Bayesian networks
 Principles and Definitions

The focus today . . .

- Probability theory
- Joint probability
- Marginal probability
- Conditional probability
- Chain rule
- Bayes' rule
- Bayesian networks
- Definition
- Conditional independence

METIS - Detection of suspicious ships

Operator support for information assessment

Why Bayesian networks?

Probabilistic graphical models, such as Bayesian networks, are now the most popular uncertainty formalisms because:

- Handle noise, missing information and probabilistic relations
- Learn from data and can incorporate domain knowledge
- Offer flexible reasoning
- Have compact graphical representation (interface)
- Foundational principles: probability theory
- Engineering principles: knowledge acquisition, machine learning and statistics

General notation

- Stochastic (= statistical = random) variable: upper-case letter, e.g. X, or upper-case string, e.g. FEVER
- Values: variables can take on values, e.g. $X=x$, FEVER = yes
- Binary variables: take one of two values, e.g. $X=$ true and $X=$ false
- Discrete variables: take only one of a finite set of possible values, e.g. TEMP $\in\{$ low, medium, high $\}$
- Continuous variables: take any value from the real numbers \mathbb{R} or interval of real numbers, e.g. TEMP $\in[-50,50]$

Abbreviated notation

- Binary variables: $X=$ true as x , and $X=$ false as $\neg \mathrm{x}$
- Non-binary variables: $X=x$ as x or CITY = tokyo as tokyo
- Sets of variables: analogous to variables
- Example:

$$
\begin{aligned}
X_{1} & =x_{1} \\
X_{2} & =x_{2} \\
& \cdot \\
& \cdot \\
X_{n} & =x_{n}
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& X \\
& = \\
& X
\end{aligned} \quad=\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

Abreviated notation (cont.)

- Conjunctions: $(X=x) \wedge(Y=y)$ as $(X=x, Y=y)$
- Templates: (X, Y) means ($X=x, Y=y$), for any value x, y, i.e. the choice of the values x and y does not really matter
- Examples:
- $P(X=x, Y=y) \Leftrightarrow P(X=x \wedge Y=y)$
- $P(X, Y) \Leftrightarrow P(X=x, Y=y)$, for any value x, y
- $P(X \mid Y) \Leftrightarrow P(X=x \mid Y=y)$, for any value x, y
- $\sum_{X} P(X)=P(\mathrm{x})+P(\neg \mathrm{x})$, where X is binary

Probability theory

- Probability distribution P : attaches a number in (closed) interval [0,1] to Boolean expressions
- Boolean algebra \mathbb{B} (for two variables RAIN and HAPPY):

T (true),
rain, \neg rain,
happy, ᄀhappy,
rain \wedge happy,..., rain \wedge happy $\wedge \neg$ happy,...,
\neg rain \wedge happy,..., rain \vee happy,
\perp (false)
such that:

- $\perp \leq$ rain, rain \leq (rain \vee happy), ... (in general $\perp \leq x$ for each Boolean expression $x \in \mathbb{B}$);
- $x \leq \mathrm{T}$ for each Boolean expression $x \in \mathbb{B}$

Probability distribution

- A probability distribution P is defined as a function $P: \mathbb{B} \rightarrow[0,1]$, such that:
- $P(\perp)=0$
- $P(\mathrm{~T})=1$
- $P(x \vee y)=P(x)+P(y)$, if $x \wedge y=\perp$ with $x, y \in \mathbb{B}$
- Examples:
- $P($ rain \vee happy $)=P($ rain $)+P($ happy $)$, as rain \wedge happy $=\perp$ (why? Because I define it that way)
- $P($ rain \wedge happy $)=P(\perp)=0$
- $P(\neg$ rain \vee rain $)=P(\neg$ rain $)+P($ rain $)=P(T)=1 \Rightarrow$ $P(\neg$ rain $)=1-P($ rain $)$
- $0 \leq P($ rain $) \leq 1$

Probability distribution (cont.)

