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METIS — Detection of suspicious ships
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Why Bayesian networks?

Probabilistic graphical models, such as Bayesian networks,
are now the most popular uncertainty formalisms because:

Handle noise, missing information and probabilistic
relations

Learn from data and can incorporate domain knowledge

Offer flexible reasoning

Have compact graphical representation (interface)

Foundational principles: probability theory

Engineering principles: knowledge acquisition, machine
learning and statistics
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General notation

Stochastic (= statistical = random) variable: upper-case
letter, e.g. X, or upper-case string, e.g. FEVER

Values: variables can take on values, e.g. X = x,
FEVER = yes

Binary variables: take one of two values, e.g. X = true
and X = false

Discrete variables: take only one of a finite set of
possible values, e.g. TEMP ∈ {low, medium, high}

Continuous variables: take any value from the real
numbers R or interval of real numbers, e.g.
TEMP ∈ [−50, 50]
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Abbreviated notation

Binary variables: X = true as x, and X = false as ¬x

Non-binary variables: X = x as x or CITY = tokyo as
tokyo

Sets of variables: analogous to variables

Example:

X1 = x1

X2 = x2 X = (X1, X2, . . . , Xn)

· =⇒ x = (x1, x2, . . . , xn)

· X = x

Xn = xn
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Abreviated notation (cont.)

Conjunctions: (X = x) ∧ (Y = y) as (X = x, Y = y)

Templates: (X,Y ) means (X = x, Y = y), for any value
x, y, i.e. the choice of the values x and y does not really
matter

Examples:

P (X = x, Y = y) ⇔ P (X = x ∧ Y = y)

P (X,Y ) ⇔ P (X = x, Y = y), for any value x, y

P (X | Y ) ⇔ P (X = x | Y = y), for any value x, y

∑
X P (X) = P (x) + P (¬x), where X is binary
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Probability theory

Probability distribution P : attaches a number in (closed)
interval [0, 1] to Boolean expressions

Boolean algebra B (for two variables RAIN and
HAPPY):

⊤ (true),
rain, ¬rain,
happy, ¬happy,
rain ∧ happy,. . ., rain ∧ happy ∧ ¬happy, . . .,
¬rain ∧ happy,. . ., rain ∨ happy,
⊥ (false)

such that:

⊥ ≤ rain, rain ≤ (rain ∨ happy), . . . (in general ⊥ ≤ x
for each Boolean expression x ∈ B);

x ≤ ⊤ for each Boolean expression x ∈ B
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Probability distribution

A probability distribution P is defined as a function
P : B → [0, 1], such that:

P (⊥) = 0

P (⊤) = 1

P (x ∨ y) = P (x) + P (y), if x ∧ y = ⊥ with x, y ∈ B

Examples:

P (rain ∨ happy) = P (rain) + P (happy), as
rain ∧ happy = ⊥ (why? Because I define it that way)

P (rain ∧ happy) = P (⊥) = 0

P (¬rain ∨ rain) = P (¬rain) + P (rain) = P (⊤) = 1 ⇒
P (¬rain) = 1− P (rain)

0 ≤ P (rain) ≤ 1
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Probability distribution (cont.)

Boolean algebras ⇔ sets:

⊤ ⇔ Ω

⊥ ⇔ ∅

x ⇔ X

¬x ⇔ X̄

(x ∨ y) ⇔ (X ∪ Y )

(x ∧ y) ⇔ (X ∩ Y )

x ≤ (x ∨ y) ⇔ X ⊆ (X ∪ Y )

with ⇔ 1-1 correspondence, e.g.

P (Rain) = 1− P (Rain)
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Joint probability distribution

Let X and Y be random variables with domains

dom(X) = {x1, x2, . . . , xn} and dom(Y ) = {y1, y2, . . . , ym}.

