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Abstract 
 
In this paper, we present LAZY propagation for probabilistic inference in Bayesian networks. 
We first briefly illustrate how LAZY propagation works and how it exploits the 
independence relations to reduce time and space costs. And then we empirically compare the 
performance of LAZY propagation architecture with that of HUGIN and Shafer-Shenoy 
architectures. We found with the increase of the number of instantiated variables, the time 
and space costs of Lazy propagation decreases. Furthermore, we touched upon the topic of 
different message computation algorithms, such as VE, AR and SPI. Overall, there is no big 
difference but relatively, AR produced better results. 
 
 
 

1 Introduction 
 
A Bayesian network is an efficient and intuitive graphical model that allows people to 
represent and reason about an uncertain domain. When a Bayesian network is defined over a 
complex domain, it may become unfeasible to calculate the posterior marginal distribution 
for non-evidence variables given some evidence. In fact, exact belief update is an NP-hard 
problem.  
Generally, algorithms for probabilistic inference in Bayesian networks are classified into two 
classes: the class of query-based (direct computation) algorithms and the class of all-
marginals (indirect computation) algorithms. The first class of algorithms performs inference 
based on the structure of the graph of the Bayesian network. This class contains Belief 
Propagation [1], Arc-Reversal (AR) [2], Symbolic Probabilistic Inference (SPI) [3], Variable 
Elimination (VE) [4], the Fusion operator [5] , and Value Elimination (VU) [6]. The second 
class performs probabilistic inference through message passing in a secondary computational 
structure such as a junction tree and a join tree built by moralisation and triangulation. This 
class includes Lauritzen-Spiegelhalter [7], HUGIN [8], and Shafer-Shenoy [9]. 
LAZY propagation combines query-based and all-marginals algorithm. Message passing is 
performed based on the scheme of Shafer-Shenoy propagation in a junction tree while 
messages are computed by query-based algorithms using a variable elimination approach [10].  

 
 
 



2 LAZY Propagation 
 
LAZY Propagation (Madsen and Jensen 1999) is an inference algorithm, which combines 
direct and indirect computation for all posterior marginal. 

The basic computational structure of the LAZY propagation inference architecture is a 
junction tree constructed from the Bayesian network under consideration (Madsen & Jensen, 
1999). The algorithm is based on message passing. It mainly aims to maintain a 
multiplicative decomposition of clique and separator potentials and to postpone combination 
of potentials. In this way, barren variables and independence relations induced by evidence 
can be exploited. 

2.1 Definitions 

Definition barren variable 
A variable in a Bayesian network is said to be a barren variable if it is not a query variable, 
does not have evidence and all of its descendants are barren variables. 
By the unity-potential axiom, barren variables have no impact on the calculation of the 
posterior probability distribution of the query variables.  
 
Definition unity-potential axiom 
 

ΣH P(H|T) = 1T 

H is the head variable or conditioned variable and T is the tail variable or conditioning 
variable. The unity-potential axiom also applies, if H is a set of variables. 
 
Definition d-separation/d-connection 
Variables X and Y in a Bayesian network N = (G, P) are d-separated if for every path 
connecting X and Y there is an intermediate variable Z such that one of the following 
statement is true: 
● Z is the middle variable in a serial (Figure 1(a)) or a diverging  (Figure 1(c)) 

connection, and Z is instantiated by evidence. 
● Z is the middle variable in a converging connection (Figure 1(b)), and neither Z nor 

any of its descendants have received evidence. 
X and Y are d-connected by Z if and only if they are not d-separated by Z. 
 



 
Figure 1 d-separation connection types. 

 

 

2.2 Message Passing 

This process consists of two phases: evidence collection and evidence distribution. 

When “collection” is invoked on a clique 𝐶!   from an adjacent clique 𝐶!  ,  then 𝐶!   invokes 
“collection” on all other adjacent cliques. When “distribution” is invoked on a clique 𝐶!   from 
a neighbour 𝐶!  , 𝐶! absorbs evidence from 𝐶!  and invokes distribution on all other adjacent 
cliques. 