- Boolean algebras \Leftrightarrow sets:

$$
\begin{array}{ll}
\text { - } T \Leftrightarrow \Omega & \text { - }(x \vee y) \Leftrightarrow(X \cup Y) \\
\text { - } \perp \Leftrightarrow \varnothing & \text { - }(x \wedge y) \Leftrightarrow(X \cap Y) \\
\text { - } x \Leftrightarrow X & \text { - } x \leq(x \vee y) \Leftrightarrow X \subseteq(X \cup Y) \\
\text { - } \neg x \Leftrightarrow \bar{X} &
\end{array}
$$

with $\Leftrightarrow 1-1$ correspondence, e.g.

$$
P(\overline{\text { Rain }})=1-P(\text { Rain })
$$

Joint probability distribution

Let X and Y be random variables with domains

$$
\operatorname{dom}(X)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \text { and } \operatorname{dom}(Y)=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\} .
$$

The product set

$$
\operatorname{dom}(X) \times \operatorname{dom}(Y)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \times\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}
$$

is made into a probability space by defining

$$
P\left(X=x_{i} \wedge Y=y_{j}\right)=f\left(x_{i}, y_{j}\right)
$$

where f is a joint probability mass function of x and y

Marginalisation

Suppose the joint probability distribution of two variables X and Y is given; then

$$
\begin{aligned}
P(x)=P(X=x) & =P(x \wedge \top) \\
& =P(x \wedge(y \vee \neg y)) \\
& =P((x \wedge y) \vee(x \wedge \neg y)) \\
& =P(x \wedge y)+P(x \wedge \neg y)
\end{aligned}
$$

since $P(a \vee b)=P(a)+P(b)$, if $a \wedge b=\perp$

$$
\Longrightarrow P(x)=\sum_{Y} P(x, Y)
$$

also known as marginal probability function of X

Example

- Assume that X_{1}, X_{2}, X_{3} and X_{4} are binary variables. Then $P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$:

$$
\begin{aligned}
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =0.1 \\
P\left(x_{1}, \neg x_{2}, x_{3}, x_{4}\right) & =0.04 \\
P\left(x_{1}, x_{2}, \neg x_{3}, x_{4}\right) & =0.03 \\
P\left(x_{1}, x_{2}, x_{3}, \neg x_{4}\right) & =0.1 \\
P\left(\neg x_{1}, x_{2}, x_{3}, x_{4}\right) & =0.0 \\
P\left(\neg x_{1}, \neg x_{2}, x_{3}, x_{4}\right) & =0.2 \\
P\left(\neg x_{1}, x_{2}, \neg x_{3}, x_{4}\right) & =0.08 \\
P\left(\neg x_{1}, x_{2}, x_{3}, \neg x_{4}\right) & =0.1
\end{aligned}
$$

$$
\begin{aligned}
P\left(x_{1}, \neg x_{2}, \neg x_{3}, x_{4}\right) & =0.015 \\
P\left(x_{1}, \neg x_{2}, x_{3}, \neg x_{4}\right) & =0.1 \\
P\left(x_{1}, x_{2}, \neg x_{3}, \neg x_{4}\right) & =0.004 \\
P\left(\neg x_{1}, \neg x_{2}, \neg x_{3}, x_{4}\right) & =0.005 \\
P\left(\neg x_{1}, \neg x_{2}, x_{3}, \neg x_{4}\right) & =0.01 \\
P\left(\neg x_{1}, x_{2}, \neg x_{3}, \neg x_{4}\right) & =0.01 \\
P\left(x_{1}, \neg x_{2}, \neg x_{3}, \neg x_{4}\right) & =0.006 \\
P\left(\neg x_{1}, \neg x_{2}, \neg x_{3}, \neg x_{4}\right) & =0.2
\end{aligned}
$$

- $\sum_{X_{1}, X_{2}, X_{3}, X_{4}} P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=1$
- Marginalisation:

$$
P\left(x_{4}\right)=\text { ? }
$$

Example

- Assume that X_{1}, X_{2}, X_{3} and X_{4} are binary variables. Then $P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$:

$P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$	$=\mathbf{0 . 1}$	$P\left(x_{1}, \neg x_{2}, \neg x_{3}, x_{4}\right)$	$=0.015$
$P\left(x_{1}, \neg x_{2}, x_{3}, x_{4}\right)$	$=\mathbf{0 . 0 4}$	$P\left(x_{1}, \neg x_{2}, x_{3}, \neg x_{4}\right)$	$=0.1$
$P\left(x_{1}, x_{2}, \neg x_{3}, x_{4}\right)$	$=\mathbf{0 . 0 3}$	$P\left(x_{1}, x_{2}, \neg x_{3}, \neg x_{4}\right)$	$=0.004$
$P\left(x_{1}, x_{2}, x_{3}, \neg x_{4}\right)$	$=0.1$	$P\left(\neg x_{1}, \neg x_{2}, \neg x_{3}, x_{4}\right)$	$=0.005$
$P\left(\neg x_{1}, x_{2}, x_{3}, x_{4}\right)$	$=\mathbf{0 . 0}$	$P\left(\neg x_{1}, \neg x_{2}, x_{3}, \neg x_{4}\right)$	$=0.01$
$P\left(\neg x_{1}, \neg x_{2}, x_{3}, x_{4}\right)$	$=\mathbf{0 . 2}$	$P\left(\neg x_{1}, x_{2}, \neg x_{3}, \neg x_{4}\right)$	$=0.01$
$P\left(\neg x_{1}, x_{2}, \neg x_{3}, x_{4}\right)$	$=\mathbf{0 . 0 8}$	$P\left(x_{1}, \neg x_{2}, \neg x_{3}, \neg x_{4}\right)$	$=0.006$
$P\left(\neg x_{1}, x_{2}, x_{3}, \neg x_{4}\right)$	$=0.1$	$P\left(\neg x_{1}, \neg x_{2}, \neg x_{3}, \neg x_{4}\right)$	$=0.2$

- $\sum_{X_{1}, X_{2}, X_{3}, X_{4}} P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=1$
- Marginalisation:

$$
P\left(x_{4}\right)=\sum_{X_{1}, X_{2}, X_{3}} P\left(X_{1}, X_{2}, X_{3}, x_{4}\right)=0.47
$$

Conditional probability

(Example: flu and fever)

- $P(f l u \wedge f e v e r)$: chance of flu and fever at the same time
- $P(f l u \mid$ fever $)$: chance of flu knowing that the person already has fever (conditional probability)
- Definition:

$$
\begin{aligned}
P(\text { flu } \mid \text { fever })= & \frac{P(\text { flu } \wedge \text { fever })}{P(\text { fever })} \\
& \nearrow \\
& \text { adjust } P(\text { flu } \wedge \text { fever }) \text {, so } \\
& \text { that uncertainty in 'fever' } \\
& \text { is removed }
\end{aligned}
$$

Reversal of chances

- $P($ flu \mid fever $)$ is usually unknown:

flu	$P($ flu \mid fever $)$	fever
h (hypothesis)		(evidence)

- Known is:

$$
\begin{aligned}
& P(\text { fever } \mid \text { flu })=0.9 \\
& P(\text { flu })=0.05 \\
& P(\text { fever })=0.09
\end{aligned}
$$

$$
\begin{array}{cl}
\text { flu } \longrightarrow \text { fever } \\
P(\text { flu })=0.05 & P(\text { feverer } \mid \text { flu })=0.09
\end{array}
$$

Bayes' rule

"...a method by which we might judge concerning the probability that an event has to happen, in given circumstances, upon supposition that we know nothing concerning it but that, under the same circumstances, it has happened a certain number of times, and failed a certain other number of times."

Richard Price
Introducing "Essay towards solving a problem in the doctrine of chances" by Thomas Bayes to the Royal Society of London in 1764

Bayes' rule - Example

- Bayes' rule - reversal of chances:

$$
\begin{array}{ll}
P(e \mid h) & P(\text { fever } \mid \text { flu })=0.9 \\
P(h) & P(\text { flu })=0.05 \\
P(e) & P(\text { fever })=0.09
\end{array}
$$

$$
\begin{aligned}
P(\text { flu } \mid \text { fever }) & =\frac{P(\text { fever } \mid \text { flu }) P(\text { flu })}{P(\text { fever })} \\
& =0.9 \cdot 0.05 / 0.09=0.5
\end{aligned}
$$

- Definition of Bayes' rule (the 'chance reverter'):

$$
P(h \mid e)=\frac{P(e \mid h) P(h)}{P(e)}
$$

Chain rule (derivation)

Definition of conditional probability:

$$
\begin{gathered}
P\left(X_{1} \mid X_{2}, \ldots, X_{n}\right)=\frac{P\left(X_{1}, X_{2}, \ldots, X_{n}\right)}{P\left(X_{2}, \ldots, X_{n}\right)} \\
\Rightarrow P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=P\left(X_{1} \mid X_{2}, \ldots, X_{n}\right) P\left(X_{2}, \ldots, X_{n}\right)
\end{gathered}
$$

