
Building Bayesian Networks
Kick-off Assignment I
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The focus today . . .

Problem solving by Bayesian networks

Designing Bayesian networks

Qualitative part (structure)

Quantitative part (probability assessment)

Simplified Bayesian networks

In structure: Naïve Bayes, Tree-Augmented
Networks

In probability assessment: Parent divorcing, Causal
Independence
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Problem solving

Bayesian networks: a declarative (knowing what)
knowledge-representation formalism, i.e.,:

mathematical basis

problem to be solved determined by (1) entered
evidence E (including potential decisions); (2) given
hypothesis H : P (H | E)

Examples:

Description of population (or prior information)

Classification and diagnosis: D = argmaxH P (H | E) i.e.
D is the hypothesis with maximum P (H | E)

Prediction

Decision making based on what-if scenario’s
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Example: Symptomate

Huge Bayesian network
covering a large part of
medicine (1000s of diseases)

Diagnostic problem solving

Designed by hand!

https://www.symptomate.com (also
Apps for Android and iOS)
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Example: Wilson’s disease

CP = caeruloplasmin

Wilson’s diease protein = ATP7B

Kayser−Fleischer rings
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Prior information

YES

NO

NEUROLOGICAL DISEASE

NORMAL

MOD-INCREASED
TOXIC

TISSUE COPPER

0-6
6-10

10-16
16-25
25-40
>= 40

AGE

20-50 ug/g
50-250 ug/g
>= 250 ug/g

HEPATIC COPPER

HOMOZYGOUS
HETEROZYGOUS

NORMAL

WILSON’S DISEASE GENOTYPE

HOMOZYGOUS
HETEROZYGOUS

NORMAL

MOTHER-WILSON’S DISEASE GENOTYPE

HOMOZYGOUS
HETEROZYGOUS

NORMAL

SIBLING-WILSON’S DISEASE GENOTYPE

HOMOZYGOUS
HETEROZYGOUS

NORMAL

FATHER-WILSON’S DISEASE GENOTYPE

YES
NO

FATHER-WILSON’S DISEASE

YES
NO

SIBLING-WILSON’S DISEASE

YES
NO

MOTHER-WILSON’S DISEASE

< 200 mg/l
200-300 mg/l
>= 300 mg/l

SERUM CAERULOPLASMIN

< 9.5 umol/l
9.5-14.3 umol/l

14.3-19.0 umol/l

CAERULOPLASMIN SERUM COPPER

DECREASED
NORMAL

INCREASED

TOTAL SERUM COPPER

0.8-1.6 umol/l
1.6-8.0 umol/l

FREE SERUM COPPER

< 0.5 umol/24h
0.5-1.6 umol/24h
>= 1.6 umol/24h

URINARY COPPER

YES
NO

WILSON’S DISEASE

YES
NO

CIRRHOSIS

YES
NO

PSYCHIATRIC DISEASE

YES
NO

RENAL DISEASE

YES
NO

KAYSER-FLEISCHER RINGS

Gives description of the population on which the assessed

probabilities are based, i.e., the original probabilities before new

evidence is uncovered

Marginal probabilities P (V ) for every vertex V , e.g.,

P (WILSON’S DISEASE = yes)
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Diagnostic problem solving

