^n P(I_j \mid C_j)$ $= P_{\tau_{k+1}}(e \mid C_1, \dots, C_n), \text{ and}$ $\sum_{e_{k+1}(I_1, \dots, I_n)} \prod_{j=1}^n P(I_j \mid C_j) \ge 0$

Predicting Optimal Treatment

153 patients with VAP using the (SIII, k = 1) model

				Antibiotic coverage										
	n	Bac	m	А	В	С	D	Е	F	G	Н	Ι	J	K
early	2		13		96					97		100		0
	1	SA	25					94			72	100	72	0
		HI	8	94	99		99					100		0
		SP	3	71	97	65	97					100		0
late	2		33						96			100		0
	1	PA	19				85		91			88		0
		AC	6					92	81			100		0
		Ent1	29				88	89	96			100		0
		Ent2	17					48	98	90		96		0

Predicting Optimal Treatment

153 patients with VAP using the (SIII, k = 2) model

				Antibiotic coverage										
	n	Bac	m	А	В	С	D	E	F	G	Η	Ι	J	K
early	2		13		67					72		85		0
	1	SA	25					42			25	67	28	0
		HI	8	31	34		41					50		0
		SP	3	27	47	0	43					67		0
late	2		33						67			79		0
	1	PA	19				22		26			28		0
		AC	6					13	8			17		0
		Ent1	29				22	10	28			31		0
		Ent2	17					23	40	37		46		0

Image Interpretation

- national breast cancer screening programme
- decision-making under uncertainty
- interpretation of image features in terms of probabilistic graphical models
- from single- to multi-view interpretation

Singleview CAD System

- Region features: contrast, size, location, margin, spiculation, etc.
- Advantage: a good detection rate per image
- Shortcoming: unsatisfactory performance at a patient level because views are treated independently

Multiview Interpretation

Mediolateral oblique view

Craniocaudal view

Multiview Bayesian Network

a) **RegNet**

b) ViewNet

- Interpretation of regions of interest (real-valued feature vector): logistic regression
- Combination of region and view information: causal independence

Conclusions

Use of modelling approach:

- Select the right qualitative pattern
- Select the right Boolean interaction function
- Fill in arc probabilities $P(I_k \mid C_k)$

Some future work:

Study learning of interaction functions from dataStudy other interaction patterns

[See: Artificial Intelligence, vol. 163, pp. 233–263, 2005; Artificial Intelligence in Medicine, vol.46, pp. 251–266, 2009; Physics in Medicine and Biology, vol. 54, pp. 1131–1147, 2008]