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Course Organisation

Lecturer: Peter Lucas

Where I am located: Room 123, Snellius

Structure of course:

Lectures

Seminar: group research, individual scientific paper,
and discussions

Practical assignment: develop your own Bayesian
network; experiment with learning (structure and
classifiers)

Assessment:

Exam: 35%; seminar: 35% (or Exam only: 60%)

Practical assignment 1 and 2: 15% each (or 20%
each when no seminar)

Course information: www.cs.ru.nl/∼peterl/BN
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Course Aims

Develop complete understanding of basic probability
theory (theory)

Knowledge and understanding of differences and
similarities between various probabilistic graphical
models (theory)

Know how to build Bayesian networks from expert
knowledge (theory and practice)

Being familiar with basic inference algorithms (theory
and practice)

Understand the basic issues of learning Bayesian
networks from data (theory and practice)

Be familiar with typical applications (practice)

Critical appraisal of a specialised topic (theory, possibly
practice)
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Literature

Compulsory:

K.B. Korb and A.E. Nicholson, Bayesian Artificial
Intelligence, Chapman & Hall, Boca Raton, 2004 or
2010

Background:

R.G. Cowell, A.P. Dawid, S.L. Lauritzen and D.J.
Spiegelhalter, Probabilistic Networks and Expert
Systems, Springer, New York, 1999

F.V. Jensen and T. Nielsen, Bayesian Networks and
Decision Graphs, Springer, New York, 2007

D. Koller and N. Friedman, Probabilistic Graphical
Models: Principles and Techniques, MIT Press,
Cambridge, MA, 2009

Various research papers on the mentioned topics
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Uncertainty in Daily Life

Empirical evidence:

“If symptoms of fever, shortness of breath
(dyspnoea), and coughing are present,
and the patient has recently visited China,
then the patient has probably SARS”

Subjective belief:

“The Rutte government will resign soon (and after
the elections will be likely replaced by a VVD,
D66, GL, and PvdA government)”

Temporal dimension:

“There is more than 60% chance that the Dutch
economy will fully recover in the next two years”
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Uncertainty Representation

Methods for dealing with uncertainty are not new:

17th century: Fermat, Pascal, Huygens, Leibniz,
Bernoulli

18th century: Laplace, De Moivre, Bayes

19th century: Gauss, Boole

Most important research question in early AI
(1970–1987):

How to incorporate uncertainty reasoning in logical
deduction?

Again an important research question in modern AI
(e.g. Markov logic)
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Early AI Methods of Uncertainty

Rule-based uncertainty representation:

(fever ∧ dyspnoea) ⇒ SARSCF=0.4

Uncertainty calculus (certainty-factor (CF) model,
subjective Bayesian method):

CF(fever, B) = 0.6; CF(dyspnoea, B) = 1
(B is background knowledge)

Combination functions:

CF(SARS, {fever, dyspnoea} ∪ B)
= 0.4 ·max{0,min{CF(fever, B),CF(dyspnoea, B)}}
= 0.4 ·max{0,min{0.6, 1}} = 0.24
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However · · ·

(fever ∧ dyspnoea) ⇒ SARSCF=0.4

How likely is the occurrence of fever or dyspnoea given
that the patient has SARS?

How likely is the occurrence of fever or dyspnoea in the
absence of SARS?

How likely is the presence of SARS when just fever is
present?

How likely is no SARS when just fever is present?
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Bayesian Networks

flu (FL)

(yes/no)

SARS (RS)

(yes/no)

fever (FE)

(yes/no)

dyspnoea (DY)

(yes/no)

TEMP

(≤ 37.5/> 37.5)

VisitToChina (CH)

(yes/no)

P (CH,FL,RS,DY,FE,TEMP)

P (FL = y) = 0.1

P (CH = y) = 0.1

P (RS = y | CH = y) = 0.3

P (RS = y | CH = n) = 0.01

P (FE = y | FL = y,RS = y) = 0.95

P (FE = y | FL = n,RS = y) = 0.80

P (FE = y | FL = y,RS = n) = 0.88

P (FE = y | FL = n,RS = n) = 0.001

P (DY = y | RS = y) = 0.9

P (DY = y | RS = n) = 0.05

P (TEMP ≤ 37.5 | FE = y) = 0.1

P (TEMP ≤ 37.5 | FE = n) = 0.99
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Reasoning: Evidence Propagation

Nothing known:

NO
YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP

Temperature >37.5 ◦C:

NO
YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP
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Reasoning: Evidence Propagation

Temperature >37.5 ◦C:

NO
YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP

I just returned from China:

NO
YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP
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Independence Representation in Graphs

