
A Discussion on LAZY propagation

Y. (Yao) Chen and Y. (Yuping) Liu
June 20, 2017

Abstract

In this paper, we present LAZY propagation for probabilistic inference in Bayesian networks.
We first briefly illustrate how LAZY propagation works and how it exploits the
independence relations to reduce time and space costs. And then we empirically compare the
performance of LAZY propagation architecture with that of HUGIN and Shafer-Shenoy
architectures. We found with the increase of the number of instantiated variables, the time
and space costs of Lazy propagation decreases. Furthermore, we touched upon the topic of
different message computation algorithms, such as VE, AR and SPI. Overall, there is no big
difference but relatively, AR produced better results.

1 Introduction

A Bayesian network is an efficient and intuitive graphical model that allows people to
represent and reason about an uncertain domain. When a Bayesian network is defined over a
complex domain, it may become unfeasible to calculate the posterior marginal distribution
for non-evidence variables given some evidence. In fact, exact belief update is an NP-hard
problem.
Generally, algorithms for probabilistic inference in Bayesian networks are classified into two
classes: the class of query-based (direct computation) algorithms and the class of all-
marginals (indirect computation) algorithms. The first class of algorithms performs inference
based on the structure of the graph of the Bayesian network. This class contains Belief
Propagation [1], Arc-Reversal (AR) [2], Symbolic Probabilistic Inference (SPI) [3], Variable
Elimination (VE) [4], the Fusion operator [5] , and Value Elimination (VU) [6]. The second
class performs probabilistic inference through message passing in a secondary computational
structure such as a junction tree and a join tree built by moralisation and triangulation. This
class includes Lauritzen-Spiegelhalter [7], HUGIN [8], and Shafer-Shenoy [9].
LAZY propagation combines query-based and all-marginals algorithm. Message passing is
performed based on the scheme of Shafer-Shenoy propagation in a junction tree while
messages are computed by query-based algorithms using a variable elimination approach [10].

2 LAZY Propagation

LAZY Propagation (Madsen and Jensen 1999) is an inference algorithm, which combines
direct and indirect computation for all posterior marginal.

The basic computational structure of the LAZY propagation inference architecture is a
junction tree constructed from the Bayesian network under consideration (Madsen & Jensen,
1999). The algorithm is based on message passing. It mainly aims to maintain a
multiplicative decomposition of clique and separator potentials and to postpone combination
of potentials. In this way, barren variables and independence relations induced by evidence
can be exploited.

2.1 Definitions

Definition barren variable
A variable in a Bayesian network is said to be a barren variable if it is not a query variable,
does not have evidence and all of its descendants are barren variables.
By the unity-potential axiom, barren variables have no impact on the calculation of the
posterior probability distribution of the query variables.

Definition unity-potential axiom

ΣH P(H|T) = 1T

H is the head variable or conditioned variable and T is the tail variable or conditioning
variable. The unity-potential axiom also applies, if H is a set of variables.

Definition d-separation/d-connection
Variables X and Y in a Bayesian network N = (G, P) are d-separated if for every path
connecting X and Y there is an intermediate variable Z such that one of the following
statement is true:
● Z is the middle variable in a serial (Figure 1(a)) or a diverging (Figure 1(c))

connection, and Z is instantiated by evidence.
● Z is the middle variable in a converging connection (Figure 1(b)), and neither Z nor

any of its descendants have received evidence.
X and Y are d-connected by Z if and only if they are not d-separated by Z.

Figure 1 d-separation connection types.

2.2 Message Passing

This process consists of two phases: evidence collection and evidence distribution.

When “collection” is invoked on a clique 𝐶! from an adjacent clique 𝐶! , then 𝐶! invokes
“collection” on all other adjacent cliques. When “distribution” is invoked on a clique 𝐶! from
a neighbour 𝐶! , 𝐶! absorbs evidence from 𝐶! and invokes distribution on all other adjacent
cliques.

Evidence is passed between adjacent cliques by absorption. Figure 1 shows how absorption
proceeds. Absorption from clique 𝐶! to clique 𝐶! over separator 𝑆 amounts to decomposing 𝜙!
into potentials associated with 𝐶! and the neighbouring separators except 𝑆.

