The Model-based Approach to Computer-aided Medical Decision Support

Lecture 5: PGMs meet Logic

Peter Lucas

peterl@cs.ru.nl

Institute for Computing and Information Sciences
Radboud University Nijmegen
The Netherlands

Motivation

- First-order logic: good for relational reasoning in various ways about classes of objects
- Probabilistic graphical models: good for reasoning with uncertainty
- \Rightarrow why not combining them?
 - Markov logic (generates Markov networks)
 - Bayesian logic programs (generates Bayesian networks)
 - Probabilistic Horn logic (abductive Bayesian-network reasoning)
 - Chain logic (with Arjen Hommersom and Nivea Ferreira)

Probabilistic Graphical Models

- Family of probability distributions defined in terms of a directed, an undirected, or hybrid graph
- In general, undirected, and directed graphs make different assumptions regarding conditional independence
- Some independences are captured by directed and not by undirected graphs, and vice-versa

Markov Networks

An undirected graph

Basic idea:

- Each variable X corresponds to a vertex v
- Independence relation ⊥⊥ is encoded as the absence of edges
- A missing edge (blockage of all paths) between vertices u and v indicates that X_u and X_v are (conditionally) independent

Markov Logic Network (MLN)

a Markov logic net (MLN) set of pairs:

$$L = \{(F_k, w_k) \mid k = 1, \dots, n\}$$

with F_k a formula in first-order logic and w_k a real number

Example (smoking causes cancer; if one friend smokes, the other smokes as well):

$$0.8 \ \forall x(S(x) \to C(x))$$

$$0.3 \ \forall x \forall y (F(x,y) \to (S(x) \leftrightarrow S(y)))$$

with

• S: Smoking; C: Cancer; F: Friends

Semantics of MLN

 $C = \{c_1, \dots, c_n\}$ is a set of constants, then: corresponding Markov network $M_{L,C}$:

- $M_{L,C}$ includes a vertex with corresponding binary variable for each ground atom
- $M_{L,C}$ includes a complete graph with feature f_k for each instance of formula F_k

Associated probability distribution:

$$P(X) = \frac{1}{Z} \prod_{k} \phi_k(X_{\{k\}})^{n_k(X)} = \frac{1}{Z} \exp \sum_{k} w_k n_k(X)$$

with $n_k(X)$ number of instances of F_k based on X

Example

- Formula $F \equiv w \ \forall x (S(x) \rightarrow C(x))$
 - with S 'smoking' and C 'cancer'
 - weight w
- Constants $C = \{a, b\}$ (interpretations of x)

Interpretations of F (worlds/models):

$$\begin{cases} S(a), C(a), S(b), C(b) \} & \textbf{2} \text{ models} \\ \{S(a), \neg C(a), S(b), \neg C(b) \} & \textbf{0} \text{ models} \\ \{S(a), \neg C(a), S(b), C(b) \} & \textbf{1} \text{ model} \end{cases}$$

$$E(S(a), C(a), S(b), C(b)) = \frac{1}{Z}e^{w^2}$$

Markov network: S(a)—C(a) S(b)—C(b)

2 models

Expressiveness

Directed graphs are more subtle when it comes to expressing independence information than undirected graphs:

Chain Graphs

- Graphical representation associated with a Bayesian network is not unique
 - different graphs may represent the same independence information
- Markov networks can be seen as the weakest type of graphical models
 - much of the subtleties of representing conditional dependence and independence cannot be handled
- Unique chain graph representatives of Bayesian networks (essential graphs)
 - Bayesian networks and Markov networks as special cases

Chain Graph Definition

- A chain graph is a hybrid graph with the restriction that no directed cycles exist
- Factorisation: chain graphs can be interpreted as an acyclic directed graph of chain components

$$P(X_V) = \prod_{C \in \mathcal{C}} P(X_C \mid X_{\text{pa}(C)})$$

with $V = \bigcup_{C \in \mathcal{C}} C$, and where each $P(X_C \mid X_{\text{pa}(C)})$ factorises according to

$$P(X_C \mid X_{pa(C)}) = Z^{-1}(X_{pa(C)}) \prod_{M \in M(C)} \varphi_M(X_M)$$

Chain Graph Example

Influenza (I) causes coughing (C), where coughing is known as a possible cause for hoarseness (H). In addition, coughing is known to be associated with dyspnoea (shortness of breath) (D). Dyspnoea restricts the oxygen supply to the blood circulation; the resulting low oxygen saturation of the blood will turn the skin to colour blue (B)

Horn Clauses

- A formula in first-order logic
- A Horn-clause has a general form given by

$$A \leftarrow B_1, \ldots, B_n$$

where A is the head and B_1, \ldots, B_n the body of the clause.

- Reasoning:
 - standard model-theoretic semantic, defined in terms of the logical consequence operator ⊨
 - procedural semantics, defined in terms of the deduction relation ⊢

Abduction Logic

Horn clauses of the form:

$$D \leftarrow B_1, \ldots, B_n : R_1, \ldots, R_m$$

where

- D: head of the clause, a predicate or \bot
- B_1, \ldots, B_n : body of the clause, a set of predicates (will become 'random variables')
- R_i : templates, to express relations between variables

Both the ',' as well as the ':' are interpreted as a conjunction

Influenza: Logical Specification

$$I(x) \leftarrow: \varphi_{I}(x)$$

$$C(x) \leftarrow I(y) : \varphi_{C,I}(x,y), \varphi_{C,D}(x,z)$$

$$D(x) \leftarrow I(y) : \varphi_{C,I}(z,y), \varphi_{C,D}(z,x)$$

$$H(x) \leftarrow C(y) : \varphi_{H,C}(x,y)$$

$$B(x) \leftarrow D(y) : \varphi_{B,D}(x,y)$$

$$\bot \leftarrow \varphi_{C,I}(x,y), \varphi_{C,D}(\bar{x},z)$$

where the φ s are relations R_k

Reasoning: Explanations

Let:

- \bullet T: an abductive theory, which is a set of formulae
- A: the set of all assumables
- ullet A': denote the set of ground instances of A

An explanation E of a set of observations O based on the pair $\langle T, A \rangle$ is defined as a set of ground assumables $E \subseteq A'$ satisfying the following conditions:

- $T \cup E \vDash O$, and
- $T \cup E$ is consistent, i.e., $T \cup E \nvDash \bot$.

