Bayesian Networks
 Probabilistic Graphical Models in AI

Introduction

Peter Lucas
peterl@cs.ru.nl

LIACS
Leiden University

Course Organisation

- Lecturer: Peter Lucas
- Where I am located: Room 123, Snellius
- Structure of course:
- Lectures
- Seminar: group research, individual scientific paper, and discussions
- Practical assignment: develop your own Bayesian network; experiment with learning (structure and classifiers)
- Assessment:
- Exam: 35\%; seminar: 35\% (or Exam only: 60\%)
- Practical assignment 1 and 2: 15\% each (or 20\% each when no seminar)
- Course information: www.cs.ru.n//~peter//BN

Course Aims

- Develop complete understanding of basic probability theory (theory)
- Knowledge and understanding of differences and similarities between various probabilistic graphical models (theory)
- Know how to build Bayesian networks from expert knowledge (theory and practice)
- Being familiar with basic inference algorithms (theory and practice)
- Understand the basic issues of learning Bayesian networks from data (theory and practice)
- Be familiar with typical applications (practice)
- Critical appraisal of a specialised topic (theory, possibly practice)

Literature

- Compulsory:
- K.B. Korb and A.E. Nicholson, Bayesian Artificial Intelligence, Chapman \& Hall, Boca Raton, 2004 or 2010
- Background:
- R.G. Cowell, A.P. Dawid, S.L. Lauritzen and D.J. Spiegelhalter, Probabilistic Networks and Expert Systems, Springer, New York, 1999
- F.V. Jensen and T. Nielsen, Bayesian Networks and Decision Graphs, Springer, New York, 2007
- D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques, MIT Press, Cambridge, MA, 2009
- Various research papers on the mentioned topics

Uncertainty in Daily Life

- Empirical evidence:
"If symptoms of fever, shortness of breath (dyspnoea), and coughing are present, and the patient has recently visited China, then the patient has probably SARS"

- Subjective belief:
"The Rutte government will resign soon (and after the elections will be likely replaced by a VVD, D66, GL, and PvdA government)"
- Temporal dimension:
"There is more than 60% chance that the Dutch economy will fully recover in the next two years"

Uncertainty Representation

- Methods for dealing with uncertainty are not new:
- 17th century: Fermat, Pascal, Huygens, Leibniz, Bernoulli
- 18th century: Laplace, De Moivre, Bayes
- 19th century: Gauss, Boole
- Most important research question in early AI (1970-1987):
- How to incorporate uncertainty reasoning in logical deduction?
- Again an important research question in modern AI (e.g. Markov logic)

Early AI Methods of Uncertainty

- Rule-based uncertainty representation:
(fever \wedge dyspnoea) \Rightarrow SARS $_{\mathrm{CF}=0.4}$
- Uncertainty calculus (certainty-factor (CF) model, subjective Bayesian method):
- $\mathrm{CF}($ fever,$B)=0.6 ; \mathrm{CF}$ (dyspnoea, $B)=1$ (B is background knowledge)
- Combination functions:

CF (SARS, $\{$ fever, dyspnoea $\} \cup B$)
$=0.4 \cdot \max \{0, \min \{\mathrm{CF}($ fever,$B), \mathrm{CF}($ dyspnoea,$B)\}\}$
$=0.4 \cdot \max \{0, \min \{0.6,1\}\}=0.24$

However ...

$$
(\text { fever } \wedge d y s p n o e a) \Rightarrow \mathrm{SARS}_{\mathrm{CF}=0.4}
$$

- How likely is the occurrence of fever or dyspnoea given that the patient has SARS?
- How likely is the occurrence of fever or dyspnoea in the absence of SARS?
- How likely is the presence of SARS when just fever is present?
- How likely is no SARS when just fever is present?

Bayesian Networks

$P(\mathrm{CH}, \mathrm{FL}, \mathrm{RS}, \mathrm{DY}, \mathrm{FE}, \mathrm{TEMP})$

$$
P(\mathrm{FL}=y)=0.1
$$

$$
\begin{aligned}
& P(\mathrm{FE}=y \mid \mathrm{FL}=y, \mathrm{RS}=y)=0.95 \\
& P(\mathrm{FE}=y \mid \mathrm{FL}=n, \mathrm{RS}=y)=0.80 \\
& P(\mathrm{FE}=y \mid \mathrm{FL}=y, \mathrm{RS}=n)=0.88 \\
& P(\mathrm{FE}=y \mid \mathrm{FL}=n, \mathrm{RS}=n)=0.001
\end{aligned}
$$

