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Abstract—Computer vision is an interdisciplinary field that
deals with how computers can be made for gaining high-level
understanding from digital images or videos. The techniques
of the computer vision have made considerable progress in rec-
ognizing object categories. Current research in content-based
semantic image understanding is largely confined to exemplar-
based approaches built on low-level feature extraction and
classification. In this paper, we introduce two relative papers
which subject in the computer vision and image interpretation
using the Bayesian Network. Two papers are presented to deal
with semantic image understanding problem using the Bayesian
networks. The first paper, published in 2005, presents a general-
purpose knowledge integration framework that employs BN in
integrating both low-level and semantic features, and applies
this framework to detecting main photographic subjects. The
second paper, published in 2011, proposes a more powerful
framework which can identify distinct scenes in the image using
evidence-driven probabilistic inference. We study the methods
they proposed as well as the cases and we conclude and make
a discussion eventually.
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I. INTRODUCTION

Computer vision is an interdisciplinary field that deals
with how computers can be made for gaining high-level
understanding from digital images or videos. It refers to
using the cameras and computers instead of human eyes
to identify, track and measure the targets and further to do
image processing the images to the ones that are more suit-
able for humans. The tasks of the computer vision include
methods for acquiring, processing, analyzing and under-
standing digital images. Digital images are used everywhere
and cares about our daily life. For example, major uses of
imaging based on gamma rays include nuclear medicine
and astronomical observations. In nuclear medicine, the
approach is to inject a patient with a radioactive isotope
that emits gamma rays as it decays. Images are produced
from the emissions collected by gamma ray detectors.

A classifier is an algorithm that takes a set offeatures
that characterize objects and uses them to determine the
class of each object. In supervised classification, meaning
that a human expert both has determined into what classes
an object may be categorized and also has provided a set
of sample objects with known classes. This set of known

objects is called the training set because it is used by the
classification programs to learn how to classify objects.
Image interpretation acts of examining images to identify
objects and judge their significance. Interpreting images in
terms of their semantic content has primarily been addressed
by devising methods that map low-level image visual char-
acteristics to high-level descriptions without making any
use of domain knowledge and application context. Image
interpretation comprises at least three mental acts that may
or may not be performed simultaneously: The measure of
images of objects; identification of the objects imaged and
appropriate use of this information in the solution of the
problem. Therefore, the use of classification and image
interpretation is import and the basis of the computer vision.

There are many methods to do the image interpretation,
such as decision-theoretic methods including the matching,
optimum statistical classifiers, neural networks and etc and
the structural methods such as matching shape numbers
and string matching. Today we will focus on the classifier
which is rooted in the Bayesian network (BN). BN is
a probabilisticgraphical model and represents a set ofran-
dom variablesand theirconditional dependenciesvia directed
acyclic graph (DAG). Each node in the graph represents a
random variable, while the edges between the nodes rep-
resent probabilistic dependencies among the corresponding
random variables. These conditional dependencies in the
graph are often estimated by using known statistical and
computational methods.

BN is widely used to the classification and image inter-
pretation and it has proven to be an effective knowledge rep-
resentation and inference engine in artificial intelligence and
expert systems research. In [1], a BN can be utilized as an
inference mechanism for facilitating a classification method
based on feature space segmentation. The work presented in
[2] presents a method for combining ontologies and BNs to
introduce uncertainty in ontology reasoning and mapping.
The Ontology Web Language (OWL) is augmented to allow
additional probabilistic markups, and a set of structural
translation rules convert an OWL ontology into a directed
acyclic graph of a BN.

We have read two papers: A Bayesian network-based
framework for semantic image understanding and Evidence-



Driven Image Interpretation by Combining Implicit and
Explicit Knowledge in a Bayesian Network. Two papers are
presented to deal with semantic image understanding prob-
lem using the Bayesian networks. The first paper, published
in 2005, presents a general-purpose knowledge integration
framework that employs BN in integrating both low-level
and semantic features, and applies this framework to detect-
ing main photographic subjects. The second paper, published
in 2011, proposes a more powerful framework which can
identify distinct scenes in the image using evidence-driven
probabilistic inference.

