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Motivation
First-order logic: good for relational reasoning in
various ways about classes of objects
Probabilistic graphical models: good for
reasoning with uncertainty

⇒ why not combining them?
Markov logic (generates Markov networks)
Bayesian logic programs (generates Bayesian
networks)
Probabilistic Horn logic (abductive
Bayesian-network reasoning)
Chain logic (with Arjen Hommersom and Nivea
Ferreira)
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Probabilistic Graphical Models
Family of probability distributions defined in
terms of a directed, an undirected, or hybrid
graph

In general, undirected, and directed graphs make
different assumptions regarding conditional
independence

Some independences are captured by directed and
not by undirected graphs, and vice-versa
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Markov Networks
An undirected graph

Basic idea:
Each variable X corresponds to a vertex v
Independence relation ⊥⊥ is encoded as the
absence of edges
A missing edge (blockage of all paths) between
vertices u and v indicates that Xu and Xv are
(conditionally) independent
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Markov Logic Network (MLN)
a Markov logic net (MLN) set of pairs:

L = {(Fk, wk) | k = 1, . . . , n}

with Fk a formula in first-order logic and wk a
real number
Example (smoking causes cancer; if one friend
smokes, the other smokes as well):

0.8 ∀x(S(x)→ C(x))

0.3 ∀x∀y(F (x, y)→ (S(x)↔ S(y)))

with
S: Smoking; C: Cancer; F : Friends
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Semantics of MLN
C = {c1, . . . , cn} is a set of constants, then:
corresponding Markov network ML,C :

ML,C includes a vertex with corresponding binary
variable for each ground atom
ML,C includes a complete graph with feature fk
for each instance of formula Fk

Associated probability distribution:

P (X) =
1

Z

∏

k

φk(X{k})
nk(X) =

1

Z
exp

∑

k

wknk(X)

with nk(X) number of instances of Fk based on X
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Example
Formula F ≡ w ∀x(S(x)→ C(x))

with S ‘smoking’ and C ‘cancer’
weight w

Constants C = {a, b} (interpretations of x)

Interpretations of F (worlds/models):
{S(a), C(a), S(b), C(b)} 2 models
{S(a),¬C(a), S(b),¬C(b)} 0 models
{S(a),¬C(a), S(b), C(b)} 1 model

...
P (S(a), C(a), S(b), C(b)) =

1

Z
ew2 2 models

Markov network: S(a) C(a) S(b) C(b)
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Expressiveness
Directed graphs are more subtle when it comes to
expressing independence information than undirected
graphs:
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Chain Graphs
Graphical representation associated with a
Bayesian network is not unique

different graphs may represent the same
independence information

Markov networks can be seen as the weakest type
of graphical models

much of the subtleties of representing
conditional dependence and independence
cannot be handled

Unique chain graph representatives of Bayesian
networks (essential graphs)

Bayesian networks and Markov networks as
special cases
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Chain Graph Definition
A chain graph is a hybrid graph with the
restriction that no directed cycles exist
Factorisation: chain graphs can be interpreted as
an acyclic directed graph of chain components

P (XV ) =
∏

C∈C

P (XC | Xpa(C))

with V =
⋃
C∈C C, and where each

P (XC | Xpa(C)) factorises according to

P (XC | Xpa(C)) = Z−1(Xpa(C))
∏

M∈M(C)

ϕM(XM)
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Chain Graph Example
Influenza (I) causes coughing (C), where coughing is
known as a possible cause for hoarseness (H). In
addition, coughing is known to be associated with
dyspnoea (shortness of breath) (D). Dyspnoea
restricts the oxygen supply to the blood circulation;
the resulting low oxygen saturation of the blood will
turn the skin to colour blue (B)

I

C D

H B
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Horn Clauses
A formula in first-order logic
A Horn-clause has a general form given by

A← B1, . . . , Bn

where A is the head and B1, . . . , Bn the body of
the clause.
Reasoning:

standard model-theoretic semantic, defined in
terms of the logical consequence operator �

procedural semantics, defined in terms of the
deduction relation `
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Abduction Logic
Horn clauses of the form:

D ← B1, . . . , Bn : R1, . . . , Rm

where
D: head of the clause, a predicate or ⊥
B1, . . . , Bn: body of the clause, a set of
predicates (will become ‘random variables’)
Ri: templates, to express relations between
variables

Both the ‘,’ as well as the ‘:’ are interpreted as a con-
junction

ACAI’09 – p.13/23



Influenza: Logical Specification

I

C D

H B

ϕI

ϕC,I

ϕH,C
ϕB,D

ϕC,D

I(x)←: ϕI(x)

C(x)← I(y) : ϕC,I(x, y), ϕC,D(x, z)

D(x)← I(y) : ϕC,I(z, y), ϕC,D(z, x)