Reasoning: Evidence Propagation

- Nothing known:

- Temperature $>37.5^{\circ} \mathrm{C}$:

Reasoning: Evidence Propagation

- Temperature $>37.5^{\circ} \mathrm{C}$:

- I just returned from China:

Independence Representation in Graphs

The set of variables X is conditionally independent of the set Z given the set Y, notation $X \Perp Z \mid Y$, iff

$$
P(X \mid Y, Z)=P(X \mid Y)
$$

Meaning:
"If we know Y then Z does not have any (extra) effect on our knowledge concerning X (and thus can be omitted)"

Example

If we know that John has fever, then also knowing that he has a high body temperature has no effect on our knowledge about flu

Find the Independences

Examples:

- FLU \Perp VisitToChina $\mid \varnothing$
- FLU \Perp SARS $\mid \varnothing$
- FLU $\not \Perp$ SARS \| FEVER, also FLU $\not \Perp$ SARS \| TEMP
- SARS \Perp TEMP | FEVER
- VisitToChina \Perp DYSPNOEA|SARS

Probabilistic Reasoning

- Interested in conditional probability distributions:

$$
P\left(X_{W} \mid \mathcal{E}\right)=P^{\mathcal{E}}\left(X_{W}\right)
$$

with W set of vertices, for (possibly empty) evidence \mathcal{E} (instantiated variables)

Examples

$$
\begin{gathered}
P(\mathrm{FLU}=\text { yes } \mid \mathrm{TEMP}<37.5) \\
P(\mathrm{FLU}=y e s, \text { VisitToAsia }=\text { yes } \mid \mathrm{TEMP}<37.5)
\end{gathered}
$$

- Tendency to focus on conditional probability distributions of single variables

Probabilistic Reasoning (cont)

- Joint probability distribution $P(X)$:
$P(X)=P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
- marginalisation:

$$
P(Y)=\sum_{X \backslash Y} P(X)=\sum_{X \backslash Y} \prod_{v \in V} P\left(X_{v} \mid X_{\pi(v)}\right)
$$

- conditional probabilities and Bayes' rule:

$$
P(Y, Z \mid X)=\frac{P(X \mid Y, Z) P(Y, Z)}{P(X)}
$$

- Many efficient Bayesian reasoning algorithms exist

Naive Probabilistic Reasoning: Evidence

$$
\begin{aligned}
& X_{1} \begin{array}{l}
P\left(x_{4} \mid x_{3}\right)=0.4 \\
P\left(x_{4} \mid \neg x_{3}\right)=0.1 \\
P\left(x_{3} \mid x_{1}, x_{2}\right)=0.3 \\
P\left(x_{3} \mid \neg x_{1}, x_{2}\right)=0.5 \\
P\left(x_{3} \mid x_{1}, \neg x_{2}\right)=0.7 \\
P\left(x_{3} \mid \neg x_{1}, \neg x_{2}\right)=0.9 \\
P\left(x_{1}\right)=0.6 \\
P\left(x_{2}\right)=0.2
\end{array} \\
& P^{\mathcal{E}}\left(x_{2}\right)=P\left(x_{2} \mid x_{4}\right)=\frac{P\left(x_{4} \mid x_{2}\right) P\left(x_{2}\right)}{P\left(x_{4}\right)} \text { (Bayes' rule) } \\
& =\frac{\sum_{X_{3}} P\left(x_{4} \mid X_{3}\right) \sum_{X_{1}} P\left(X_{3} \mid X_{1}, x_{2}\right) P\left(X_{1}\right) P\left(x_{2}\right)}{\sum_{X_{3}} P\left(x_{4} \mid X_{3}\right) \sum_{X_{1}, X_{2}} P\left(X_{3} \mid X_{1}, X_{2}\right) P\left(X_{1}\right) P\left(X_{2}\right)} \approx 0.14
\end{aligned}
$$

Judea Pearl's Algorithm

- Object-oriented approach: vertices are objects, which have local information and carry out local computations
- Updating of probability distribution by message passing: arcs are communication channels

Data Fusion Lemma

Data fusion:

$$
\begin{aligned}
P^{\mathcal{E}}\left(X_{v_{i}}\right) & =P\left(X_{v_{i}} \mid \mathcal{E}\right) \\
& =\alpha \cdot \text { causal info for } X_{v_{i}} \cdot \text { diagnostic info for } X_{v_{i}} \\
& =\alpha \cdot \pi\left(v_{i}\right) \cdot \lambda\left(v_{i}\right)
\end{aligned}
$$

where:

- $\mathcal{E}=\mathcal{E}_{v_{i}}^{+} \cup \mathcal{E}_{v_{i}}^{-}$: evidence
- α : normalisation constant

Problem Solving

Bayesian networks are declarative, i.e.:

- mathematical basis
- problem to be solved determined by (1) entered evidence \mathcal{E} (may include decisions); (2) given hypothesis $H: P(H \mid \mathcal{E})$ (cf. $\mathrm{KB} \wedge H \vDash \mathcal{E}$)
Examples:
- Description of populations
- Maximum a Posteriori (MAP) Assignment for classification and diagnosis: $D=\arg \max _{H} P(H \mid \mathcal{E})$
- Temporal reasoning, prediction, what-if scenarios
- Decision-making based on decision theory $\operatorname{MEU}(D \mid \mathcal{E})=\max _{d \in D} \sum_{x} u(x) P(x \mid d, \mathcal{E})$

Decision Networks

Markov Networks

- Structure of a joint probability distribution P can also be described by undirected graphs (instead of directed graphs as in Bayesian networks)

- Together with $P(V)=P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}\right)$: Markov network
- Marginalisation (example):

$$
P\left(\neg x_{2}\right)=\sum_{X_{1}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}} P\left(X_{1}, \neg x_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}\right)
$$

Manual Construction

Qualitative modelling:

People become colonised by bacteria when entering a hospital, which may give rise to infection

Bayesian-network Modelling

Qualitative

 causal modellingCause \rightarrow Effect

Quantitative
interaction modelling

$$
P\left(\operatorname{Inf} \mid \mathrm{BR}_{A}, \mathrm{BR}_{B}, \mathrm{BR}_{C}\right)
$$

Inf	BR_{A}									
	t				f					
	BR_{B}				BR_{B}					
			$\begin{gathered} f \\ \mathrm{BR}_{C} \end{gathered}$		t		f			
	t	f			t	f	t	f	t	f
t	0.8	0.6	0.5	0.3	0.4	0.2	0.3	0.1		
f	0.2	0.4	0.5	0.7	0.6	0.8	0.7	0.9		

Example BN: non-Hodgkin Lymphoma

$$
2
$$

Bayesian Network Learning

Bayesian network $\mathcal{B}=(G, P)$, with

- digraph $G=(V(G), A(G))$, and
- probability distribution P

Learning Bayesian Networks

Problems:

- for many BNs too many probabilities have to be assessed
- complex BNs do not necessarily yield better classifiers
- complex BNs may yield better estimates of a probability distribution

Solution:

- use simple probabilistic models for classification:
- naive (independent) form BN
- Tree-Augmented Bayesian Network (TAN)
- Forest-Augmented Bayesian Network (FAN)
- use background knowledge and clever heuristics

Naive (independent) form $\mathbf{B N}$

- C is a class variable
- The evidence variables E_{i} in the evidence $\mathcal{E} \subseteq\left\{E_{1}, \ldots, E_{m}\right\}$ are conditionally independent given the class variable C

This yields: $P(C \mid \mathcal{E})=\frac{P(\mathcal{E} \mid C) P(C)}{P(\mathcal{E})}=\frac{\prod_{E \in \mathcal{E}} P(E \mid C) P(C)}{\sum_{C} \prod_{E \in \mathcal{E}} P(E \mid C) P(C)}$
Classifier: $c_{\text {max }}=\arg \max _{C} P(C \mid \mathcal{E})$

Learning Structure from Data

Given the following dataset D :

Student	Gender	IQ	High Mark for Maths
1	male	low	no
2	female	average	yes
3	male	high	yes
4	female	high	yes

and the following Bayesian networks:

Which one is the best?

Being Bayesian about Bayesian Networks

Bayesian statistics: inherent uncertainty in parameters and exploitation of data to update knowledge:

- Uncertain parameters:

Probability distribution $P(X \mid \Theta)$, with Θ uncertain parameters with probability density $p(\Theta)$

- Assume the Bayesian network structure G comes from a probability distribution, based on data D :

$$
P(G \mid D)
$$

Research Issues

Modelling:

- To determine the structure of a network
- Generalisation of networks using logics (e.g. Markov logic networks)

Learning:

- Structure learning: determine the 'best' graph topology
- Parameter learning: determine the 'best' probability distribution (discrete or continuous)
Inference: increase speed, reduce memory requirements
\Rightarrow you can contribute too \cdots