Figure 2: Absorption from clique 𝐶! to clique 𝐶! over separator 𝑆

In message passing, we have to avoid the received information passing back to the source
clique. That is to say, the information contained in the message from 𝐶! to 𝐶! should not be
contained in the message passed in the opposite direction. Regarding this issue, HUGIN,
Shafer-Shenoy and LAZY propagation act differently. HUGIN architecture solves this
problem by dividing separator potentials, while in the Shafer-Shenoy architecture it is solved
by computing the message to pass over 𝑆 from the potentials associated with 𝐶! and

neighboring separators except 𝑆. LAZY propagation avoids this problem by discarding the
potentials passed to 𝐶! over 𝑆 from the set of potentials passed in the opposite direction. Thus,
LAZY propagation combines the two methods.

2.3 Evidence

LAZY propagation takes full advantage of the independence relations induced by evidence. It
incorporates the evidence by associating evidence on a variable 𝑋 with all cliques containing
𝑋. For example, if the evidence is 𝑋 = 𝑥, then the domain of every potential containing 𝑋
will be reduced so that the representation only includes configurations of the domain where
𝑋 = 𝑥 only. Such function is referred to as an evidence function.

2.4 Internal Elimination

The computational structure of the LAZY propagation is based on a junction tree. The
structure of the junction tree imposes a partial elimination order. The separator 𝑆 between two
adjacent cliques 𝐶! and 𝐶! is the intersection of the two cliques, which indicates the variables
to be eliminated when passing messages between 𝐶! and 𝐶! . It is assumed that all potentials
𝑅! associated with 𝐶! and its neighbours except 𝑆 are relevant for computing 𝜙!∗. However,
that is often not the case. LAZY propagation uses a different mechanism to find relevant
potentials. First, 𝑅! should be found which contains all potentials d-connected to 𝑆 in the
reduced domain and the next step should be to remove from 𝑅! all potentials containing only
barren head variables by the unity-potential axiom.

2.5 Posterior Marginals

In the LAZY propagation, posterior marginals are readily computed. As the clique and
separator potentials are factorized multiplicatively, computing a posterior marginal may
involve combination of potentials and variable elimination.

Algorithm Posterior Marginal

Let 𝜙 be the set of potentials representing the joint distribution from which the posterior
marginal of Y to be calculated. The posterior marginal P (Y| 𝜀) can be done in the following
steps:

1. Find relevant potentials on 𝜙 to obtain 𝑅!.

2. For each variable 𝑋 in {𝑋 ∈ 𝑑𝑜𝑚 𝜙 | 𝜙 ∈ 𝑅! ,𝑋 ≠ 𝑌}

(a) Marginalize out 𝑋

3. Let 𝜙! be the set of potentials obtained.

4. Calculate 𝑃 𝑌 𝜀 =
 !!∈ !!
!!∈ !!!

2.6 Example

Figure 3 is an example of a junction tree. BCDEF is predetermined to be the root and the
given evidence is 𝜀 = {𝐷 = 𝑑}. When “evidence collection” is invoked on BCDEF, message
will pass from the leaves to BCDEF. The intersection between the BCDEF clique and ABC
clique is BC, so A has to be eliminated by marginalization. The same is for the variable G,
but no calculations are involved in this step because G is a barren variable.

𝜙 . 𝐸,𝐹 = Σ! 𝑃 𝐺 𝐸,𝐹 = 1!,!

When “evidence distribution” is invoked on BCDEF, messages will pass from BCDEF to the
leaves. The set of potentials associated with BCDEF after evidence collection is
{𝜙 𝐸 𝑑 ,𝜙 𝐹 𝑑 ,𝜙 𝑑 𝐵,𝐶 ,𝜙 (𝐵,𝐶)}. The set of potentials relevant for computing the
message to pass to ABC is 𝜙 𝑑 𝐵,𝐶 ,𝜙 𝐵,𝐶 .

Since 𝜙 𝐵,𝐶 is the same as the message passing in the evidence collection phase and the
domain of 𝜙 𝑑|𝐵,𝐶 is equal to that of the separator, there is no need for computation to
obtain the message to ABC.

The set of potentials relevant for computing the message to ��� EFG is 𝜙 𝐸 𝑑 and 𝜙 𝐹 𝑑 .
Again, there is no need for computations as the domains of the relevant potentials are subsets
of the separator.

Figure 3: A Junction Tree

The evidence on D has been propagated by performing only one marginalization and two
combinations of potentials, which is much more efficient than both HUGIN and Shafer-
Shenoy propagation.

For the proof of the correctness of LAZY propagation, please refer to LAZY Propagation: A
Junction Tree Inference Algorithm Based on LAZY Evaluation (Madsen & Jensen, 1999).