YES
NO

NEUROLOGICAL DISEASE

NORMAL
MOD-INCREASED

TOXIC

TISSUE COPPER

0-6
6-10

10-16
16-25
25-40
>= 40

AGE

20-50 ug/g
50-250 ug/g
>= 250 ug/g

HEPATIC COPPER

HOMOZYGOUS
HETEROZYGOUS

NORMAL

WILSON’S DISEASE GENOTYPE

HOMOZYGOUS
HETEROZYGOUS

NORMAL

MOTHER-WILSON’S DISEASE GENOTYPE

HOMOZYGOUS
HETEROZYGOUS

NORMAL

SIBLING-WILSON’S DISEASE GENOTYPE

HOMOZYGOUS
HETEROZYGOUS

NORMAL

FATHER-WILSON’S DISEASE GENOTYPE

YES
NO

FATHER-WILSON’S DISEASE

YES
NO

SIBLING-WILSON’S DISEASE

YES
NO

MOTHER-WILSON’S DISEASE

< 200 mg/l
200-300 mg/l
>= 300 mg/l

SERUM CAERULOPLASMIN

< 9.5 umol/l
9.5-14.3 umol/l

14.3-19.0 umol/l

CAERULOPLASMIN SERUM COPPER

DECREASED
NORMAL

INCREASED

TOTAL SERUM COPPER

0.8-1.6 umol/l
1.6-8.0 umol/l

FREE SERUM COPPER

< 0.5 umol/24h
0.5-1.6 umol/24h
>= 1.6 umol/24h

URINARY COPPER

YES
NO

WILSON’S DISEASE

YES
NO

CIRRHOSIS

YES
NO

PSYCHIATRIC DISEASE

YES
NO

RENAL DISEASE

YES
NO

KAYSER-FLEISCHER RINGS

Gives description of the subpopulation of the original population or

individual cases

Marginal probabilities P
∗(V ) = P (V | E) for every vertex V , e.g.,

P (WILSON’S DISEASE = yes | E) for entered evidence E (red vertices,

with probability for one value equal to 1)
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Prediction of associated findings

YES
NO

NEUROLOGICAL DISEASE

NORMAL
MOD-INCREASED

TOXIC

TISSUE COPPER

0-6
6-10

10-16
16-25
25-40
>= 40

AGE

20-50 ug/g
50-250 ug/g
>= 250 ug/g

HEPATIC COPPER

HOMOZYGOUS
HETEROZYGOUS

NORMAL

WILSON’S DISEASE GENOTYPE

HOMOZYGOUS
HETEROZYGOUS

NORMAL

MOTHER-WILSON’S DISEASE GENOTYPE

HOMOZYGOUS
HETEROZYGOUS

NORMAL

SIBLING-WILSON’S DISEASE GENOTYPE

HOMOZYGOUS
HETEROZYGOUS

NORMAL

FATHER-WILSON’S DISEASE GENOTYPE

YES
NO

FATHER-WILSON’S DISEASE

YES
NO

SIBLING-WILSON’S DISEASE

YES
NO

MOTHER-WILSON’S DISEASE

< 200 mg/l
200-300 mg/l
>= 300 mg/l

SERUM CAERULOPLASMIN

< 9.5 umol/l
9.5-14.3 umol/l

14.3-19.0 umol/l

CAERULOPLASMIN SERUM COPPER

DECREASED
NORMAL

INCREASED

TOTAL SERUM COPPER

0.8-1.6 umol/l
1.6-8.0 umol/l

FREE SERUM COPPER

< 0.5 umol/24h
0.5-1.6 umol/24h
>= 1.6 umol/24h

URINARY COPPER

YES
NO

WILSON’S DISEASE

YES
NO

CIRRHOSIS

YES
NO

PSYCHIATRIC DISEASE

YES
NO

RENAL DISEASE

YES
NO

KAYSER-FLEISCHER RINGS

Gives description of the findings associated with a given class or

category, such as Wilson’s disease

Marginal probabilities P
∗(V ) = P (V | E) for every vertex V , e.g.,

P (Kayser-Fleischer Rings = yes | E) with E evidence
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Design of Bayesian network

Design principle: start modelling qualitatively (as with
traditional knowledge-based systems)

causal

graph

qualitative

probabilistic network

quantitative

network

Bayesian

network

refinement

variables/

relationships

domains of

variables/

qualitative

probabilistic

information

numerical

assessment

experts/dataset

evaluation
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Terminology

NO
YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP

Parent SARS of Child FEVER

SARS is Ancestor of TEMP

DYSPNOEA is Descendant of VisitToChina

Query node, e.g., FEVER

Evidence, e.g., VisitToChina and TEMP

Markov blanket, e.g.,
for SARS: {VisitToChina,DYSPNOEA,FEVER,FLU}
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Causal graph: Topology (structure)

cause1

causen

... effect

Identify factors that are relevant

Determine how those factors are causally related to
each other

The arc cause→ effect means that ‘cause’ is a factor
involved in causing ‘effect’
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Causal graph: Common effect

cause1

causen

... effect

An effect that has two or more ingoing arcs from other
vertices is a common effect of those causes