The rest of the paper is organized as follows. In the next
section, we give an overview of the first paper, also with the
detailed introductions of the method of the classification.
The advanced method introduced in the second paper is
shown in III. Comparisons between two papers and our
general ideas are discussed in section IV.

II. A BAYESIAN NETWORK-BASED FRAMEWORK FOR
SEMANTIC IMAGE UNDERSTANDING

This paper focuses on the fusion technique of low-level
feature and semantic features for scene interpretation. Here,
the BN is used to explicitly integrate domain knowledge
and to reduce a joint probability distribution to conditional
independence relationships. They developed a fractional
frequency counting-based training method to address the
problem of partially certain ground truth, and a probabilistic
reasoning approach to detecting main subject in the image.
Finally, they describe a benchmarking study performed to
compare the results of the BN-based automatic Main Subject
Detection (MSD) system with other classifier systems.

A. Method

1) Framework: Fig. 1 illustrates the proposed general
framework for semantic understanding of pictorial images.
The input is a digital image of a natural scene. Two sets
of descriptors are extracted from the image: the first set
corresponds to low- level features, such as color, texture,
and edges; the second set corresponds to semantic objects
that can be automatically detected. The low-level features
can be extracted on a pixel or block basis, using a bank of
pre-determined filters aimed at extracting color, texture or
edge characteristics from the image. The semantic features
are obtained using a bank of pre-designed object detectors
that have reasonable accuracy (e.g., at least better than
chance). A Bayes net here consists of four components:
(i) Priors: the initial beliefs about various nodes in the
Bayes net; (ii) Conditional Probability Matrices (CPMs):
knowledge about the relationship between two connected
nodes in the Bayes net; (iii) Evidences: observations from
feature detectors that are input to the Bayes net; (iv)
Posteriors: the final computed beliefs after the evidences
have been propagated through the Bayes net.
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Figure 1: A BN for main subject detection
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where S denotes semantic task and E denotes evidence.
Probabilistic reasoning uses the joint probability distribution
of a given domain to answer a question about this domain.

2) Training the Bayesian network parameters : They
developed a fractional frequency counting-based training
method. Fractional frequency counting-based training is
very similar to the frequency-counting approach except
that they now weight the feature measurements us- ing
the ground truth. Thus, each feature measurement can
now contribute towards all the labels of the parent node
depending upon the ground truth associated with the
parent node. Similarly, they allow the feature detector to
provide partially certain evidences about the various labels
associated with the child node. Thus, each complete training
sample in this method contributes not just to one cell of
the CPM, but, potentially, to all the cells. The CPM can
be computed using fractional frequency counting as follows:
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where I is the set of all training images, R; is the set of all
regions in image i, and n; is the number of observations
(observers) for image i. Moreover, F, represents the m-label
feature-evidence vector for region r, T, represents the
I-value ground-truth vector, and C denotes an I x I diagonal
matrix of normalization constant factors.

The ground truth is now certain rather than probabilistic,
since the main subject decisions made by each observer are
binary. The frequency f would be expressed as:
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where O is the set of observers, R is the set of all regions,
T, represents the ground truth value for region r from
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observer o, and e, represents the feature detector output
for region r. Assuming there are N observers (N = above
equation is equivalent to
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Once the BN has been constructed and trained, it can
be used to compute the joint probability distributions very
efficiently. The next section describes the use of the BN-
based feature integration framework for an applications in
the photographic image understanding domain.

B. Application to Main Subject Detection (MSD)

They developed a probabilistic reasoning approach to
MSD. In particular, the algorithm consists of region segmen-
tation, perceptual grouping, feature extraction, and proba-
bilistic reasoning. First, an input image is segmented into
a few regions of homogeneous (color) properties. Next,
the region segments are grouped into larger regions cor-
responding to perceptually coherent objects with similar
properties using non-object-specific grouping. These regions
are evaluated for their saliency in terms of two indepen-
dent, but complementary, types of features’ structural and
semantic. For example, recognition of human skin or faces is
semantic while determination of what stands out generically
is categorized as structural. For structural features, a set
of low-level vision features (including color and texture)
and geometric features is extracted. Semantic features can
be further used to perform object-specific grouping which
attempts to segment whole objects such as people or building
in the image.