The product set

dom(X)× dom(Y ) = {x1, x2, . . . , xn} × {y1, y2, . . . , ym}

is made into a probability space by defining

P (X = xi ∧ Y = yj) = f(xi, yj)

where f is a joint probability mass function of x and y
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Marginalisation

Suppose the joint probability distribution of two variables X
and Y is given; then

P (x) = P (X = x) = P (x ∧ ⊤)

= P (x ∧ (y ∨ ¬y))

= P ((x ∧ y) ∨ (x ∧ ¬y))

= P (x ∧ y) + P (x ∧ ¬y)

since P (a ∨ b) = P (a) + P (b), if a ∧ b = ⊥

=⇒ P (x) =
∑

Y

P (x, Y )

also known as marginal probability function of X
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Example

Assume that X1, X2, X3 and X4 are binary variables.
Then P (X1, X2, X3, X4):

P (x1, x2, x3, x4) = 0.1

P (x1,¬x2, x3, x4) = 0.04

P (x1, x2,¬x3, x4) = 0.03

P (x1, x2, x3,¬x4) = 0.1

P (¬x1, x2, x3, x4) = 0.0

P (¬x1,¬x2, x3, x4) = 0.2

P (¬x1, x2,¬x3, x4) = 0.08

P (¬x1, x2, x3,¬x4) = 0.1

P (x1,¬x2,¬x3, x4) = 0.015

P (x1,¬x2, x3,¬x4) = 0.1

P (x1, x2,¬x3,¬x4) = 0.004

P (¬x1,¬x2,¬x3, x4) = 0.005

P (¬x1,¬x2, x3,¬x4) = 0.01

P (¬x1, x2,¬x3,¬x4) = 0.01

P (x1,¬x2,¬x3,¬x4) = 0.006

P (¬x1,¬x2,¬x3,¬x4) = 0.2

∑
X1,X2,X3,X4

P (X1, X2, X3, X4) = 1

Marginalisation:

P (x4) =?
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Example

Assume that X1, X2, X3 and X4 are binary variables.
Then P (X1, X2, X3, X4):

P (x1, x2, x3, x4) = 0.1

P (x1,¬x2, x3, x4) = 0.04

P (x1, x2,¬x3, x4) = 0.03

P (x1, x2, x3,¬x4) = 0.1

P (¬x1, x2, x3, x4) = 0.0

P (¬x1,¬x2, x3, x4) = 0.2

P (¬x1, x2,¬x3, x4) = 0.08

P (¬x1, x2, x3,¬x4) = 0.1

P (x1,¬x2,¬x3, x4) = 0.015

P (x1,¬x2, x3,¬x4) = 0.1

P (x1, x2,¬x3,¬x4) = 0.004

P (¬x1,¬x2,¬x3, x4) = 0.005

P (¬x1,¬x2, x3,¬x4) = 0.01

P (¬x1, x2,¬x3,¬x4) = 0.01

P (x1,¬x2,¬x3,¬x4) = 0.006

P (¬x1,¬x2,¬x3,¬x4) = 0.2

∑
X1,X2,X3,X4

P (X1, X2, X3, X4) = 1

Marginalisation:

P (x4) =
∑

X1,X2,X3
P (X1, X2, X3, x4) = 0.47
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Conditional probability

(Example: flu and fever )

P (flu ∧ fever): chance of flu and fever at the same time

P (flu | fever): chance of flu knowing that the person
already has fever (conditional probability)

Definition:

P (flu | fever) =
P (flu ∧ fever)

P (fever)

ր

adjust P (flu ∧ fever), so

that uncertainty in ‘fever’

is removed
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Reversal of chances

P (flu | fever) is usually unknown:

feverf lu
P (flu | fever)

eh
(hypothesis) (evidence)

Known is:

P (fever | flu) = 0.9
P (flu) = 0.05
P (fever) = 0.09

feverflu
P (fever | flu)

P (flu) = 0.05 P (fever) = 0.09
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Bayes’ rule

“...a method by which we might judge concerning the probability that an

event has to happen, in given circumstances, upon supposition that we

know nothing concerning it but that, under the same circumstances, it has

happened a certain number of times, and failed a certain other number of

times.”

Richard Price

Introducing “Essay towards solving a problem in the doctrine of chances” by Thomas Bayes
to the Royal Society of London in 1764
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Bayes’ rule - Example

Bayes’ rule – reversal of chances:

P (e | h) P (fever | flu) = 0.9
P (h) P (flu) = 0.05
P (e) P (fever) = 0.09

P (flu | fever) =
P (fever | flu)P (flu)

P (fever)

= 0.9 · 0.05/0.09 = 0.5

Definition of Bayes’ rule (the ‘chance reverter’):

P (h | e) =
P (e | h)P (h)

P (e)
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Chain rule (derivation)

Definition of conditional probability:

P (X1 | X2, . . . , Xn) =
P (X1, X2, . . . , Xn)

P (X2, . . . , Xn)

⇒ P (X1, X2, . . . , Xn) = P (X1 | X2, . . . , Xn)P (X2, . . . , Xn)

Furthermore,

P (X2, . . . , Xn) = P (X2 | X3, . . . , Xn)P (X3, . . . , Xn)

...
...