Kinds of causal interaction

(Positive) synergy:
POLUTION −→ CANCER←− SMOKING

Prevention (negative synergy):
VACCINE −→ DEATH←− SMALLPOX

XOR: ALKALI −→ DEATH←− ACID
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Causal graph: Common cause

cause

effect1

effectn

...

A cause that has two or more outgoing arcs to other
vertices is a common cause (factor) of those effects

The effects of a common cause are usually observables
(e.g. manifestations of failure of a device or symptoms
in a disease)
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Causal graph: Example

FLU

PNEUMONIA

FEVER

MYALGIA

TEMP

FLU and PNEUMONIA are two alternative causes of
fever (but may enhance each other)

FLU has two common effects: MYALGIA and FEVER

High body TEMPerature is an indirect effect of FLU and
PNEUMONIA, caused by FEVER
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Check independence relationship

FLU

PNEUMONIA

FEVER

MYALGIA

TEMP

Conditional independence: X ⊥⊥ Y | Z

{FEVER} ⊥⊥ {MYALGIA} | {FLU}

? | {FEVER}

{PNEUMONIA} ⊥⊥ {FLU} | ?

{PNEUMONIA} 6⊥⊥ {FLU} | {FEVER}
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Choose variables

Factors are mutually exclusive (cannot occur together
with absolute certainty): put as values in the same
variable, or

Factors may co-occur: multiple variables

DISEASE

pneu/flu

FEVER

MYALGIA

(a) Single variable

FLU

yes/no

FEVER

PNEUMONIA

yes/no

MYALGIA

(b) Multiple variables

Lecture 3: Building BN – p.16



Choose values

Discrete values

Mutually exclusive and exhaustive

Types:
binary, e.g., FLU = yes/no, true/false, 0/1
ordinal, e.g., INCOME = low, medium, high
nominal, e.g., COLOR = brown, green, red
integral, e.g., AGE = {1, . . . , 120}

Continuous values

Discretization (of continuous values)

Example for TEMP:
[−50,+5)→ cold
[+5,+20)→ mild
[+20,+50]→ hot
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Probability assessment

qualitative

orders and

equalities

indegree

of vertex

divorcing/causal

independence

quantitative

assessment

experts/dataset

probability

distribution

compare

prediction with

literature

compare with

test dataset

check

consistency

> 4

≤ 4

EVALUATION


























































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Expert judgements

Qualitative probabilities:

Qualitative orders:

AGE P (General Health Status | AGE)

10-69 good > average > poor

70-79 average > good > poor

80-89 average > poor > good

≥ 90 poor > average > good

Equalities:

P (CANCER = T1|AGE = 15− 29) =
P (CANCER = T2|AGE = 15− 29)
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Expert judgements (cont.)

Quantitative, subjective probabilities:

P (GHS | AGE)

AGE good average poor

10-69 0.99 0.008 0.002

70-79 0.3 0.5 0.2

80-89 0.1 0.5 0.4

≥ 90 0.1 0.3 0.6

Order information can be used as inequality constraints
in learning (see Y. Zhou, N. Fenton, M. Neil: Bayesian
network approach to multinomial parameter learning
using data and expert judgments, Int. Journal of
Approximate Reasoning, 55 (2014) 1252–1268)
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A bottleneck in Bayesian networks

FEV ER

FLU

RABIES EARINF

BRONCH

The number of parameters for the effect given n causes
grows exponentially: ≥ 2n (for binary causes)

Unlikely evidence combination:

P (fever | flu, rabies,ear_infection,bronchitis) = ?