To integrate those diverse features, a multi-layer Bayes net
is used to express the relationships between various feature
detectors and its structure is designed based on domain
knowledge [3] as shown in Fig.2, ensuring the conditional
independence among various features. After evidence propa-
gation through the entire network, the root node MainSubject
gives the posterior belief that a region is part of the main
subject. This node has two labels, MainSubject and Back-
ground. Since this is the root node, there is an a priori belief
associated with its label set. Using data from training images
and frequency counting, it was computed that the a priori
belief is P(MainSubject) = 0.28 and P(Background) = 0.72.
Examples of the experimental results are shown in Fig.3.
The results are very encouraging in that most of the regions
that belong to the main subject are differentiated from the
background clutter in the image.

‘ Main Subject '

SemanticObject
Class
E CED

<> eSS

GeometricShape

Relative
ShapeSaliency

OpenSpace

Rectangularity
Com D Cermmins

Figure 2: Communication mechanism
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Figure 3: Examples of MSD results: (a,d) images; (b,e) MSD
results; (c,f) ground truth maps

C. Benchmarking Bayes Net Performance

In this section, they describe a benchmarking study per-
formed to compare the results of the BN-based automatic
MSD system with other versions of the system. They
implemented two Bayesian network classifiers, i.e. SLBN
(single-level)and MLBN (multi-level), a nave central zone
predictor, and two neural network based classifiers, one
using a separate training and testing set, and the other using
leave-one-out training.

Table I shows the number of images on which the MLBN
performs better than the other classification schemes. The
multilevel BN classifier beats the central zone predictor
(Czone) and the SLBN classifier on both the train and the
test image sets by ratios of approximately 2:1. It is similar
to the training set neural network (NN-TS) overall, but does
worse on the train image set and better on the test image set
by similar ratios. It performs slightly worse than the leave-
one-out neural network (NN-LOOQO) on both the image sets
by similar ratios of approximately 3:4. More interestingly,
the performance of the MLBN and the neural networks is
comparable. This is also expected, as both the systems are
able to use the full set of features and have similar expressive
power. The true advantage of the BN lies not necessarily in
increased performance gains (this would actually be hard
since neural network and BN are theoretically equivalent),
but in increased generalizability and ease-of-use. Unlike
neural networks, the BN is extremely stable in the presence
of missing or faulty feature detectors.



Fig. 4 shows the results of the null hypothesis tests per-
formed on the dKS results for each ordered pair of classi-
fiers. The tests were designed to check whether the perfor-
mance of each classifier was statistically significantly better
than the performance of the other four classifiers on the
train and the test set of images. The table reads horizontally
in that each row of the table tests for that classifier being
statistically significantly better than the others. The MLBN-
based classifier performs statistically significantly better than
the central zone predictor and the SLBN-based classifier on
both the train and the testing set of images.
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Figure 4: Null hypothesis tests on dKS results for each pair
of classifiers.

The MLBN also produces statistically significantly better
results than the training set neural network on the testing
set of images, although there is no statistically significant
difference in their performance on the training set of images.
This is to be expected as the training set neural network
memorizes the training data to a certain degree and can
reproduce those results fairly well. Increasing the size of the
training set and imposing additional constraints on the neural
network training method (such as a validation stop) can
mitigate the memorization effect but will result in reduced
performance from the neural network on the training set
of images. There is no statistically significant difference
between the performance of the multilevel BN and the leave-
one-out neural network at the specified confidence level (5%
error rate) on either of the two sets of images.

