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Introduction 

Image recognition and classification in humans is almost instantaneous: show someone a 

picture of a cat and they’ll immediately recognize it as one. However, ask them to explain why 

this is a cat, and not for instance a dog, and they probably won’t have an answer ready. Both 

have four legs and a tail, and are furry, but even without consciously knowing the exact criteria 

we use to distinguish them, we have no trouble discerning cats from dogs. This classification 

problem has led researchers to a swath of models and tools to teach computers to learn the 

parameters that would easily reconcile differences for a human. 

In this essay, we will focus on using Bayesian networks for fMRI data. First, we will 

explain how Bayesian networks can be used to classify images. Next, we will give a short 

introduction to fMRI. After that we will combine the two previous sections and combine 

Bayesian network image classification with fMRI pictures. Moreover, we will show that 

Bayesian networks not only can be used to classify images but also for decoding images. Lastly, 

we will end with a conclusion where we will give our opinion on the subject.  

 

Using Bayesian networks to classify images 

There are several ways to approach computer vision techniques, the two most popular 

types being neural networks and Bayesian networks.  Neural networks are often a sort of black 

box; it is not completely clear how weights and nodes are determined, while Bayesian networks 

give more insight in the features of the image used to classify it. Both can be learned by a 

computer from data and achieve very high accuracies. Bayesian networks also combine expert or 

prior knowledge with the evidence observed from the image which allows for a greater 

utilization of domain knowledge and puts given data in a specific context. Bayesian networks 

used for image recognition make use of the famous Bayes Rule: 

𝑃(𝑆|𝐼) =
𝑃(𝑆) ∗ 𝑃(𝐼|𝑆)

𝑃(𝐼)
  

 



Where p(I|S) is the image likelihood (viewpoint, lightning), P(S) is the prior regularities 

(geometry and shape, material, lightning and expert knowledge) and P(I) is the image regularities 

(geometric and photometric properties).  

This framework, proposed by Nikolopoulos et al. (as seen in Figure 1), makes the 

procedure of classification and interpretation more explicit than other networking algorithms.  

Figure 1. Bayesian inference in image classification as proposed by Nikolopoulos et al. 

 

To use this framework in image categorization, a set of formulated hypotheses is tested. Each 

category concept, 𝑐𝑝 refers to a hypothesis that best describes and image, 𝐼𝑞. Therefore, the 

hypotheses are 𝐻(𝐼𝑞) = {Pr(𝐼𝑞) : 𝑖 = 1, … … , 𝑛}, where n is the number of category concepts.  

First, a global classifier is applied to the image to help determine the initial probability 

for each hypothesis. The global classifier, based on a model that is trained using global image 

information, gives some context for the image. The type of image determines what parts of the 

image should be looked at in more detail by a local classifier. For instance, if it is known from 

the global classifier that we’re looking at a picture of a forest landscape, there’s not as much use 

for trying to find a car in the image as there would be if we were looking at a photograph of a 

city. 

After the global classifier determines which evidence needs to be taken from the image, 

local classifiers are applied to segments of the image. The local classifiers generate a set of 

confidence intervals that we then take as the evidence:  

𝐸(𝐼𝑞) = {Pr(ćᵢ|𝐼𝑞
𝛿𝑗

) : 𝑖 = 𝑖, … 𝑘, 𝑗 = 1 … . 𝑚} 

where  𝐼𝑞
𝛿𝑗

are the image regions, ćᵢ the regional concepts, k the number of regional concepts and 

m the number of identified segments. Next, localized region labelling is applied. This is the task 



of assigning labels to each image region, choosing from one of the regional concepts. Again, we 

formulate a hypothesis for each image segment: 

𝐻(𝐼𝑞) = {Pr(𝐼𝑞
𝛿𝑗

) : 𝑖 = 1 … 𝑘, 𝑗 = 1 … . 𝑚} 

where k and m are the same as before. Conflicts can occur in this framework, when the local 

classifier suggests a concept that does not belong to the set of concepts returned by the global 

classifier. In that case, a choice must be made which classifier to believe. It is debatable which 

classifier is more reliable, and this should be decided by the researcher. 