2.7 Independence of Causal Independence

LAZY Propagation enhances the efficiency by exploiting the independence of causal
influence. Different approaches in exploiting independence of causal influence with a
junction tree can be considered.

It is simple actually to extend LAZY propagation to take advantage of any of those junction
tree inference algorithms, such as factorized representation, LAZY parent divorcing, and
heterogeneous factorization. The above-mentioned algorithms offer a decomposition of
conditional probability distributions and LAZY propagation exploits a decomposition of
clique and separator potentials. It seems straightforward that LAZY propagation can readily
be extended to take advantage of the more fine-grained decomposition offered by factorized
representation, LAZY parent divorcing, and heterogeneous factorization, respectively. The
factorized representation and LAZY parent divorcing do not impose any constraint on the
elimination order while heterogeneous factorization does impose.

2.8 Variation

Symbolic Probabilistic Inference (SPI) and Arc-Reversal (AR) can be used for computation
of clique-to-clique messages in addition to the traditional use of Variable Elimination (VE).

SPI is a direct computation algorithm, which is fundamentally different from VE. The idea of
SPI is to solve a query as a combinatorial optimization problem (Li & D’Ambrosio, 1994).
Instead of focusing on the elimination order, SPI focuses on the order in which potentials
should be combined.

AR is more fine-grained than both VE and SPI. The basic idea of AR when computing a
single marginal is to perform a sequence of arc-reversals and barren variable eliminations.

The results of an empirical evaluation of the performance of LAZY propagation are
compared using VE, SPI, and AR as the message computation algorithm. The results of the
empirical evaluation show that for most networks, the performance of inference did not
depend on the choice of message computation algorithm, but for some randomly generated
networks the choice had an impact on both space and time performance. In the cases where
the choice had an impact, AR produced the best results.

2.9 Comparison with HUGIN and Shafer-Shenoy

In the HUGIN architecture, each clique sends a message to separators between it and its
neighbors. When a separator receives a message from one of its neighboring clique, it sends a
message to its other neighbors. When all messages have been sent, the potential at each
clique and at each separator is the marginal of the joint for that node. Each clique and each
separator in the junction tree stores a potential. Computations are done by each clique and by
each separator in the junction tree. The process of belief update is as follow:

1. Calculate the updated separator potential: 𝜙!∗ = 𝜙!!!!\! .

2. Update the clique potential of 𝐶! : 𝜙!!
∗ = 𝜙!!

!!
∗

!!
.

3. Associate the updated potential with the separator: 𝜙! = 𝜙!∗.

In the Shafer-Shenoy architecture, nodes needed for calculating the marginals request
messages from all their neighbors. When a node receives a request for a message, it in turn
requests messages from all its other neighbors. When all requested messages have been
delivered, the marginals are computed at the desired nodes. A node may store either no
potential, or one potential or two or more potentials. Each separator may store one or two
potentials. Computations are done only by nodes and not by separators. It can be done as
follow:

1. 𝜙!∗ = 𝜙!!!!\! 𝜙!!!!!"# (!!{!} .
2. 𝜙!!

∗ = 𝜙!! 𝜙!.!"#${!!)

The LAZY propagation differs from HUGIN and Shafer-Shenoy algorithms in the following
manner:

1. Instead of storing only one potential in each clique, it stores a list of potentials (or
conditional probability tables). It performs products on some potentials only when
necessary, i.e., when they contain a variable that is to be marginalized-out.

2. It recognizes summations like ΣH P (H|T) = 1T, the result of which is known for sure
to be 1.

3. It uses d-separation to avoid sending a message from one clique to another if the
random variables of these cliques are independent due to some evidence.

2.10 Sample Empirical Results

We measured the performance of LAZY propagation relative to Shafer-Shenoy and HUGIN
algorithms in terms of time and space cost.

Table 1: Information on the junction trees

The tests were performed on a number of large Bayesian networks with evidence sets of
different sizes.

 Figure 4: Diabetes Figure 5: KK

 Clique state space size Clique neighbours

Network cliques min max µ min max µ

Diabetes 337 495 190080 30906.3 1 3 2.0

KK 38 40 5806080 397780.2 1 4 1.9

ship-ship 35 8 4032000 693102.1 1 3 1.9

Figure 6: ship-ship

Figure 4, 5, 6 show plots of the average time for propagation of evidence for the Diabetes,
KK-KVL-maltbyg (KK), and ship-ship networks, respectively.