Fig. 5 presents the results of the analysis of variance tests
on the train and the testing set of images. The analysis
shows that in the case of the training set of images, the
central zone predictor is statistically significantly worse than

Table I: Performance of the multi-level Bayes network based
classifier vs. other classifiers using the dKS metric

MLBN Image set CZone SLBN NN(TS) NN(LOO)
# of images wibetter Train 35 36 16 17
performance Test 33 25 30 20

All 68 61 46 37
# of images wi/worse Train 13 10 27 23
performance Test 15 16 15 25

All 28 26 42 48

the remaining four classifiers. Also, the SLBN performs
statistically significantly worse than the training set neural
network on the train image set. There are no statistically
significant differences between any of the remaining sets
of classifiers. On the testing set, the central zone predictor
and the training set neural network perform statistically
significantly worse than the MLBN. Also, the leave-one-
out neural network performs statistically significantly better
than the central zone predictor. There are no statistically
significant differences between any of the remaining sets of
classifiers. As previously discussed, the main conclusions to
be drawn from the benchmarking study are:

1 Using a set of features and a good inference algorithm
(BN or neural network) leads to statistically signifi-
cantly better performance than a naive predictor such
as central zone.

2 The BN structure needs to be carefully constructed
to account for dependencies between variables in the
do- main. It also needs to be expressive (multi-level
instead of single-level) to fully utilize the entire gamut
of features available for the best performance.

3 BN are theoretically equivalent to neural networks and
should result in similar performance when trained cor-
rectly. The primary advantage of the BN-based system
comes from the flexibility, interpretability, and ease-of-

use.
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Figure 5: Analysis of variance test on the dKS results of the
five classifiers: Left-raining set, Right-testing set.

D. Conclusion

In this paper, they presented a unified image under-
standing framework based on BN, where both low-level
and semantic features can be incorporated for improved
performance. In all three of the applications discussed in
this paper (two of them are presented in this seminar paper),
they demonstrated that the BN-based systems have excellent
generalization on novel datasets. They attribute this to the
fact that the training of BN in an application merely amounts
to using a set of images to derive simple statistics for
the conditional probabilities. Consequently, compared to
discriminant-based systems such as neural networks, which
are vulnerable to poor generalization because they tend to
memorize the training set, testing the BN-based systems
generally does not give overly biased results.



E. Remarks

The benchmark research in this paper shows that the
neural networks perform worse than BN. In other words,
the BN-based systems have more excellent generalization
than NN because NN tends to memorize the training set
to a certain degree. At that time researchers usually think
that increasing the size of the training set and imposing
additional constraints on the neural network training method
(such as a validation stop) can mitigate the memorization
effect but will result in reduced performance from the neural
network on the training set of images.

However, the year after this paper was published, the
deep neural networks were proposed and perform better
than the solely BN framework on the field of semantic
image understanding. Meanwhile, a combination of different
classifiers in an ensemble are becoming popular in order to
improve accuracy.

A generative method has been proposed to combine
implicit and exploit knowledge in the second paper using the
Bayesian Network. Moreover, the focus-of-attention mecha-
nism has improved the efficiency on verifying the hypotheses
by the BN and significantly reduce the computational cost
of visual inference while obtaining results comparable to the
exhaustive case.

III. EVIDENCE-DRIVEN IMAGE INTERPRETATION BY
COMBINING IMPLICIT AND EXPLICIT KNOWLEDGE IN A
BAYESIAN NETWORK

In contrast to human perception that makes extensive use
of logic-based rules, the models, normally relying on a set
of discriminative features, fail to benefit from knowledge
that is explicitly provided. As for the multimedia, the use
of domain knowledge has been motivated o index this type
of data by the difficulty of mapping a set of low-level
visual features into semantic concepts. Furthermore, owing
to the importance of context in understanding audiovisual
stimuli, the integration of context and content is considered
a promising approach toward multimedia understanding [4].

