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First-order logic: good for relational reasoning in
various ways about classes of objects

Probabilistic graphical models: good tfor
reasoning with uncertainty

= why not combining them?
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Markov logic (generates Markov networks)

Bayesian logic programs (generates Bayesian
networks)

Probabilistic Horn logic (abductive
Bayesian-network reasoning)

Chain logic (with Arjen Hommersom and Nivea
Ferreira)
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o Family of probability distributions defined in
terms of a directed, an undirected, or hybrid
graph

» In general, undirected, and directed graphs make
different assumptions regarding conditional
independence

# Some independences are captured by directed and
not by undirected graphs, and vice-versa
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An undirected graph

Basic 1dea:
» Each variable X corresponds to a vertex v

» Independence relation L 1s encoded as the
absence of edges

» A missing edge (blockage of all paths) between
vertices v and v indicates that X, and X, are
(conditionally) independent
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® a Markov logic net (MLN) set of pairs:
L = {(Fk,wk) ‘ k = 1,...,72}

with Fj. a formula 1n first-order logic and w;, a
real number

» Example (smoking causes cancer; if one friend
smokes, the other smokes as well):

0.8 Vo (S(x) — C(x))
0.3 VaVy(£(z,y) — (S(x) < S(y)))

with
s S: Smoking; C': Cancer; F': Friends
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C' ={c,...,c,} is a set of constants, then:
corresponding Markov network M7 ¢:

» M ¢ includes a vertex with corresponding binary
variable for each ground atom

® M ¢ includes a complete graph with feature fj
for each 1mstance of formula F}.

Associated probability distribution'

P(X H On( Xy )™ = — exp Z wing (X

with n;(X) number of instances of F}, based on X
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# Formula F = w Vz(S(z) — C(x))
s with S ‘smoking’ and C ‘cancer’
s weight w

» Constants C' = {a, b} (interpretations of x)

Interpretations of /' (worlds/models):

{5(a),C(a),S(b),C(b)} 2 models
{5(a),~C(a), $(b), ~C(b)} 0 models
{5(a),=C(a), 5(0),C(b); 1 model

P(S(a),C(a), S(b), C(b)) = %ew > models

Markov network: S(a)—C/(a) S(b)—C(b)
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Directed graphs are more subtle when 1t comes to
expressing independence information than undirected
graphs:

VS

LA
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» Graphical representation associated with a
Bayesian network 1s not unique

s different graphs may represent the same
independence information

» Markov networks can be seen as the weakest type
of graphical models

s much of the subtleties of representing
conditional dependence and independence
cannot be handled

» Unique chain graph representatives of Bayesian
networks (essential graphs)

s Bayesian networks and Markov networks as
special cases
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® A chain graph 1s a hybrid graph with the
restriction that no directed cycles exist

# Factorisation: chain graphs can be interpreted as
an acyclic directed graph of chain components

P(Xv) = ]| P(Xc | Xpao)

ceC
with V' = Ucec (', and where each
P(Xc¢ | Xpa(c)) factorises according to

P(Xc\Xpa<C>)=Z_1(Xpa<c>) 1] eu(Xu)
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Influenza (/) causes coughing (C'), where coughing is
known as a possible cause for hoarseness (/7). In
addition, coughing 1s known to be associated with
dyspnoea (shortness of breath) (1)). Dyspnoea
restricts the oxygen supply to the blood circulation;
the resulting low oxygen saturation of the blood will
turn the skin to colour blue (5)

L
O—8
C/NC)
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# A formula in first-order logic
® A Horn-clause has a general form given by

AHBl,...,Bn

where A is the head and By, ..., B, the body of
the clause.
# Reasoning:

s standard model-theoretic semantic, defined in
terms of the logical consequence operator

s procedural semantics, defined 1n terms of the
deduction relation -
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Horn clauses of the form:
D—B,....B,: Rq,..., R,
where