The set of variables X is conditionally independent of the
set Z given the set Y , notation X ⊥⊥ Z | Y , iff

P (X | Y, Z) = P (X | Y )

Meaning:

“If we know Y then Z does not have any (extra)
effect on our knowledge concerning X (and thus
can be omitted)”

Example
If we know that John has fever, then also knowing that he
has a high body temperature has no effect on our
knowledge about flu
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Find the Independences

NO
YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP

Examples:

FLU ⊥⊥ VisitToChina | ∅

FLU ⊥⊥ SARS | ∅

FLU 6⊥⊥ SARS | FEVER, also FLU 6⊥⊥ SARS | TEMP

SARS ⊥⊥ TEMP | FEVER

VisitToChina ⊥⊥ DYSPNOEA | SARS
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Probabilistic Reasoning

Interested in conditional probability distributions:

P (XW | E) = P E(XW )

with W set of vertices, for (possibly empty) evidence E
(instantiated variables)

Examples

P (FLU = yes | TEMP < 37.5)

P (FLU = yes,VisitToAsia = yes | TEMP < 37.5)

Tendency to focus on conditional probability
distributions of single variables

Lecture 1: Intro – p. 14



Probabilistic Reasoning (cont)

Joint probability distribution P (X):
P (X) = P (X1, X2, . . . , Xn)

marginalisation:

P (Y ) =
∑

X\Y

P (X) =
∑

X\Y

∏

v∈V

P (Xv | Xπ(v))

conditional probabilities and Bayes’ rule:

P (Y, Z | X) =
P (X | Y, Z)P (Y, Z)

P (X)

Many efficient Bayesian reasoning algorithms exist
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Naive Probabilistic Reasoning: Evidence

X3

y/n

X1

y/n

X2

y/n

X4

y/n

P (x4 | x3) = 0.4

P (x4 | ¬x3) = 0.1

P (x3 | x1, x2) = 0.3

P (x3 | ¬x1, x2) = 0.5

P (x3 | x1,¬x2) = 0.7

P (x3 | ¬x1,¬x2) = 0.9

P (x1) = 0.6

P (x2) = 0.2

P E(x2) = P (x2 | x4) =
P (x4 | x2)P (x2)

P (x4)
(Bayes’ rule)

=

∑
X3

P (x4|X3)
∑

X1
P (X3|X1, x2)P (X1)P (x2)∑

X3
P (x4 | X3)

∑
X1,X2

P (X3 | X1, X2)P (X1)P (X2)
≈ 0.14
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Judea Pearl’s Algorithm

v1G1
π(v1)

v3G3

λ(v0)

v2 G2
π(v2)

v4 G4

λ(v0)

v0π(v0) π(v0)
λ(v1) λ(v2)

Object-oriented approach: vertices are objects, which
have local information and carry out local computations

Updating of probability distribution by message passing:
arcs are communication channels
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Data Fusion Lemma

vjEvidence

vi

. . .

. . .. . .

E−
vi

E+
vi

causal
information

diagnostic
information

Data fusion:

P E(Xvi) = P (Xvi | E)
= α · causal info for Xvi · diagnostic info for Xvi

= α · π(vi) · λ(vi)

where:

E = E+
vi ∪ E−

vi : evidence

α: normalisation constant
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Problem Solving

Bayesian networks are declarative, i.e.:

mathematical basis

problem to be solved determined by (1) entered
evidence E (may include decisions); (2) given
hypothesis H: P (H | E) (cf. KB ∧H � E)

Examples:

Description of populations

Maximum a Posteriori (MAP) Assignment for
classification and diagnosis: D = argmaxH P (H | E)

Temporal reasoning, prediction, what-if scenarios

Decision-making based on decision theory
MEU(D | E) = maxd∈D

∑
x u(x)P (x | d, E)
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Decision Networks

Pneumonia (PN)

(yes/no)

Fever (FE)

(yes/no)

TEMP

(≤ 37.5/

> 37.5)

Coughing (CO)

(yes/no)

Pneumococcus (PP)

(yes/no)

Coverage (CV)

(yes/no)

Therapy (TH)

(penicillin/no-penicillin)
U

P (PN = y | PP = y) = 0.77

P (PN = y | PP = n) = 0.01

P (FE = y | PN = y) = 0.95

P (FE = y | PN = n) = 0.001

P (CO = y | PN = y) = 0.80

P (CO = y | PN = n) = 0.05

P (TEMP ≤ 37.5 | FE = y) = 0.1

P (TEMP ≤ 37.5 | FE = n) = 0.99

P (CV = y | PP = y,TH = pc) = 0.80

P (CV = y | PP = n,TH = pc) = 0.0

P (CV = y | PP = y,TH = npc) = 0.0

P (CV = y | PP = n,TH = npc) = 1.0

P (PP = y) = 0.1

u(CV = y) = 100

u(CV = n) = 0
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Markov Networks