In this paper [5], the authors firstly combined ontologies
and BNs to allow, in a probabilistic way, the fusion of
evidence obtained at different levels of image analysis.
They proposed a data-oriented learning strategy to estimate
the parameters of the BN. Secondly, they showed how
global and regional evidence which were obtained from
the application of concept classifiers on global and local
image data can probabilistically be combined within a BN.
Combining information this way is demonstrated to lead
to statistically significant improvements for the three tasks:
image categorization, localized region labeling and weak
annotation of video shot keyframes.

A. Framework Introduction

The framework description consists of five parts:
Visual stimulus, Domain knowledge, Application

context, Evidence-driven probabilistic inference and
the Computational efficiency.

As for the visual stimulus, the authors consider the
supervised learning paradigm to analyze it. In the learning
paradigm, a classifier is trained to identify an object
category and provided that a sufficiently large number of
examples are available. When Fec is a probabilistic classifier,
we have F.(I;) = Pr(c|/I;), where I, is the analyzed visual
representation and c is an instance of the concept.

The authors used use OWL-DL to build the structure
of the domain knowledge: Kp = S(N¢, R,0). It describes
how the domain concepts are related to each other using R
and O € DL, where DL stands for “description logics” [6]
and constitutes a specific set of constructors. The use of
the structure is to trigger the probabilistic inference process
and to know which evidence supports a certain hypothesis
and what semantic restrictions apply in this domain. The
knowledge structure sets the tracks to which evidence belief
[7] is allowed to propagate by determining the structure
of the BN. The information, which is implicitly extracted
from the training data, is encoded into the CPTs of the BN
nodes and influences the probabilistic inference process
when belief propagation takes place.

The authors considered the application context as
X = S(app, W), it is the information that consists of both
app, the type of application-specific information, and
W = [W;;], whose elements W, ; quantifies the effect of
concept ¢; on c;. It specifies the quantitative relations
between evidence and hypotheses, expressed with W.

To accommodate for evidence-driven probabilistic
inference, the framework uses a BN derived from the
domain ontology. Let h(Iy,c;) = Pr(c;|lq), it is the function
to estimate the degree of confidence that concept c¢; appears
in image I,. Moreover, the set of confidence degrees that
the concepts that belong to the hypotheses set are depicted
in image I, can be expressed as H(I;) = h(Iq,c;):c; € .
And E(1,) = h(Iy,¢;) : ¢; € cP represent the set of confidence
degrees that the concepts that belong to the evidence
set are depicted in image I,. In the model, H(I;) and
E(Iy) are provided to the BN. Using the probabilistic
reference, the posterior probabilities of the network nodes
are calculated by the information of the knowledge of R, O,
and context W; ;. The authors demonstrated the framework
by h'(I4,¢;) = Pr(ei|H(1y), E(Iy), R,O,W; ;) which is used
to calculate the posterior probabilities of the network
nodes. Furthermore, the set of posterior probabilities of
the concepts that belong to the hypotheses set can be
represented as H' (I;) = h'(I;,¢;) : c; €. And the semantic
image interpretation is expressed as ¢ = arg ® h' (I, ¢;).

The computational cost for gathering the necessary
evidence is often very expensive, which can be prohibitive
in highly complex domains. Therefore, the authors used an
original method called a FOA mechanism to improve the
computational efficiency of the proposed framework. This



method is performed by calculating the mutual information
between the node that corresponds to the concept ¢, and all
other nodes that correspond to the concepts of ¢F, where
c; 1s a ranked list of the evidence concepts (i.e., Vc¢; € cF
). The mutual information between ¢; and c¢;,Ve; € P, is
calculated according to the following equation:

Pr(ck;c;)
I yCGi) = P 5 il )
(e = 3 2 Priesedlonp S
{true, false} {true, false}
®)

where Pr(cg,c;) is the joint, and Pr(cy), Pr(c;) are the
marginal probability distributions of ¢, and ¢;, respectively.
The efficient calculation of Pr(cy,c;) is performed using
the junction tree [8], which is an efficient and scalable
belief propagation algorithm that exploits a range of local
representations for the network.