Furthermore,

$$
\begin{aligned}
P\left(X_{2}, \ldots, X_{n}\right) & =P\left(X_{2} \mid X_{3}, \ldots, X_{n}\right) P\left(X_{3}, \ldots, X_{n}\right) \\
\vdots & \vdots \\
P\left(X_{n-1}, X_{n}\right) & =P\left(X_{n-1} \mid X_{n}\right) P\left(X_{n}\right) \\
P\left(X_{n}\right) & =P\left(X_{n}\right)
\end{aligned}
$$

Chain rule (definition)

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)= & P\left(X_{1} \mid X_{2}, \ldots, X_{n}\right) \\
& P\left(X_{2} \mid X_{3}, \ldots, X_{n}\right) \\
& P\left(X_{3} \mid X_{4}, \ldots, X_{n}\right) \\
& \vdots \\
& P\left(X_{n-1} \mid X_{n}\right) \\
& P\left(X_{n}\right) \\
= & \prod_{i=1}^{n-1} P\left(X_{i} \mid X_{i+1}, \ldots, X_{n}\right) P\left(X_{n}\right)
\end{aligned}
$$

Definition Bayesian network (BN)

A Bayesian network \mathcal{B} is a pair $\mathcal{B}=(G, P)$, where:

- $G=(V(G), A(G))$ is an acyclic directed graph, with
- $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, a set of vertices (nodes)
- $A(G) \subseteq V(G) \times V(G)$ a set of arcs
- $P: \mathbb{B}\left(X_{V(G)}\right) \rightarrow[0,1]$ is a joint probability distribution, such that

$$
P\left(X_{V(G)}\right)=\prod_{v \in V(G))} P\left(X_{v} \mid X_{\pi(v)}\right)
$$

where $\pi(v)$ denotes the set of immediate ancestors (parents) of vertex v in G

- Notational convenience: $X_{v} \approx v$

Example of a Bayesian network

Bayesian network $\mathcal{B}=(G, P)$, where $G=(V(G), A(G))$, with

- Set of vertices: $V(G)=\left\{X_{1}, X_{2}, X_{3}\right\}$
- Set of arcs: $A(G)=\left\{\left(X_{1}, X_{2}\right),\left(X_{1}, X_{3}\right)\right\}$
- Joint probability distribution:

$$
P\left(X_{1}, X_{2}, X_{3}\right)=P\left(X_{1}\right) \cdot P\left(X_{2} \mid X_{1}\right) \cdot P\left(X_{3} \mid X_{1}\right)
$$

Example (cont.)

$$
P\left(X_{1}, X_{2}, X_{3}\right)=P\left(X_{1}\right) \cdot P\left(X_{2} \mid X_{1}\right) \cdot P\left(X_{3} \mid X_{1}\right)
$$

with for example:

$$
\begin{array}{rlrl}
P\left(x_{1}\right) & =0.7 & \\
P\left(\neg x_{1}\right) & =0.3=1-P\left(x_{1}\right) & \\
P\left(x_{2} \mid x_{1}\right) & =0.6 & P\left(x_{3} \mid x_{1}\right) & =0.1 \\
P\left(\neg x_{2} \mid x_{1}\right) & =0.4 & P\left(\neg x_{3} \mid x_{1}\right) & =0.9 \\
P\left(x_{2} \mid \neg x_{1}\right) & =0.1 & P\left(x_{3} \mid \neg x_{1}\right) & =0.8 \\
P\left(\neg x_{2} \mid \neg x_{1}\right) & =0.9 & P\left(\neg x_{3} \mid \neg x_{1}\right) & =0.2
\end{array}
$$

Conditional independence relation

Let X, Y, Z be sets of variables, such that $X, Y, Z \subseteq V(G)$, then X is called conditionally independent of Y given Z, denoted as

$$
X \Perp_{P} Y \mid Z
$$

if and only if

$$
P(X \mid Y, Z)=P(X \mid Z)
$$

Example: Representation of $X_{2} \Perp_{P} X_{3} \mid X_{1}$ in a directed graph