...

P (Xn−1, Xn) = P (Xn−1 | Xn)P (Xn)

P (Xn) = P (Xn)
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Chain rule (definition)

P (X1, X2, . . . , Xn) = P (X1 | X2, . . . , Xn) ·

P (X2 | X3, . . . , Xn) ·

P (X3 | X4, . . . , Xn) ·

...

P (Xn−1 | Xn) ·

P (Xn)

=

n−1∏

i=1

P (Xi | Xi+1, . . . , Xn)P (Xn)
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Definition Bayesian network (BN)

A Bayesian network B is a pair B = (G,P ), where:

G = (V (G), A(G)) is an acyclic directed graph, with

V (G) = {v1, v2, . . . , vn}, a set of vertices (nodes)

A(G) ⊆ V (G)× V (G) a set of arcs

P : B(XV (G)) → [0, 1] is a joint probability distribution,

such that

P (XV (G)) =
∏

v∈V (G))

P (Xv | Xπ(v))

where π(v) denotes the set of immediate ancestors
(parents) of vertex v in G

Notational convenience: Xv ≈ v
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Example of a Bayesian network

X1

y/n

X2

y/n

X3

y/n

Bayesian network B = (G,P ), where G = (V (G), A(G)), with

Set of vertices: V (G) = {X1, X2, X3}

Set of arcs: A(G) = {(X1, X2), (X1, X3)}

Joint probability distribution:

P (X1, X2, X3) = P (X1) · P (X2 | X1) · P (X3 | X1)
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Example (cont.)

P (X1, X2, X3) = P (X1) · P (X2 | X1) · P (X3 | X1)

with for example:

P (x1) = 0.7

P (¬x1) = 0.3 = 1− P (x1)

P (x2 | x1) = 0.6

P (¬x2 | x1) = 0.4

P (x2 | ¬x1) = 0.1

P (¬x2 | ¬x1) = 0.9

P (x3 | x1) = 0.1

P (¬x3 | x1) = 0.9

P (x3 | ¬x1) = 0.8

P (¬x3 | ¬x1) = 0.2
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Conditional independence relation

Let X,Y, Z be sets of variables, such that X,Y, Z ⊆ V (G),
then X is called conditionally independent of Y given Z,
denoted as

X ⊥⊥P Y | Z

if and only if

P (X | Y, Z) = P (X | Z)

Example: Representation of X2 ⊥⊥P X3 | X1 in a directed
graph

X1

y/n

X2

y/n

X3

y/n
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Chain rule - digraph

X1 X2

X3

(1)

X1 X2

X3

(2)

Factorisation (1):

P (X1, X2, X3) = P (X1 | X2, X3)P (X2 | X3)P (X3)

Other factorisation (2):

P (X1, X2, X3) = P (X2 | X1, X3)P (X1 | X3)P (X3)

⇒ different factorisations possible
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Does the chain rule help?

X1 X2

X3

P (X1, X2, X3) = P (X1 | X2, X3)P (X2 | X3)P (X3)

i.e. we need:

P (x1 | x2, x3) P (x1 | x2,¬x3)

P (¬x1 | x2, x3) P (¬x1 | x2,¬x3)

P (x1 | ¬x2, x3) P (x1 | ¬x2,¬x3)

P (¬x1 | ¬x2, x3) P (¬x1 | ¬x2,¬x3)
...

...
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Does the chain rule help?

...
...

P (x2 | x3) P (x3)

P (¬x2 | x3) P (¬x3)

P (x2 | ¬x3)

P (¬x2 | ¬x3)

So, 14 probabilities; however
P (x1 | X2, X3) = 1− P (¬x1 | X2, X3),
P (x2 | X3) = 1− P (¬x2 | X3), and P (x3) = 1− P (¬x3)

⇒ 7 probabilities required

How many did we have originally for P (X1, X2, X3)?
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Does the chain rule help?