Using the Bayes theorem and given that a subset of
variables are observed, the marginal probabilities of the
remaining variables in the network can be estimated. The
reason for using BNs in our framework is to estimate
the posterior probabilities H'(I,) of the concepts in the
hypothesis set ¢, using the observed confidence degrees
E(I4) of the concepts in the evidence set ¢ . However,
given that the network structure can encode the qualitative
characteristics of causality (i.e., which nodes affect which)
and the CPTs can be used to quantify the causality relations
between concepts (i.e., how much is a node influenced by
the nodes to which it is connected), the constructed BN can
facilitate the following three different operations:

o Providing the means to store and utilizing domain
knowledge Kp, which is achieved by mapping Kp to
the network structure;

o Organizing and make accessible information from the
application context W;; , which is achieved by the
CPTs attached to the network nodes;

« Allowing the propagation of evidence belief in a mathe-
matically coherent manner, which is performed with the
use of message-passing belief propagation algorithms.

B. Main Method

1 Defining Kp, app, c® as introduced before.

2 Applying the probabilistic classifiers F. on I, to obtain
the degrees of confidence for the concepts in cZ .

3 Using app and Kp to decide which of the domain
concepts should constitute the hypotheses set ¢ .

4 Providing the degrees of confidence for the concepts
in ¢” to the BN and trigger probabilistic inference by
using these degrees as soft evidence.

5 Propagating evidence beliefs using the network’s infer-
ence tracks R and the corresponding causality quan-
tification functions W; ; . The conditional probabilities

are learned by employing the expectation-maximization
(EM) [9] algorithm, using as training data the images
annotated with concept labels.

6 Using a FoOA mechanism. It is based on the mutual
information between concepts which selects the most
prominent hypotheses to be verified/tested by the BN,
hence removing the need to exhaustively test all possi-
ble combinations of the hypotheses set.

7 Calculating the posterior probabilities for all concepts
in ¢ and decide which of the hypotheses should be
verified or rejected. To find the concept that matches
best a given image is to use a greedy search method
by alternating on the set of hypotheses and the set of
evidences in order.

C. Ontologies and Bayesian Networks

In this paper, the authors used data from two datasets:
the “Personal Collection” (PS) and the “News”. The
goal is to demonstrate the improvement in performance
achieved by exploiting context and knowledge compared
to baseline detectors that rely solely on low-level visual
information. As can be seen from the ontology, used to
represent the PS domain knowledge and deriving the BN,
is shown in Fig. 6, the set of category concepts is Cg =

{Countryside, buildings, seaside, rockyside, forest, tennis, roadside}

and the set of regional concepts is Cp =

{Building, roof,tree, stone, grass, ground, dried — plant, - - - }.

Teanis (1) Rockyside

Forest
Seaside
Roadside

Roadside Seaside Forest Buildings Tennis Rocky side

Figure 6: Ontology for the “Personal Collection” domain

Image categorization is the task of selecting the category
concept ¢; that best describes an image I, as a whole.
In this case, a hypothesis is formulated for each of the
category concepts, i.e., H(Iy) = {Pr(c;|Iy)
where n is the number of category concepts in Kp. For
example, knowing that a specific region depicts a road is
a type of contextual information that the algorithm can
exploit when trying to decide whether the image depicts
a rocky side or a roadside scene. To assess the benefit
of using the proposed FoA mechanism, we measure the
gain in computational cost in terms of the following
two quantities: 1) the number of classifiers (#Classifiers)
that need to be applied and 2) the number of inferences
(#Inferences) that need to be performed. The authors set

cio= 1""7”}7

Comntryside Buildings



three baselines: CON1, CON2 and CONS3. In the baseline
configuration CON1, they assessed the performance of
image categorization based solely on visual stimulus.
Images are categorized based on the maximum value of
the global concept classifiers. The second configuration
CON2 uses context (i.e., X = S(app,W)) and knowledge
(i.e., Kp = S(N¢,R,0)) to extract the existing evidence
and facilitate the process of evidence-driven probabilistic
inference. The third configuration CON3 takes into account
the semantic constraints of the domain to construct the
BN. The Fig. 7 shows that the performance obtained using
the CON2 is superior to the performance obtained using
CON1, because an average increase of approximately 5%
is observed.