Evidence is passed between adjacent cliques by absorption. Figure 1 shows how absorption 
proceeds. Absorption from clique 𝐶!   to clique 𝐶!  over separator 𝑆 amounts to decomposing 𝜙! 
into potentials associated with 𝐶! and the neighbouring separators except 𝑆. 

  
Figure 2: Absorption from clique 𝐶!   to clique 𝐶!  over separator 𝑆 

In message passing, we have to avoid the received information passing back to the source 
clique. That is to say, the information contained in the message from 𝐶! to 𝐶!  should not be 
contained in the message passed in the opposite direction. Regarding this issue, HUGIN, 
Shafer-Shenoy and LAZY propagation act differently. HUGIN architecture solves this 
problem by dividing separator potentials, while in the Shafer-Shenoy architecture it is solved 
by computing the message to pass over 𝑆   from the potentials associated with 𝐶!   and 



neighboring separators except 𝑆. LAZY propagation avoids this problem by discarding the 
potentials passed to 𝐶!    over 𝑆 from the set of potentials passed in the opposite direction. Thus, 
LAZY propagation combines the two methods.  

 

2.3 Evidence 

LAZY propagation takes full advantage of the independence relations induced by evidence. It 
incorporates the evidence by associating evidence on a variable 𝑋 with all cliques containing 
𝑋. For example, if the evidence is 𝑋 = 𝑥, then the domain of every potential containing 𝑋 
will be reduced so that the representation only includes configurations of the domain where 
𝑋 = 𝑥 only. Such function is referred to as an evidence function.  

2.4 Internal Elimination 

The computational structure of the LAZY propagation is based on a junction tree. The 
structure of the junction tree imposes a partial elimination order. The separator 𝑆 between two 
adjacent cliques 𝐶!  and 𝐶! is the intersection of the two cliques, which indicates the variables 
to be eliminated when passing messages between 𝐶!  and 𝐶! . It is assumed that all potentials 
𝑅!  associated with 𝐶! and its neighbours except 𝑆 are relevant for computing  𝜙!∗. However, 
that is often not the case. LAZY propagation uses a different mechanism to find relevant 
potentials. First, 𝑅!  should be found which contains all potentials d-connected to 𝑆 in the 
reduced domain and the next step should be to remove from 𝑅! all potentials containing only 
barren head variables by the unity-potential axiom. 

 

2.5 Posterior Marginals 

In the LAZY propagation, posterior marginals are readily computed. As the clique and 
separator potentials are factorized multiplicatively, computing a posterior marginal may 
involve combination of potentials and variable elimination. 

Algorithm Posterior Marginal 

Let 𝜙 be the set of potentials representing the joint distribution from which the posterior 
marginal of Y to be calculated. The posterior marginal P (Y| 𝜀) can be done in the following 
steps: 

1. Find relevant potentials on 𝜙 to obtain 𝑅!. 

2. For each variable 𝑋 in {𝑋 ∈ 𝑑𝑜𝑚 𝜙 |  𝜙 ∈   𝑅! ,𝑋 ≠ 𝑌} 

(a) Marginalize out 𝑋 



3. Let 𝜙! be the set of potentials obtained. 

4. Calculate 𝑃   𝑌 𝜀 =
  !!∈    !!
!!∈    !!!

 

 

2.6 Example 

Figure 3 is an example of a junction tree. BCDEF is predetermined to be the root and the 
given evidence is 𝜀 = {𝐷 = 𝑑}. When “evidence collection” is invoked on BCDEF, message 
will pass from the leaves to BCDEF. The intersection between the BCDEF clique and ABC 
clique is BC, so A has to be eliminated by marginalization. The same is for the variable G, 
but no calculations are involved in this step because G is a barren variable. 

𝜙 . 𝐸,𝐹 = Σ!  𝑃 𝐺 𝐸,𝐹 = 1!,! 