 

Figure 2. Application of classifying procedure to an image, demonstrating the passing of 

information between local classifiers 

 

 

Figure 2 shows an example of how this framework is applied to a photograph. The belief 

evolution starts with the highest (prior) probability of a forest classification, because this is the 

category most present in the database used. After running a global classifier, the beliefs are 

updated. Now the highest scoring category is seaside, which is still incorrect. Then, local 

classifiers are applied to the four regions depicted in the image. The local classifiers correctly 

classify region 1 as grass and region 3 as sky, but misclassify regions 2 and 4 as sky also. Still, 



this information from the local classifiers is enough to shift the belief from seaside to roadside, 

which is the correct classification for this image.  

Using a Bayesian network is particularly useful for image recognition since we can 

express the image in uncertainty and incorporate expert prior knowledge. The application to 

neuroimaging can be articulated deductively, as a mechanism of image processing to find 

pathways (using regional classifiers), and inductively, by using those pathways in scans to 

reconstruct what may have been seen. These Bayesian networks for neuroimaging make it 

possible for researchers to deduce mechanisms of relationships that were otherwise not well 

known, provide information to the operations of the complex human brain, and potentially 

improve the understanding of many psychiatric and neurological diseases such as Alzheimer’s 

and Parkinson’s diseases. 

 

Introduction to fMRI 

When applying image recognition to a processing of images related to brain and brain 

behavior, the procedural mechanisms to create the image should be well understood. In short, the 

fMRI uses a combination of magnetism and radio pulse technology to alter protons in the human 

body and capture the distortions in the magnetic field as a series of images. When a patient is 

placed inside the MRI machine, the protons in the hydrogen elements of water molecules in the 

body align with the direction of the magnetism. Radio impulses programmed at frequencies 

matching the spin of those protons are pulsed at different intervals. These pulses cause the 

protons to shift in some way (changes in spin, changes in direction, tilt, etc.) and align in phase. 

These protons are unstable in this phase and will quickly start to dephase back to the original 

alignment.  

The changes in intensity of these phases are picked up as signals categorized by their time 

intervals: T1 (longitudinal relaxation) and T2 (Transverse Relaxation). After the RF pulse is 

removed, the magnetism of the protons that have been tilted decrease and this relaxation of the 

protons longitudinally (in the z direction) is caught in the T1 weighted images. The T2 signal on 

the other hand captures the change in magnetism along the transverse plane, where the protons 

dephase but do not move longitudinally (they stay on the X-Y plane). The T1 and T2 images are 

captured by manipulating the data collection time after the radiofrequency pulse.  

The collections of images can be categorized in two ways by the two different resolution 

types: temporal resolution or spatial resolution (see Figure 3). The structural T1 image has high 

spatial resolution, but low temporal resolution; in other words it is a static image. This is the type 



of image used when brain structures or abnormal growths need to be distinguished. A low 

resolution T1 image is usually the type of image used to identify the anatomical characteristics in 

a subject before running the actual functional tests. This helps to orient both the technicians and 

the researchers. The functional T2* (which is a combination of the T2 and local inhomogeneities 

in the magnetic field) image makes use of temporal resolution at the expense of spatial 

resolution; the images are followed over time and space but the objects are not as easily 

distinguished in the image. The collection of T2* images of a voxel over time is called a time 

series of that voxel.  

 

Figure 3. The two time-interval dependent captures, demonstrating the difference in 

characteristics of images. 

 

 

The most common mechanism of fMRI voxel mapping is the Blood Oxygen Level-

Dependent (BOLD) response. The magnetism of blood changes with oxygenation and 

deoxygenation of hemoglobin. Protons close to the deoxyhemoglobin spin at different speeds 

than those far away, which causes a different T2* gradient across voxels of high “activity.” The 

connection between deoxygenated blood and neural activity is not perfected, but, for posterity, 

active brain areas are defined as places in the brain with high concentrations of deoxygenated 

blood as it is a mark of that part of the brain tissue working. In effect, the higher metabolic 

demands of neurons, the higher deoxyhemoglobin in that area of the brain.  

These images, specifically the T2 images as they inform both temporal and spatial 

understanding, and their serialization provide the groundwork for brain activity research.  