® [): head of the clause, a predicate or |

8 Bi,...,B,: body of the clause, a set of
predicates (will become ‘random variables’)

» R;: templates, to express relations between
variables

Both the °,” as well as the ;" are interpreted as a con-

junction

ACATI’09 — p.13/23



C( ) olr,y
D(y) : SOB,D(CIia Y)

where the s are relations [,
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Let:
# [': an abductive theory, which 1s a set of formulae
» A: the set of all assumables

o A’: denote the set of ground instances of A

An explanation F of a set of observations O based on
the pair (7', A) is defined as a set of ground

assumables I/ C A’ satisfying the following
conditions:

e TUFE O, and
o T'U F isconsistent, 1.e., T U E ¥F 1.
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Syntax of chain logic consists of:
# Formulae in abduction logic

» Weight declarations, which are of the form
wetght(ay @ wy, ..., a4, : Wy)
where a; represents an atom and w; real, such that
a weight declaration contains all instances of a
predicate

Then, we define:
» Assumables A: atoms that occur in weight

» Hypothesis H: consistent set of ground atoms in
wetght (one per weirght)
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Potential functions:

wocr|t v wep| d d pgc| ¢ C
c |8 2 c |18 2 A 0.6 0.1
c |1 10 C 5 2 h |04 09
The abduction clauses:

[(x) «—: or(x)

C(x) « I(y) : ec.i(z,y), pop(@, 2)
D(z) < I(y) : pc.1(z,9), pe,p(z, )
H(z) — C(y) : erolz,y)

B(z) — D(y) : eB.n(z,y)

1 9007[($,y), SOC,D(*Tv Z)

Weights of the assumables weight(pop(t, 1) :

18, oop(t, f) : 2,0cp(f,t) : 5, 0cp(f, f) : 2)
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Abductive theory:

T = {I(z) «—: o),
C(z) < I(y) : wo1(r,y), pc.p(z, 2),
D(z) < I(y) : ¢c.1(2,y), vc.p(2, x),
H(z) — C(y) : prcol(z,y),
B(x) « D(y) : vB,p(,y),
L —wcr(z,y), pon(Z,2)}

where each of the variables has { f, 7} as domain
It now holds that:

TUEE H(t)and T U E ¥ L, with

E={¢1(t),euc(t,t),pci(t,t), pcp(t,t)}
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A minimal explanation E of O is an explanation
whose proper subsets are not explanations of O. The
set of all minimal explanations is denoted by £7(O)

Suppose we would like to calculate 1f a person 1s blue,
i.e., P(B(t)); we obtain the minimal explanations for

B(t),i.e., Er(B(t)), as the set with the following 8
members:

{esp(t,t), cp(t,t), vor(t,t), or(t)}
{esp(t,t), cp(t,t), wor(t, f),er(f)}
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Suppose £ 1s a minimal explanation. Then, given 1,
Pr(F) is obtained by marginalisation:

- PT(\/ H;) = Z Pr(H

as H,;’s are mutually exclusive hypotheses (one atom
per wetght)

Theorem If Ep (1)) is the set of minimal explanations
of the conjunction of atoms ) from the chain logic

theory 1, then:
Z Pr(E

EEgT
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Direction of reasoning about 5: from 5 to /, but
ignoring H

Probabilistic reasoning = logical reasoning
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Probability of influenza given blue colour,
P(I(t) | B(t)):

» Find explanations:

P(I(t), B(t)) = 2 peera(r).p(y FrE); we
obtain: P(I(t), B(t)) ~ 0.04

e P(B(t)) is known (0.24)

(1)3%(75) | B(t)) = P(1(t), B(t))/P(B(t)) ~ g

Note that the prior probability for P(/(t)) is 0.1
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Chain logic 1s inspired by Poole’s probabilistic
Horn logic

Additional integrity constraints guarantee that
instantiations of potentials functions appear
consistently 1n each explanation

We present here a language that can be used for
the specification of both Bayesian and Markov
network models

Maintaining a close relation between logical and
probabilistic reasoning — without loss of
eXpressiveness
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