When “evidence distribution” is invoked on BCDEF, messages will pass from BCDEF to the 
leaves. The set of potentials associated with BCDEF after evidence collection is 
{𝜙 𝐸 𝑑 ,𝜙 𝐹 𝑑 ,𝜙 𝑑 𝐵,𝐶 ,𝜙  (𝐵,𝐶)}.  The set of potentials relevant for computing the 
message to pass to ABC is   𝜙 𝑑 𝐵,𝐶 ,𝜙 𝐵,𝐶 .     

Since 𝜙 𝐵,𝐶  is the same as the message passing in the evidence collection phase and the 
domain of 𝜙 𝑑|𝐵,𝐶  is equal to that of the separator, there is no need for computation to 
obtain the message to ABC. 

The set of potentials relevant for computing the message to ��� EFG is 𝜙 𝐸 𝑑  and 𝜙 𝐹 𝑑 . 
Again, there is no need for computations as the domains of the relevant potentials are subsets 
of the separator.  

 

Figure 3: A Junction Tree 

The evidence on D has been propagated by performing only one marginalization and two 
combinations of potentials, which is much more efficient than both HUGIN and Shafer-
Shenoy propagation. 



For the proof of the correctness of LAZY propagation, please refer to LAZY Propagation: A 
Junction Tree Inference Algorithm Based on LAZY Evaluation (Madsen & Jensen, 1999). 

 

2.7 Independence of Causal Independence 

LAZY Propagation enhances the efficiency by exploiting the independence of causal 
influence. Different approaches in exploiting independence of causal influence with a 
junction tree can be considered.  

It is simple actually to extend LAZY propagation to take advantage of any of those junction 
tree inference algorithms, such as factorized representation, LAZY parent divorcing, and 
heterogeneous factorization. The above-mentioned algorithms offer a decomposition of 
conditional probability distributions and LAZY propagation exploits a decomposition of 
clique and separator potentials. It seems straightforward that LAZY propagation can readily 
be extended to take advantage of the more fine-grained decomposition offered by factorized 
representation, LAZY parent divorcing, and heterogeneous factorization, respectively. The 
factorized representation and LAZY parent divorcing do not impose any constraint on the 
elimination order while heterogeneous factorization does impose.  

 

2.8 Variation 

Symbolic Probabilistic Inference (SPI) and Arc-Reversal (AR) can be used for computation 
of clique-to-clique messages in addition to the traditional use of Variable Elimination (VE).  

SPI is a direct computation algorithm, which is fundamentally different from VE. The idea of 
SPI is to solve a query as a combinatorial optimization problem (Li & D’Ambrosio, 1994). 
Instead of focusing on the elimination order, SPI focuses on the order in which potentials 
should be combined.  

AR is more fine-grained than both VE and SPI. The basic idea of AR when computing a 
single marginal is to perform a sequence of arc-reversals and barren variable eliminations.  

The results of an empirical evaluation of the performance of LAZY propagation are 
compared using VE, SPI, and AR as the message computation algorithm. The results of the 
empirical evaluation show that for most networks, the performance of inference did not 
depend on the choice of message computation algorithm, but for some randomly generated 
networks the choice had an impact on both space and time performance. In the cases where 
the choice had an impact, AR produced the best results.  

 

 

 



2.9 Comparison with HUGIN and Shafer-Shenoy 

In the HUGIN architecture, each clique sends a message to separators between it and its 
neighbors. When a separator receives a message from one of its neighboring clique, it sends a 
message to its other neighbors. When all messages have been sent, the potential at each 
clique and at each separator is the marginal of the joint for that node. Each clique and each 
separator in the junction tree stores a potential. Computations are done by each clique and by 
each separator in the junction tree. The process of belief update is as follow: 

1. Calculate the updated separator potential: 𝜙!∗ =    𝜙!!!!\! . 

2. Update the clique potential of 𝐶!  : 𝜙!!
∗ =   𝜙!!   

!!
∗

!!
. 

3. Associate the updated potential with the separator: 𝜙! = 𝜙!∗. 

In the Shafer-Shenoy architecture, nodes needed for calculating the marginals request 
messages from all their neighbors. When a node receives a request for a message, it in turn 
requests messages from all its other neighbors. When all requested messages have been 
delivered, the marginals are computed at the desired nodes. A node may store either no 
potential, or one potential or two or more potentials. Each separator may store one or two 
potentials. Computations are done only by nodes and not by separators. It can be done as 
follow: 

1. 𝜙!∗ =    𝜙!!!!\! 𝜙!!!!!"#  (!!{!} . 
2. 𝜙!!