 

 



Bayesian network and Image Classification of fMRI 

As described, fMRI provides an indirect measure of brain activity by means of a blood-

oxygenation-level-dependent (BOLD) signal. This characteristic makes it useful to apply a 

Bayesian network to analyze functional brain connectivity and the connectivity during cognitive 

challenges. Both constraint based and score based algorithms have been used for this data 

including PC, Casual PC, Greedy Equivalent Search, Cyclic Causal Discovery, and Fast Causal 

Inference (Mumford & Ramsey, 2014). The methods PC, CPC, CC, and FCI are constraint-based 

methods (make inferences from conditional independences), while GES is a score based method 

(model selection based on a scoring mechanism). In addition to these techniques, other 

techniques known as Dynamic Bayesian Networks, such as LiNGAM, LOFS, and GIMME, 

allow for temporal information to be incorporated and are better suited for detecting both 

connections and their directionality (Mumford & Ramsey, p. 574). For our purposes, we’ll focus 

on the network types more broadly, with a specific emphasis on the properties of the Dynamic 

Bayesian Network, which has had demonstrated successes with fMRI analyses.  

 

Modeling Techniques 

When analyzing fMRI it is very common to select regions of interest (ROI’s), which 

occur as a cluster of voxels, in order to study the functional integration (connectivity) between 

these ROI’s. The ROI approach makes it possible to model the functional connectivity as a 

Bayesian network, where each ROI constitutes as a node and the functional connection between 

the ROI are represented by an arc of the graph. Moreover, the conditional distribution can be 

used to compute the strength of the connection. In Figure 4 the steps involved from original 

fMRI data to Bayesian network modelling can be seen. Important to note are two ways to enter 

the BOLD signal into a Bayesian network model: 

1) Discrete nodes: BOLD time series are discretized or quantized into a finite number 

of categories (nonlinear) 

2) Linear Gaussian interactions: assumes that the neural interaction between regions 

can be modeled by a linear relationship with Gaussian noise.  

In conjunction with these are two overall ways to model a Bayesian network that are relevant for 

fMRI data: 

1) Static Bayesian networks:  the functional network is considered static across time 

2) Dynamic Bayesian network: functional network is considered dynamic and 

describes spatial and temporal relationships (time-series data). This is a more 



realistic approach since the brain is a dynamic procedure and the images used 

capture temporal and spatial information. 

 

Figure 4. Summary of steps involved in connectivity analysis, from original fMRI data to 

Bayesian network modelling 

 

 

An example of a dynamic Bayesian network of 5 ROI regions can be found in Figure 4. It 

is interesting to see what the differences are between static Bayesian networks and dynamic 

Bayesian networks. In an experiment, both networks found the same network structure. 

However, dynamic Bayesian networks are capable of learning the structure more accurately as 

they explicitly take into account the temporal characteristics of fMRI time-series by using a 

Markov chain (Rajapakse J.C & Zhuo J, 2007). Using a static Bayesian network results in a loss 

of information about edge directions because several network structures with the same skeleton 

but different edge directions can have the same marginal likelihood while a dynamic Bayesian 

network avoids this by taking the temporal relationships into account.  

To conclude, for the most realistic results a dynamic Bayesian network should be used. 

There is only one drawback of the dynamic Bayesian network, which is that a large sample is 

needed. However, we still have a strong preference for the dynamic Bayesian network approach 

since it is most similar to how the real brain works. A dynamic Bayesian network procedure uses 

a Markov Chain with nonlinear continuous time interactions (instead treating the time intervals 

as discrete) and provides a direct mechanism to model temporal relationships between brain 

regions. The use of nonlinear interactions allows the assumption of linearity, which often does 

not hold, to be skirted making this method attractive when other methods have failed (Burge et 

al, 2009). An example network of 5 ROI regions can be found in Figure 5.  

 

 

 



Figure 5. A dynamic Bayesian network representing a neural system consisting of five brain 

regions. The values of the edges represent the strength of connections. 