The plots clearly show that with the increase of the number of instantiated variables, the time
cost of LAZY propagation will decrease. Figure 5 and 6 show LAZY propagation costs less
time than the other algorithms even when no variables are instantiated. Figure 4 shows the
time cost of LAZY propagation is higher than that of HUGIN and Shafer-Shenoy for the
small set of instantiated variables, but as the number of instantiated variables reached 10, the
time cost of LAZY propagation decreases.

2.11 Various Speed-up Improvements

LAZY propagation implements a speed-up improvement that is referred to as expression trees
and is related to the use of the unity-potential axiom. Expression trees are used in order to
recognize situations where elimination of a set of variables will lead to a unity potential. For
example, for the junction tree in figure 7, it should be recognized that the elimination of
variables A and B from the potential 𝜙 𝐴,𝐵 𝐷 when calculating the message to pass from
ABDE to EF produces a unity potential.

Figure 7

A number of different improvements to standard junction tree propagation architectures have
been presented through the years, such as zero compression, binary join trees and nested
junction trees.

3 Conclusion

We have presented how the LAZY propagation works and compared the performance of
LAZY propagation, HUGIN and Shafer-Shenoy architectures. Compared to HUGIN and
Shafer-Shenoy architectures, LAZY propagation is more efficient in aspects of time and
space. Although the implementations of the HUGIN and Shafer-Shenoy architectures are
simple, LAZY propagation would be useful in some cases where the efficiency of belief
update may be insufficient using other algorithms, such as HUGIN and Shafer-Shenoy
algorithms.

The LAZY propagation architecture outperforms HUGIN and Shafer-Shenoy algorithms
when dealing with Bayesian networks in terms of time and space cost. In this way, we can
say LAZY propagation enlarges the class of tractable Bayesian networks.

Bayesian networks are not restricted to the variables of either discrete or continuous. Instead,
it can be mixed. In recent years, Bayesian networks with a mixture of continuous and discrete
variables also have received an increasing level of attention. For example, it has been applied
to the restricted class of mixture Bayesian networks known as conditional linear Gaussian
Bayesian networks (CLG Bayesian networks). LAZY propagation works very well for this
type of Bayesian networks too.

References

[1] J. Pearl, Probabilistic Reasoning in Intelligence Systems, Series in Representation and
Reasoning, Morgan Kaufman Publishers, 1988.

[2] R.D. Shachter, Evaluating influence diagrams, Operations Research, 34 (6) (1986) 871–
882.

[3] R.D. Shachter, B. D’Ambrosio, B. Del Favero, Symbolic probabilistic inference in belief
networks, in: Proc. of Eighth National Conference on AI, 1990, pp. 126–131.

[4] N.L. Zhang, D. Poole, Exploiting causal independence in Bayesian network inference,
Journal of Artificial Intelligence Research, 5 (1996) 301–328.

[5] P.P. Shenoy, Binary join trees for computing marginals in the Shenoy-Shafer architecture,
IJAR, 17 (2–3) (1997) 239–263.

[6] F. Bacchus, S. Dalmao, T. Pitassi, Value elimination: Bayesian inference via backtracking
search, in: Proc. of UAI, 2003, pp. 20–28.

[7] S.L. Lauritzen, D.J. Spiegelhalter, Local computations with probabilities on graphical
structures and their application to expert systems, Journal of the Royal Statistical Society, B
50 (2) (1988) 157–224.

[8] F.V. Jensen, S.L. Lauritzen, K.G. Olesen, Bayesian updating in causal probabilistic
networks by local computations, Computational Statistics Quarterly, 4 (1990) 269–282.

[9] G.R. Shafer, P.P. Shenoy, Probability propagation, Annals of Mathematics and Artificial
Intelligence, 2 (1990) 327–351.

[10] Li, Z. and D’Ambrosio, B. Efficient Inference in Bayes Networks As A Combinatorial
Optimization Problem. International Journal of Approximate Reasoning, 11, (1) (1994), 55–
81.

[11] Madsen A L, F.V. Jensen, LAZY Propagation: A Junction Tree Inference Algorithm
Based on Lazy Evaluation, Artificial Intelligence, 113, (1-2), 203–45.

[12] Madsen A L. An empirical evaluation of possible variations of LAZY propagation,
Uncertainty in Artificial Intelligence, 2004: 366-373.