∗ =   𝜙!! 𝜙!.!"#${!!)  

The LAZY propagation differs from HUGIN and Shafer-Shenoy algorithms in the following 
manner: 

1. Instead of storing only one potential in each clique, it stores a list of potentials (or 
conditional probability tables). It performs products on some potentials only when 
necessary, i.e., when they contain a variable that is to be marginalized-out. 

2. It recognizes summations like ΣH P (H|T) = 1T, the result of which is known for sure 
to be 1. 

3. It uses d-separation to avoid sending a message from one clique to another if the 
random variables of these cliques are independent due to some evidence. 

 

 

 

 

 



2.10 Sample Empirical Results 

We measured the performance of LAZY propagation relative to Shafer-Shenoy and HUGIN 
algorithms in terms of time and space cost. 

 

 

 

 

 

 

Table 1: Information on the junction trees  

 

The tests were performed on a number of large Bayesian networks with evidence sets of 
different sizes. 

 

                               Figure 4: Diabetes                                                   Figure 5: KK                           

 

  Clique state space size Clique neighbours 

Network cliques min max µ min max µ 

Diabetes 337 495 190080 30906.3 1 3 2.0 

KK 38 40 5806080 397780.2 1 4 1.9 

ship-ship 35 8 4032000 693102.1 1 3 1.9 



Figure 6: ship-ship  

Figure 4, 5, 6 show plots of the average time for propagation of evidence for the Diabetes, 
KK-KVL-maltbyg (KK), and ship-ship networks, respectively.  

The plots clearly show that with the increase of the number of instantiated variables, the time 
cost of LAZY propagation will decrease. Figure 5 and 6 show LAZY propagation costs less 
time than the other algorithms even when no variables are instantiated. Figure 4 shows the 
time cost of LAZY propagation is higher than that of HUGIN and Shafer-Shenoy for the 
small set of instantiated variables, but as the number of instantiated variables reached 10, the 
time cost of LAZY propagation decreases. 

 

2.11 Various Speed-up Improvements 

LAZY propagation implements a speed-up improvement that is referred to as expression trees 
and is related to the use of the unity-potential axiom. Expression trees are used in order to 
recognize situations where elimination of a set of variables will lead to a unity potential. For 
example, for the junction tree in figure 7, it should be recognized that the elimination of 
variables A and B from the potential 𝜙   𝐴,𝐵 𝐷  when calculating the message to pass from 
ABDE to EF produces a unity potential.  
 

 
Figure 7 

 
A number of different improvements to standard junction tree propagation architectures have 
been presented through the years, such as zero compression, binary join trees and nested 
junction trees.  

 
 
3 Conclusion 

We have presented how the LAZY propagation works and compared the performance of 
LAZY propagation, HUGIN and Shafer-Shenoy architectures. Compared to HUGIN and 
Shafer-Shenoy architectures, LAZY propagation is more efficient in aspects of time and 
space. Although the implementations of the HUGIN and Shafer-Shenoy architectures are 
simple, LAZY propagation would be useful in some cases where the efficiency of belief 
update may be insufficient using other algorithms, such as HUGIN and Shafer-Shenoy 
algorithms. 



The LAZY propagation architecture outperforms HUGIN and Shafer-Shenoy algorithms 
when dealing with Bayesian networks in terms of time and space cost. In this way, we can 
say LAZY propagation enlarges the class of tractable Bayesian networks. 

Bayesian networks are not restricted to the variables of either discrete or continuous. Instead, 
it can be mixed. In recent years, Bayesian networks with a mixture of continuous and discrete 
variables also have received an increasing level of attention. For example, it has been applied 
to the restricted class of mixture Bayesian networks known as conditional linear Gaussian 
Bayesian networks (CLG Bayesian networks). LAZY propagation works very well for this 
type of Bayesian networks too. 
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