Chain Logic Syntax

Syntax of chain logic consists of:

- Formulae in abduction logic
- Weight declarations, which are of the form $weight(a_1:w_1,\ldots,a_n:w_n)$ where a_i represents an atom and w_i real, such that a weight declaration contains all instances of a predicate

Then, we define:

- ullet Assumables A: atoms that occur in weight
- Hypothesis H: consistent set of ground atoms in weight (one per weight)

Influenza

Potential functions:

$arphi_{CI}$	i	$\overline{\imath}$	$arphi_{CD}$	d	\bar{d}	$arphi_{HC}$	c	\bar{c}
			\overline{c}					
\bar{c}	1	10	\overline{c}	5	2	$ar{h}$	0.4	0.9

The abduction clauses:

$$I(x) \leftarrow: \varphi_{I}(x)$$

$$C(x) \leftarrow I(y) : \varphi_{C,I}(x,y), \varphi_{C,D}(x,z)$$

$$D(x) \leftarrow I(y) : \varphi_{C,I}(z,y), \varphi_{C,D}(z,x)$$

$$H(x) \leftarrow C(y) : \varphi_{H,C}(x,y)$$

$$B(x) \leftarrow D(y) : \varphi_{B,D}(x,y)$$

$$\bot \leftarrow \varphi_{C,I}(x,y), \varphi_{C,D}(\bar{x},z)$$

Weights of the assumables $weight(\varphi_{CD}(t,t):$

$$18, \varphi_{CD}(t, f) : 2, \varphi_{CD}(f, t) : 5, \varphi_{CD}(f, f) : 2)$$

Chain Logic Semantics

Abductive theory:

$$T = \{I(x) \leftarrow: \varphi_{I}(x), \\ C(x) \leftarrow I(y) : \varphi_{C,I}(x,y), \varphi_{C,D}(x,z), \\ D(x) \leftarrow I(y) : \varphi_{C,I}(z,y), \varphi_{C,D}(z,x), \\ H(x) \leftarrow C(y) : \varphi_{H,C}(x,y), \\ B(x) \leftarrow D(y) : \varphi_{B,D}(x,y), \\ \bot \leftarrow \varphi_{C,I}(x,y), \varphi_{C,D}(\bar{x},z)\}$$

where each of the variables has $\{f, t\}$ as domain It now holds that:

$$T \cup E \vDash H(t)$$
 and $T \cup E \nvDash \bot$, with

$$E = \{\varphi_I(t), \varphi_{H,C}(t,t), \varphi_{C,I}(t,t), \varphi_{C,D}(t,t)\}$$

Minimal Explanations

A minimal explanation E of O is an explanation whose proper subsets are not explanations of O. The set of all minimal explanations is denoted by $\mathcal{E}_T(O)$

Suppose we would like to calculate if a person is blue, i.e., P(B(t)); we obtain the minimal explanations for B(t), i.e., $\mathcal{E}_T(B(t))$, as the set with the following 8 members:

$$\{\varphi_{B,D}(t,t), \varphi_{C,D}(t,t), \varphi_{C,I}(t,t), \varphi_{I}(t)\}$$

$$\{\varphi_{B,D}(t,t), \varphi_{C,D}(t,t), \varphi_{C,I}(t,f), \varphi_{I}(f)\}$$

$$\vdots$$

$$P(B(t)) = \sum_{E \in \mathcal{E}_T(B(t))} P(E) = 27.7/Z \approx 0.24$$

Probabilities of Formulae

Suppose E is a minimal explanation. Then, given T, $P_T(E)$ is obtained by marginalisation:

$$P_T(E) = P_T(\bigvee_i H_i) = \sum_i P_T(H_i)$$

as H_i 's are mutually exclusive hypotheses (one atom per weight)

Theorem If $\mathcal{E}_T(\psi)$ is the set of minimal explanations of the conjunction of atoms ψ from the chain logic theory T, then:

$$P_T(\psi) = \sum_{E \in \mathcal{E}_T(\psi)} P_T(E)$$

Reasoning: Abductively

Direction of reasoning about B: from B to I, but ignoring H

Probabilistic reasoning = logical reasoning

Conditional Probabilities

Probability of influenza given blue colour, $P(I(t) \mid B(t))$:

Find explanations:

$$P(I(t), B(t)) = \sum_{E \in \mathcal{E}_T(I(t), B(t))} P_T(E)$$
; we obtain: $P(I(t), B(t)) \approx 0.04$

• P(B(t)) is known (0.24)

$$P(I(t) \mid B(t)) = P(I(t), B(t)) / P(B(t)) \approx \frac{0.04}{0.24} \approx 0.16$$

Note that the prior probability for P(I(t)) is 0.1

Final Considerations

- Chain logic is inspired by Poole's probabilistic Horn logic
- Additional integrity constraints guarantee that instantiations of potentials functions appear consistently in each explanation
- We present here a language that can be used for the specification of both Bayesian and Markov network models
- Maintaining a close relation between logical and probabilistic reasoning – without loss of expressiveness