 

Improving models  

In order to improve accuracy of the models, images can be preprocessed.  This procedure, 

known as highpass filtering, allows the noise of the images to be greatly reduced. By using the 

methods detailed below, which can either be used in addition to the original images to improve 

learning or replace the images entirely in cases of too much noise, the learning of image 

characteristics can be greatly improved.  

1) Alignment: corrects for misalignment of the images across the slices and scan 

sessions, originating basically from the head movement. Assuming the head as a 

solid, rigid-body transformations (rotation and translation) are applied, based on 

some image similarity measures. 

2) Slice-timing correction: when associating each slice (in-plane image) with a time 

point, it must be noted that there is a time delay from the start to the end of 

scanning of each single slice. This phase delay must be corrected, using some 

interpolation technique. 

3) Unwarping: corrects for distortions in the images, generated by inhomogeneities in 

the magnetic field. In addition to the machine’s imprecision, head size and location 

are sufficient to create inhomogeneity or bias field. 

4) Spatial normalization: registers different subject’s brains to a common stereotaxic 

space, such as Talairach space and Montreal Neurological Institute (MNI) space. 

Normalization is necessary when comparing subject’s BOLD signals in a group. 



Normalization also allows the localization of a particular brain structure of interest 

through an anatomical atlas. 

5) Smoothing: a spatial filtering is performed by means of a Gaussian kernel to reduce 

noise and enhance the statistical power for group comparisons. This also has to do 

with the imprecise nature of the spatial normalization process. 

 

Decoding-reconstruction using Bayesian networks. 

In addition to the application of Bayesian networks to classify images, Bayesian networks 

can be used to in the reconstruction of images. Yargholi and Hossein-Zadeh investigated whether 

Bayesian networks could improve decoding-reconstruction. Decoding-reconstruction is used to 

reconstruct the actual visual stimuli (images) from measured brain activity patterns. The applied 

procedure for decoding-reconstruction is shown in Figure 6. For this study, fMRI data from Van 

Gerven et al. (2010) is used. The data consists of 100 trials from one subject. In each trial a hand-

written digit of a 6 or a 9 on a black background was visually presented to the subject for 12.5 

seconds. Brain activity patterns were measured and used to apply decoding-reconstruction. 

 

A Decoding-Reconstruction Bayesian network 

There are several steps to set up efficient Bayesian networks for decoding-reconstruction, 

which are now explained. First, nodes need to be determined using train data. Nodes are 

represented by brain voxels and pixels of reconstructed stimuli. To avoid overfitting of the data, 

the number of parameters and dimensions needed to be reduced. The number of parameters is 

reduced by converting the stimuli images into binary images and by putting a threshold on the 

activity of brain voxels so that they would have 2 states; active or inactive. The number of 

dimensions is reduced by sorting brain voxels and selecting the ten voxels that distinguish most 

between the two stimuli using the Kolmogoro-Smirnov test (KS-test). Also, the number of pixels 

are reduced using two methods: by using perpendicular blocks of 7 pixels and by using the ten 

pixels that distinguish best between the two stimuli using KS-test. 

Next, there is the procedure of structure learning of the Bayesian networks. Effective 

connections between nodes were extracted using the search-and-score structure learning method 

Greedy Search. This resulted in two types of effective connections; pixel – voxel edges and 

edges between voxels. In total, six different Bayesian networks were constructed to use for 

decoding-reconstruction, existing from different partitioning of stimulus pixels and different 



types of edges (table 1). Additionally, a Greedy Search was used to learn connections between 

pixel – pixel edges. These connections were added to the basic Bayesian network structure that 

only consisted of pixel – voxel edges, formerly. 

 

Table 1. The six learned Bayesian networks with different partitioning of stimulus pixels 

and different edges in the structures. 

 

 

Lastly, parameters for the Bayesian networks are learned using maximum likelihood 

estimation. Hereby, the influence of applying brain effective connectivity information on 

decoding-reconstruction was explored.   

 

Influence of Bayesian networks on decoding-reconstruction 

Each reconstruction was evaluated objectively and subjectively. Objective evaluation was 

done by deriving the city-block distance between stimulus (s) and its reconstruction (r), each 

having N pixels: 

𝐷(𝑠, 𝑟) =
1

𝑁
∑ |𝑠𝑖 − 𝑟𝑖|

𝑁

𝑖=1

 

Subjective evaluation included 3 persons grading the similarities between stimuli and their 

different reconstructions with a 1 (lowly), 2 (on average) or 3 (highly). Also, the performance of 

each Bayesian network is obtained by adding the scores and scaling them. This is called the 

winning percentage. 