Localized region labeling is the task of assigning labels
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Figure 7: Image Categoriaztion Evaluation
to presegmented image regions with one of the available

regional concepts c;. Eventually, the values that represent
the impact on the posterior probabilities of the two different
cases are compared. If no conflict occurs, the concept
that corresponds to the local classifier with maximum
confidence is selected. Fig. 8 shows that, when using the
proposed framework, an average increase of approximately
4.5% is accomplished.

Weak annotation of video shot keyframes is the task
of associating a number of concepts with an image. The
evidence are considered the confidence values of all other
concepts, except for the concept examined by the current
hypothesis. To assess the efficiency of the framework, the
authors compared its performance to the performance of
baseline concept detectors that make no use of domain
knowledge and application context. Belief propagation is
performed, and the resulting posteriors are recorded for all
concepts.

The experiments conducted have verified the effectiveness
of our framework in improving the performance of a set
of baseline concept classifiers by using their output
as evidence. Because this improvement mainly derives
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Figure 8: F-Measure scores for the localized region labeling
task-Personal Collection Dataset

from the incorporation of the domain knowledge and the
application context to the analysis, we can use the proposed
framework to improve the performance of any set of
concept detectors that produce a probabilistic output. We
see that the FoA mechanism is as successful as a full brute
force classification search. Using ontologies thus reduces
the amount of computation while giving good results.

D. Remarks

The experiments have conducted and verified the
effectiveness of the framework in improving the performance
of a set of baseline concept classifiers by using their output
as evidence. Derived from the incorporation of the domain
knowledge and the application context to the analysis, the
framework can be used to improve the performance of any
set of concept detectors that produce a probabilistic output.
Furthermore, the mechanism that exploits the mutual
information between concepts to significantly reduce the
computational cost of visual inference and still achieve
results comparable to the exhaustive case.

IV. CONCLUSION AND DISCUSSION

In the first paper, the general framework for semantic im-
age understanding presented above can be applied to various
tasks involving semantic understanding of pictorial images.
With these diverse examples, they have demonstrated that
effective inference engines can be built according to specific
domain knowledge and available training data to solve
inherently uncertain vision problems. BN are becoming the
reasoning engine of choice and provide a powerful tool ap-
plicable to many photograph-related semantic understanding
tasks.

The second paper was written in 2011 and proposed a
generative method of modeling the layer of evidence to



effectively combine and exploit both a priori and observed
information. The authors combined everything in a Bayesian
network that can perform inference based on soft evidence
and provided the means to handle aspects such as causality,
uncertainty, and prior knowledge, hence imitating some
human basic perceptual operations when inspecting images.

These two papers have similar topic but different methods.
Both demonstrate how to make good use of various features
or evidences contained in images to infer high-level semantic
interpretation under BN framework. And their common goal
is to demonstrate the improvement in performance achieved
by exploiting context and knowledge compared to baseline
detectors that rely solely on low-level visual information.

The BN frameworks as well as training methods they
developed are distinct. For BN frameworks, in the first paper,
two sets of descriptors are extracted from the image: the first
set corresponds to low-level features, such as color, texture,
and edges; the second set corresponds to semantic objects
that can be automatically detected. Then, the hybrid streams
of low-level and semantic evidences are piped into a BN-
based inference engine, which is capable of incorporating
domain knowledge as well as dealing with a variable number
of input evidences, producing semantic predicates. In the
second paper, an ontology was used to represent the domain
knowledge. Global classifiers are applied to estimate the
initial probability for each hypothesis. and local classifiers
are applied to the presegmented image regions I, to generate
a set of confidence values that constitute the evidence. For
training methods, in the first paper, the CPMs (Conditional
Probability Matrices) are computed using fractional fre-
quency counting, while in the second paper the conditional
probabilities are learned by employing the EM algorithm,
and the CPTs of all control nodes are manually set.
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