Structure of a joint probability distribution P can also be
described by undirected graphs (instead of directed
graphs as in Bayesian networks)

X2 X5

X6

X4

X3

X1 X7

Together with P (V ) = P (X1, X2, X3, X4, X5, X6, X7):
Markov network

Marginalisation (example):

P (¬x2) =
∑

X1,X3,X4,X5,X6,X7

P (X1,¬x2, X3, X4, X5, X6, X7)
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Manual Construction

Qualitative modelling:

Infection

Body response

to A

Body response

to B

Body response

to C

Colonisation by

bacterium A

Colonisation by

bacterium B

Colonisation by

bacterium C

Fever WBC ESR

People become colonised by bacteria when entering a
hospital, which may give rise to infection
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Bayesian-network Modelling

Qualitative

causal modelling

Cause → Effect

Inf

BRA BRB BRC

Quantitative

interaction modelling

P (Inf | BRA,BRB,BRC)

BRA

t f

BRB BRB

t f t f

BRC BRC BRC BRC

Inf t f t f t f t f

t 0.8 0.6 0.5 0.3 0.4 0.2 0.3 0.1

f 0.2 0.4 0.5 0.7 0.6 0.8 0.7 0.9
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Example BN: non-Hodgkin Lymphoma
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Bayesian Network Learning

Bayesian network B = (G,P ), with

digraph G = (V (G), A(G)), and

probability distribution P

general Bayesian

restricted

Structure

Learning

networks

Restricted Structure Learning

tree−augmented
Bayesian network

Spectrum

naive Bayesian
network

(TAN)

Un
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Learning Bayesian Networks

Problems:

for many BNs too many probabilities have to be
assessed

complex BNs do not necessarily yield better classifiers

complex BNs may yield better estimates of a probability
distribution

Solution:

use simple probabilistic models for classification:

naive (independent) form BN

T ree-Augmented Bayesian Network (TAN)

Forest-Augmented Bayesian Network (FAN)

use background knowledge and clever heuristics
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Naive (independent) form BN

C

E1

· · ·
E2

Em

C is a class variable

The evidence variables Ei in the evidence
E ⊆ {E1, . . . , Em} are conditionally independent given
the class variable C

This yields: P (C | E) = P (E|C)P (C)
P (E) =

∏
E∈E

P (E|C)P (C)
∑

C

∏
E∈E

P (E|C)P (C)

Classifier: cmax = argmaxC P (C | E)
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Learning Structure from Data

Given the following dataset D:

Student Gender IQ High Mark for Maths

1 male low no

2 female average yes

3 male high yes

4 female high yes

and the following Bayesian networks:

G I AG1:

G I AG2:

G I AG3:

G I AG4:

G

I

AG5: ...

Which one is the best?
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Being Bayesian about Bayesian Networks

Bayesian statistics: inherent uncertainty in parameters and
exploitation of data to update knowledge:

Uncertain parameters:

Θ

X

Probability distribution P (X | Θ), with Θ un-
certain parameters with probability density p(Θ)

Assume the Bayesian network structure G comes from
a probability distribution, based on data D:

P (G | D)
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Research Issues

Inf

BRA BRB BRC

Modelling:

To determine the structure of a network

Generalisation of networks using logics
(e.g. Markov logic networks)

Learning:

Structure learning: determine the ‘best’ graph topology

Parameter learning: determine the ‘best’ probability
distribution (discrete or continuous)

Inference: increase speed, reduce memory requirements

⇒ you can contribute too · · ·

Lecture 1: Intro – p. 30


	Course Organisation
	Course Aims
	Literature
	Uncertainty in Daily Life
	Uncertainty Representation
	Early AI Methods of Uncertainty
	However $cdots $
	Bayesian Networks
	Reasoning: Evidence Propagation
	Reasoning: Evidence Propagation
	Independence Representation in Graphs
	Find the Independences
	Probabilistic Reasoning
	Probabilistic Reasoning (cont)
	Naive Probabilistic Reasoning: Evidence
	Judea Pearl's Algorithm
	Data Fusion Lemma
	Problem Solving
	Decision Networks
	Markov Networks
	Manual Construction
	Bayesian-network Modelling
	Example BN: non-Hodgkin Lymphoma
	Bayesian Network {color {red}Learning}
	Learning Bayesian Networks
	Naive (independent)
form BN
	Learning {color {red}Structure} from Data
	Being Bayesian about Bayesian Networks
	Research Issues