Table 2 shows separate comparisons between Bayesian networks 1–3 and between 

Bayesian networks 4–6. It is clear that Bayesian networks 2 and 5 are the winners, as they have 

the lowest city-block distance errors, the highest winning percentages and the highest subjective 

assessment scores compared to the other Bayesian networks.  

 



Table 2. The average (standard deviation) of city-block distance errors, winning percentages 

and subjective assessment scores for Bayesian networks 1–6. 

 

 

 

From a comparison between all networks, Bayesian network 5 turns out to be the overall winner 

(Table 3), as the winning percentage for this network is much higher compared to the other 

networks. Thus, a Bayesian network that uses the ten pixels that distinguish best between the two 

stimuli using KS-test and has pixel – voxel edges and edges between voxels performs best. 

 

Table 3. The winning percentages for Bayesian networks 1–6. 

 

 

The results of this study reveal that Bayesian networks offer improvements to the  decoding-

reconstruction of handwritten digits. The Bayesian networks in this experiment demonstrate how 

different brain voxels, pixels from presented stimuli, and connections between them add 

information to the process of reconstructing a visual stimulus from brain activity patterns.  

 

 

 

 

 

 

 

 

 



Figure 6. The (a) training procedure and (b) testing procedure for decoding-

reconstruction. 

 

Conclusion 

 In this paper, we investigated the use of Bayesian networks for fMRI data and showed 

some examples of how it is implemented. In our opinion, the main benefit of using Bayesian 

networks is knowing what is happening behind the scenes. Other methods, such as neural 

networks, which we’ve encountered in other courses, worked well in image classification tasks, 

but were not theoretically well-founded making thorough understanding of them difficult. With 

Bayesian network this problem is solved making the image classification easily retraceable and 

defensible. This makes it possible to easily see where the system was wrong or where it can be 

improved. However, we also believe that there is a drawback in this as it makes computations 

harder and it less automated.  

 

Limitations 

Though the use of Bayesian networks conceptually fits the research questions more 

appropriately than other methods, a meta-analysis found that for readily confronted problems in 



fMRI (directionality, session lengths, etc.) the Bayesian network approach failed when too many 

nodes were present (the computation became too expensive) and the use of LiNGAM, a non-

linear approach, failed if too few nodes were present (Smith et al, 2011). As fMRI sessions are 

extremely variable, insensitivity to data size makes the use of Bayesian networks a bit 

problematic. Certain methods such as High Order Dynamic networks have already demonstrated 

an improvement and this problem will likely dissipate with increases in computational power 

(Yargholi & Hossein-Zadeh, 2016).  

Additionally, when using Bayesian networks for fMRI processing the researchers must be 

careful in choosing the appropriate model, as the wrong model might not be able to capture 

directionality (typically Gaussian procedures) and depending on the level of inference. Certain 

algorithms, can only make conclusions on a group level (GIMME), while other algorithms can 

also be applied to single subjects, such as LiNGAM and LOFS (Mumford & Ramsey, 2014). 

This puts the burden on the researcher to be mindful of the types of conclusions that they would 

like to make. 

In addition to these few procedural problems, conceptual decisions regarding priors and 

expert knowledge becomes increasingly important and the lack of or fallibility of priors could 

lead your Bayesian networks astray. This is probably why we have seen “Discussion” sections of 

papers repeatedly advising their successors to proceed with caution when making decisions for 

their own networks. Overall, however, as researchers often make careful choices in regards to 

research, the use of Bayesian networks for classifying images, specifically fMRI data, has proven 

to be very useful since it does not use only static calculations but can be made dynamic. 

Especially for the fMRI case this is convenient as fMRI is not static at all. Using Bayesian 

networks for decoding-reconstruction of fMRI data is relatively new, but proven to be efficient. 

Bayesian networks help by adding more structure in decoding-reconstruction. 
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