P (x1, x2, x3) P (x1, x2,¬x3)

P (¬x1, x2, x3) P (¬x1, x2,¬x3)

P (x1,¬x2, x3) P (x1,¬x2,¬x3)

P (¬x1,¬x2, x3) P (¬x1,¬x2,¬x3)

8 required? No, because
∑

X1,X2,X3
P (X1, X2, X3) = 1

Hence, e.g.

P (x1, x2, x3) = 1−
∑

X2,X3

P (¬x1, X2, X3)

−
∑

X3

P (x1,¬x2, X3)− P (x1, x2,¬x3)
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Let’s use stochastic independence

X1 X2

X3

P (X1, X2, X3) = P (X2 | X1, X3)P (X3 | X1)P (X1)

Now assume that X2 and X3 are conditionally independent
given X1:

P (X2 | X1, X3) = P (X2 | X1)

and

P (X3 | X1, X2) = P (X3 | X1)
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Stochastic independence: does it help?

X1 X2

X3

P (X2 | X1, X3) = P (X2 | X1)

P (X1, X2, X3) = P (X2 | X1, X3)P (X3 | X1)P (X1)

= P (X2 | X1)P (X3 | X1)P (X1)

Only 5 = 2 + 2 + 1 probabilities required instead of 7
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Probabilistic inference

X3

y/n

X1

y/n

X2

y/n

X4

y/n

P (x4 | x3) = 0.4

P (x4 | ¬x3) = 0.1

P (x3 | x1, x2) = 0.3

P (x3 | ¬x1, x2) = 0.5

P (x3 | x1,¬x2) = 0.7

P (x3 | ¬x1,¬x2) = 0.9

P (x1) = 0.6

P (x2) = 0.2

Given:

Then: P (x4) = P (x4, x3) + P (x4,¬x3)

(marginalisation)

= P (x4 | x3)P (x3) + P (x4 | ¬x3)P (¬x3)

(conditioning)

=
∑

X3

P (x4 | X3)P (X3)
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Probabilistic inference

X3

y/n

X1

y/n

X2

y/n

X4

y/n

P (x4 | x3) = 0.4

P (x4 | ¬x3) = 0.1

P (x3 | x1, x2) = 0.3

P (x3 | ¬x1, x2) = 0.5

P (x3 | x1,¬x2) = 0.7

P (x3 | ¬x1,¬x2) = 0.9

P (x1) = 0.6

P (x2) = 0.2

P (X3) = ? ⇐⇒ Compute P (x3) and P (¬x3)
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Probabilistic inference

X3

y/n

X1

y/n

X2

y/n

X4

y/n

P (x4 | x3) = 0.4

P (x4 | ¬x3) = 0.1

P (x3 | x1, x2) = 0.3

P (x3 | ¬x1, x2) = 0.5

P (x3 | x1,¬x2) = 0.7

P (x3 | ¬x1,¬x2) = 0.9

P (x1) = 0.6

P (x2) = 0.2

P (x3) =
∑

X1,X2
P (x3, X1, X2)

=
∑

X1,X2
P (x3 | X1, X2)P (X1, X2)

=
∑

X1,X2
P (x3 | X1, X2)P (X1)P (X2) = 0.7

⇒ P (x4) =
∑

X3
P (x4 | X3)P (X3) = 0.4 · 0.7 + 0.1 · 0.3 = 0.31
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Popular applications of BNs

Software/Hardware troubleshooting: Microsoft, Boeing, HP

Biological modelling: gene expressions

Medical diagnosis and therapy selection: BNs are now the most

popular paradigm for medical intelligent systems

Art: orchestral music accompaniment
music.informatics.indiana.edu/∼craphael/music_plus_one/

and more . . . see, e.g.,

Bayesian Networks: A Practical Guide to Applications

Olivier Pourret (Ed.), Patrick Naïm and Bruce Marcot, Wiley, March 2008
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METIS — Fusion of uncertain information
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METIS — System
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Bayesian networks software

Some software companies in this area:

Hugin (Denmark): www.hugin.dk

Norsys (USA): www.norsys.com

AgenaRisk (UK): www.agenarisk.com

Bayesia (France): www.bayesia.com

BayesFusion (USA): www.bayesfusion.com

Some public domain software:

JavaBayes: www.cs.cmu.edu/∼javabayes

bnlearn package in R: www.bnlearn.com

SamIam: reasoning.cs.ucla.edu/samiam

Matlab BNT Toolbox: code.google.com/p/bnt
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