Problem: for many BNs too many probabilities have to be
assessed
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Special form Bayesian networks

Solution: use simpler probabilistic model, such that either

the structure becomes simpler, e.g.,

naive (independent) form BN

T ree-Augmented Bayesian Network (TAN)

or,

the assessment of the conditional probabilities becomes
simpler (even though the structure is still complex), e.g.,

parent divorcing

causal independence BN
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Independent (Naive) form BN

C

E1

· · ·E2

Em

C is a class variable

Ei are evidence variables and E ⊆ {E1, . . . , Em}. We
have Ei ⊥⊥ Ej | C, for i 6= j. Hence, using Bayes’ rule:

P (C | E) =
P (E | C)P (C)

P (E)
with:

P (E | C) =
∏

E∈E

P (E | C) by cond. ind.

P (E) =
∑

C

P (E | C)P (C) marg. & cond.
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Example of Naive Bayes
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Example of Naive Bayes (1)

Learning phase

2/53/9Rain

0/54/9Overcast

3/52/9Sunny

Play=NoPlay=YesOutlook

2/53/9Rain

0/54/9Overcast

3/52/9Sunny

Play=NoPlay=YesOutlook

1/53/9Cool

2/54/9Mild

2/52/9Hot

Play=NoPlay=YesTemperature

1/53/9Cool

2/54/9Mild

2/52/9Hot

Play=NoPlay=YesTemperature

1/56/9Normal

4/53/9High

Play=NoPlay=YesHumidity

1/56/9Normal

4/53/9High

Play=NoPlay=YesHumidity

2/56/9Weak

3/53/9Strong

Play=NoPlay=YesWind

2/56/9Weak

3/53/9Strong

Play=NoPlay=YesWind

P(Play=Yes) = 9/14 P(Play=No) = 5/14
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Example of Naive Bayes (2)

Testing phase (inference)

Play 
Tennis

Outlook Temp H umidity Wind

Evidence:

x = (Outlook=Sunny, Temperature=Cool, Humidity=High,Wind=Strong)

Then given x, PlayTennis=? 

Play 
Tennis

Outlook Temp H umidity Wind

Play 
Tennis

Outlook Temp H umidity Wind

Evidence:

x = (Outlook=Sunny, Temperature=Cool, Humidity=High,Wind=Strong)

Then given x, PlayTennis=? 
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Example of Naive Bayes (3)

Testing phase (inference)

Play 
Tennis

Outlook Temp H umidity Wind

P(Yes|x) = P(x|PlayTennis=Yes)*P(PlayTennis=Yes)/P(x) ∝
∝ [P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes)]P(Play=Yes) =

= 2/9 * 3/9 * 3/9 * 3/9 * 9/14 = 0.0053

P(No|x) ∝ [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)]P(Play=No) = 0.0206

Given that P(Yes|x’) < P(No|x’), then for x we label PlayTennis = No

Note: to get probabilities we need to normalise 

P(Yes|x) = P(Yes|x) / (P(Yes|x) + P(No|x)) = 0.0053/(0.0053+0.0206) = 0.20

Play 
Tennis

Outlook Temp H umidity Wind

Play 
Tennis

Outlook Temp H umidity Wind

P(Yes|x) = P(x|PlayTennis=Yes)*P(PlayTennis=Yes)/P(x) ∝
∝ [P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes)]P(Play=Yes) =

= 2/9 * 3/9 * 3/9 * 3/9 * 9/14 = 0.0053

P(No|x) ∝ [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)]P(Play=No) = 0.0206

Given that P(Yes|x’) < P(No|x’), then for x we label PlayTennis = No

Note: to get probabilities we need to normalise 

P(Yes|x) = P(Yes|x) / (P(Yes|x) + P(No|x)) = 0.0053/(0.0053+0.0206) = 0.20
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Tree-Augmented BN (TAN)

C

E1

E3E2

E5

E4

Extension of Naive Bayes: reduce the number of
independent assumptions

Each node has at most two parents (one is the class
node)
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Divorcing multiple parents

Surgery

Drug

Treatment

General

Health

Survival

(a) Original network

Surgery

Drug

Treatment

General

Health

Post-therapy

Survival

Survival

(b) Divorced network

Reduction in number of probabilities to assess:

Identify a potential common effect of two or more parent
vertices of a vertex

Introduce a new variable into the network, representing
the common effect
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Causal Independence

C1 C2 . . . Cn

I1 I2 . . . In

Ef

with:

cause variables Cj, intermediate variables Ij , and the

effect variable E

P (E | I1, . . . , In) ∈ {0, 1}

interaction function f , defined such that

f(I1, . . . , In) =

{

e if P (e | I1, . . . , In) = 1

¬e if P (e | I1, . . . , In) = 0
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Causal Independence: BN

C1 C2 . . . Cn

I1 I2 . . . In

Ef

P (e | C1, . . . , Cn) =
∑

I1,...,In

P (e | I1, . . . , In)P (I1, . . . , In | C1, . . . , Cn)

=
∑

f(I1,...,In)=e

P (e | I1, . . . , In)P (I1, . . . , In | C1, . . . , Cn)

Note that as Ii ⊥⊥ Ij | ∅, and Ii ⊥⊥ Cj | Ci, for i 6= j, it holds that:

P (I1, . . . , In | C1, . . . , Cn) =
n
∏

k=1

P (Ik | Ck)

Conclusion: assessment of P (Ii |Ci) instead of P (E |C1, . . . , Cn), i.e., 2n vs. 2n probabilities
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Causal independence: Noisy OR

C1 C2

I1 I2

EOR

Interactions among causes, as represented by the
function f and P (E | I1, I2), is a logical OR

Meaning: presence of any one of the causes Ci with
absolute certainty will cause the effect e (i.e. E = true)

P (e | C1, C2) = ?
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Causal independence: Noisy OR (cont.)

C1 C2

I1 I2

EOR

P (e | C1, C2) =
∑

I1,I2

P (e | I1, I2, C1, C2)P (I1, I2 | C1, C2)

= ?
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Causal independence: Noisy OR (cont.)

C1 C2

I1 I2

EOR

P (e | C1, C2) =
∑

I1,I2

P (e | I1, I2, C1, C2)P (I1, I2 | C1, C2)

=
∑

f(I1,I2)=e

P (e | I1, I2)
∏

k=1,2

P (Ik | Ck)
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Causal independence: Noisy OR (cont.)

C1 C2

I1 I2

EOR

I1 I2 P (e | I1, I2) f(I1, I2) = I1 ∨ I2

0 0 0 ⇒ ¬e

0 1 1 ⇒ e

1 0 1 ⇒ e

1 1 1 ⇒ e

P (e | C1, C2) =
∑

f(I1,I2)=e

P (e | I1, I2)
∏

k=1,2

P (Ik|Ck)

= P (i1 | C1)P (i2 | C2) + P (¬i1 | C1)P (i2 | C2) + P (i1 | C1)P (¬i2 | C2)
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Noisy OR: Real-world example

Dynamic Bayesian network for predicting the development of

hypertensive disorders during pregnancy

VascRisk (Vascular risk) has 11 causes and its original CPT

requires the estimation of 20736!!! entries. Practically impossible!

Solution: use noisy OR to simplify it
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Causal independence: Noisy AND

C1 C2

I1 I2

EAND

Interactions among causes, as represented by the
function f and P (E | I1, I2), is a logical AND

Meaning: presence of all causes Ci with absolute
certainty will cause the effect e (i.e. E = true);
otherwise, ¬e

P (e | C1, C2) = ?
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Are Bayesian networks always suitable?

OF COURSE NOT !

Uncertainty must be one of the essential features of the
problem

Sufficient knowledge about the problem (domain
experts, literature, data)

Decomposable representation because of
independence information

However,

a “black box” model such as neural networks is
sometimes sufficient and will often give the best results
of image analysis problems

Lecture 3: Building BN – p.38



Refining causal graphs

Model refinement is necessary.

How:

Manual

Automatic

What:

Probability adjustment

Removing irrelevant factors

Adding previously hidden, unknown factors

Causal relationships adjustment, e.g., including,
removing independence relations
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