Chain rule - digraph

Factorisation (1):

$$
P\left(X_{1}, X_{2}, X_{3}\right)=P\left(X_{1} \mid X_{2}, X_{3}\right) P\left(X_{2} \mid X_{3}\right) P\left(X_{3}\right)
$$

Other factorisation (2):

$$
P\left(X_{1}, X_{2}, X_{3}\right)=P\left(X_{2} \mid X_{1}, X_{3}\right) P\left(X_{1} \mid X_{3}\right) P\left(X_{3}\right)
$$

\Rightarrow different factorisations possible

Does the chain rule help?

$$
P\left(X_{1}, X_{2}, X_{3}\right)=P\left(X_{1} \mid X_{2}, X_{3}\right) P\left(X_{2} \mid X_{3}\right) P\left(X_{3}\right)
$$

i.e. we need:

$$
\begin{array}{rr}
P\left(x_{1} \mid x_{2}, x_{3}\right) & P\left(x_{1} \mid x_{2}, \neg x_{3}\right) \\
P\left(\neg x_{1} \mid x_{2}, x_{3}\right) & P\left(\neg x_{1} \mid x_{2}, \neg x_{3}\right) \\
P\left(x_{1} \mid \neg x_{2}, x_{3}\right) & P\left(x_{1} \mid \neg x_{2}, \neg x_{3}\right) \\
P\left(\neg x_{1} \mid \neg x_{2}, x_{3}\right) & P\left(\neg x_{1} \mid \neg x_{2}, \neg x_{3}\right)
\end{array}
$$

Does the chain rule help?

$$
\begin{array}{rc}
P\left(x_{2} \mid x_{3}\right) & P\left(x_{3}\right) \\
P\left(\neg x_{2} \mid x_{3}\right) & P\left(\neg x_{3}\right) \\
P\left(x_{2} \mid \neg x_{3}\right) & \\
P\left(\neg x_{2} \mid \neg x_{3}\right) &
\end{array}
$$

So, 14 probabilities; however
$P\left(x_{1} \mid X_{2}, X_{3}\right)=1-P\left(\neg x_{1} \mid X_{2}, X_{3}\right)$,
$P\left(x_{2} \mid X_{3}\right)=1-P\left(\neg x_{2} \mid X_{3}\right)$, and $P\left(x_{3}\right)=1-P\left(\neg x_{3}\right)$
$\Rightarrow 7$ probabilities required
How many did we have originally for $P\left(X_{1}, X_{2}, X_{3}\right)$?

Does the chain rule help?

$$
\begin{array}{rc}
P\left(x_{1}, x_{2}, x_{3}\right) & P\left(x_{1}, x_{2}, \neg x_{3}\right) \\
P\left(\neg x_{1}, x_{2}, x_{3}\right) & P\left(\neg x_{1}, x_{2}, \neg x_{3}\right) \\
P\left(x_{1}, \neg x_{2}, x_{3}\right) & P\left(x_{1}, \neg x_{2}, \neg x_{3}\right) \\
P\left(\neg x_{1}, \neg x_{2}, x_{3}\right) & P\left(\neg x_{1}, \neg x_{2}, \neg x_{3}\right)
\end{array}
$$

8 required? No, because $\sum_{X_{1}, X_{2}, X_{3}} P\left(X_{1}, X_{2}, X_{3}\right)=1$ Hence, e.g.

$$
\begin{aligned}
P\left(x_{1}, x_{2}, x_{3}\right)= & 1-\sum_{X_{2}, X_{3}} P\left(\neg x_{1}, X_{2}, X_{3}\right) \\
& -\sum_{X_{3}} P\left(x_{1}, \neg x_{2}, X_{3}\right)-P\left(x_{1}, x_{2}, \neg x_{3}\right)
\end{aligned}
$$

Let's use stochastic independence

$$
P\left(X_{1}, X_{2}, X_{3}\right)=P\left(X_{2} \mid X_{1}, X_{3}\right) P\left(X_{3} \mid X_{1}\right) P\left(X_{1}\right)
$$

Now assume that X_{2} and X_{3} are conditionally independent given X_{1} :

$$
P\left(X_{2} \mid X_{1}, X_{3}\right)=P\left(X_{2} \mid X_{1}\right)
$$

and

$$
P\left(X_{3} \mid X_{1}, X_{2}\right)=P\left(X_{3} \mid X_{1}\right)
$$

Stochastic independence: does it help?