H(x)← C(y) : ϕH,C(x, y)

B(x)← D(y) : ϕB,D(x, y)

⊥ ← ϕC,I(x, y), ϕC,D(x̄, z)

where the ϕs are relations Rk
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Reasoning: Explanations
Let:

T : an abductive theory, which is a set of formulae
A: the set of all assumables
A′: denote the set of ground instances of A

An explanation E of a set of observations O based on
the pair 〈T,A〉 is defined as a set of ground
assumables E ⊆ A′ satisfying the following
conditions:

T ∪ E � O, and
T ∪ E is consistent, i.e., T ∪ E 2 ⊥.
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Chain Logic Syntax
Syntax of chain logic consists of:

Formulae in abduction logic
Weight declarations, which are of the form

weight(a1 : w1, . . . , an : wn)
where ai represents an atom and wi real, such that
a weight declaration contains all instances of a
predicate

Then, we define:
Assumables A: atoms that occur in weight
Hypothesis H: consistent set of ground atoms in
weight (one per weight)
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Influenza
Potential functions:
ϕCI i ı̄

c 8 2
c̄ 1 10

ϕCD d d̄

c 18 2
c̄ 5 2

ϕHC c c̄

h 0.6 0.1
h̄ 0.4 0.9

The abduction clauses:
I(x)←: ϕI(x)

C(x)← I(y) : ϕC,I(x, y), ϕC,D(x, z)

D(x)← I(y) : ϕC,I(z, y), ϕC,D(z, x)

H(x)← C(y) : ϕH,C(x, y)

B(x)← D(y) : ϕB,D(x, y)

⊥ ← ϕC,I(x, y), ϕC,D(x̄, z)

Weights of the assumables weight(ϕCD(t, t) :
18, ϕCD(t, f) : 2, ϕCD(f, t) : 5, ϕCD(f, f) : 2)
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Chain Logic Semantics
Abductive theory:

T = {I(x)←: ϕI(x),

C(x)← I(y) : ϕC,I(x, y), ϕC,D(x, z),

D(x)← I(y) : ϕC,I(z, y), ϕC,D(z, x),

H(x)← C(y) : ϕH,C(x, y),

B(x)← D(y) : ϕB,D(x, y),

⊥ ← ϕC,I(x, y), ϕC,D(x̄, z)}

where each of the variables has {f, t} as domain
It now holds that:

T ∪ E � H(t) and T ∪ E 2 ⊥, with

E = {ϕI(t), ϕH,C(t, t), ϕC,I(t, t), ϕC,D(t, t)}
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Minimal Explanations
A minimal explanation E of O is an explanation
whose proper subsets are not explanations of O. The
set of all minimal explanations is denoted by ET (O)

Suppose we would like to calculate if a person is blue,
i.e., P (B(t)); we obtain the minimal explanations for
B(t), i.e., ET (B(t)), as the set with the following 8
members:

{ϕB,D(t, t), ϕC,D(t, t), ϕC,I(t, t), ϕI(t)}

{ϕB,D(t, t), ϕC,D(t, t), ϕC,I(t, f), ϕI(f)}
...

P (B(t)) =
∑

E∈ET (B(t)) P (E) = 27.7/Z ≈ 0.24
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Probabilities of Formulae
Suppose E is a minimal explanation. Then, given T ,
PT (E) is obtained by marginalisation:

PT (E) = PT (
∨

i

Hi) =
∑

i

PT (Hi)

as Hi’s are mutually exclusive hypotheses (one atom
per weight)
Theorem If ET (ψ) is the set of minimal explanations
of the conjunction of atoms ψ from the chain logic
theory T , then:

PT (ψ) =
∑

E∈ET (ψ)

PT (E)
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Reasoning: Abductively

I

C D

H B

ϕI

ϕC,I

ϕH,C

ϕB,D

ϕC,D

Direction of reasoning about B: from B to I , but
ignoring H

Probabilistic reasoning = logical reasoning
ACAI’09 – p.21/23



Conditional Probabilities
Probability of influenza given blue colour,
P (I(t) | B(t)):

Find explanations:
P (I(t), B(t)) =

∑
E∈ET (I(t),B(t)) PT (E); we

obtain: P (I(t), B(t)) ≈ 0.04

P (B(t)) is known (0.24)
P (I(t) | B(t)) = P (I(t), B(t))/P (B(t)) ≈ 0.04

0.24 ≈
0.16

Note that the prior probability for P (I(t)) is 0.1
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Final Considerations
Chain logic is inspired by Poole’s probabilistic
Horn logic
Additional integrity constraints guarantee that
instantiations of potentials functions appear
consistently in each explanation
We present here a language that can be used for
the specification of both Bayesian and Markov
network models
Maintaining a close relation between logical and
probabilistic reasoning – without loss of
expressiveness
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