$$
P\left(X_{2} \mid X_{1}, X_{3}\right)=P\left(X_{2} \mid X_{1}\right)
$$

$$
\begin{aligned}
P\left(X_{1}, X_{2}, X_{3}\right) & =P\left(X_{2} \mid X_{1}, X_{3}\right) P\left(X_{3} \mid X_{1}\right) P\left(X_{1}\right) \\
& =P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}\right) P\left(X_{1}\right)
\end{aligned}
$$

Only $5=2+2+1$ probabilities required instead of 7

Probabilistic inference

Given:

$$
\left.\begin{array}{rll}
X_{1} \\
\mathrm{y} / \mathrm{n}
\end{array} \quad \begin{array}{ll}
X_{2} & P\left(x_{4} \mid x_{3}\right)=0.4 \\
\mathrm{y} / \mathrm{n}
\end{array}\right)
$$

Then: $P\left(x_{4}\right)=P\left(x_{4}, x_{3}\right)+P\left(x_{4}, \neg x_{3}\right)$
(marginalisation)
$=P\left(x_{4} \mid x_{3}\right) P\left(x_{3}\right)+P\left(x_{4} \mid \neg x_{3}\right) P\left(\neg x_{3}\right)$
(conditioning)
$=\sum_{X_{3}} P\left(x_{4} \mid X_{3}\right) P\left(X_{3}\right)$

Probabilistic inference

$$
\begin{aligned}
& P\left(x_{4} \mid x_{3}\right)=0.4 \\
& P\left(x_{4} \mid \neg x_{3}\right)=0.1 \\
& P\left(x_{3} \mid x_{1}, x_{2}\right)=0.3 \\
& P\left(x_{3} \mid \neg x_{1}, x_{2}\right)=0.5 \\
& P\left(x_{3} \mid x_{1}, \neg x_{2}\right)=0.7 \\
& P\left(x_{3} \mid \neg x_{1}, \neg x_{2}\right)=0.9 \\
& P\left(x_{1}\right)=0.6 \\
& P\left(x_{2}\right)=0.2
\end{aligned}
$$

$$
P\left(X_{3}\right)=?
$$

Compute $P\left(x_{3}\right)$ and $P\left(\neg x_{3}\right)$

Probabilistic inference

$$
\begin{gathered}
\text { (} \begin{array}{c}
X_{1} \\
y / \mathrm{n}
\end{array} \begin{array}{l}
P\left(x_{4} \mid x_{3}\right)=0.4 \\
P\left(x_{4} \mid \neg x_{3}\right)=0.1 \\
\mathrm{y} / \mathrm{n}
\end{array} \\
P\left(x_{3} \mid x_{1}, x_{2}\right)=0.3 \\
P\left(x_{3} \mid \neg x_{1}, x_{2}\right)=0.5 \\
P\left(x_{3} \mid x_{1}, \neg x_{2}\right)=0.7 \\
P\left(x_{3} \mid \neg x_{1}, \neg x_{2}\right)=0.9 \\
P\left(x_{1}\right)=0.6 \\
P\left(x_{2}\right)=0.2
\end{gathered}
$$

Popular applications of BNs

- Software/Hardware troubleshooting: Microsoft, Boeing, HP
- Biological modelling: gene expressions
- Medical diagnosis and therapy selection: BNs are now the most popular paradigm for medical intelligent systems
- Art: orchestral music accompaniment

```
music.informatics.indiana.edu/~craphael/music_plus_one/
```

- and more ... see, e.g.,

Bayesian Networks: A Practical Guide to Applications
Olivier Pourret (Ed.), Patrick Naïm and Bruce Marcot, Wiley, March 2008

METIS - Fusion of uncertain information

Automated assessment of information

METIS — System

Bayesian networks software

- Some software companies in this area:
- Hugin (Denmark): www.hugin.dk
- Norsys (USA): www.norsys.com
- AgenaRisk (UK): www. agenarisk.com
- Bayesia (France): www.bayesia.com
- BayesFusion (USA): www.bayesfusion.com
- Some public domain software:
- JavaBayes: www.cs.cmu.edu/~javabayes
- bnlearn package in R: www.bnlearn.com
- Samlam: reasoning.cs.ucla.edu/samiam
- Matlab BNT Toolbox: code.google.com/p/bnt

