
Inference in Bayesian Networks

Algorithms for general DAGs

Lecture 8: Inference (2) – p. 1

Basic idea of Pearl’s algorithm

V1G1

π(V1)

V3G3

λ(V0)

V2 G2

π(V2)

V4 G4

λ(V0)

V0
π(V0) π(V0)

λ(V1) λ(V2)

Object-oriented approach: vertices are objects, which
have local information and carry out local computations

Updating of probability distribution by message passing:
arcs are communication channels

Lecture 8: Inference (2) – p. 2

Multiply-connected networks inference

Vi

. . .

· · ·· · ·

At least two nodes are connected by more than one
path (in the underlying undirected path)

Thus, some variables can influence another through
more than one causal mechanism

And same evidence counted more than once

Lecture 8: Inference (2) – p. 3

Bayesian network inference algorithms

inference algorithms

conditioning

type: usually exact

elimination

type: usually exact

loop-cutset

conditioning

recursive

conditioning

variable

elimination

junction tree

algorithm

particle-based

type:approximate

forward

sampling

MCMC

variational methods

type: usually approxi-

mate

loopy belief

propagation

expectation

propagation

Lecture 8: Inference (2) – p. 4

Loopy belief propagation

Apply Pearl’s propagation algorithm to
multiply-connected networks

In (undirected) cycles, messages may circle indefinately

V1

V2

V4

V3

π(V1)

π(V2) λ(V4)

λ(V3)

Solutions:

Stop after fixed number of iterations

Stop when there are no significant changes in the
beliefs

If it converges, it is usually a good approximation
Lecture 8: Inference (2) – p. 5

Problems with loopy belief propagation

It may not converge

Cycling error: old information is mistaken for new

V1

V2

V4

V3

π(V1)

π(V2) λ(V4)

λ(V3)

Suppose V4 observed and gets new information from V2:
V4 sends V3 a message with information about itself and node V2

V3 passes that on to V1 which in turn sends it to V2

V2 misinterprets its own information for new and includes it into its distribution

Convergence error: the propagation algorithm assumes
independence of the parents

Lecture 8: Inference (2) – p. 6

Conditioning methods

The main ideas of these algorithms are as follows:

1. Find a cutset: if these nodes were instantiated, the
network behaves as if it were singly-connected

2. Compute the posterior probability distributions e.g.
using Pearl’s algorithm for every instantiation

3. Marginalisation/conditioning yields the requested
distribution

A set is called a loop cutset if every cyclic chain contains
three consecutive nodes X1, X2, X3 such that X2 is part of
the cutset and either:

X1 ← X2 and X2 → X3, or

X1 → X2 and X2 → X3

Lecture 8: Inference (2) – p. 7

Instantiated network

V6

V4 V5

V2V1 V3

V6

V4 V5

V2V1 V3

G structure of Gv2

Suppose V2 is cutset, then G can be instantiated by (e.g.) v2

Outgoing edges of V2 can be deleted

CPTs are updated, e.g. PGv2 (V5 | V3) = PG(V5 | v2, V3)

It holds that:
PG(Vi, v2) = PGv2 (Vi, v2)

Lecture 8: Inference (2) – p. 8

Cutset conditioning: general idea

V6

V4 V5

V2V1 V3

V6

V4 V5

V2V1 V3

G structure of Gv2

Suppose we would like to compute P (v6):

Find a cutset, e.g. {V2} (which others are there?)

Delete edges: get singly-connected networks

Compute PGv2 (v6 | v2) and PG¬v2 (v6 | ¬v2)

P (v6) = PGv2 (v6 | v2)P (v2) + PG¬v2 (v6 | ¬v2)P (¬v2)
Lecture 8: Inference (2) – p. 9

Recursive conditioning: general idea

V6

V4 V5

V2V1 V3

V6

V4 V5

V2V1 V3

G structure of GV2

1 and GV2

2

Suppose we would like to compute P (v6):

If we use a cutset {V2} it will decompose G into two
parts: G1 (with V2) and G2 (with V6)

It holds: PGv2 (v2, v6) = PG
v2
1

(v2)PG
v2
2

(v6)

So: P v2(v6) = PG
v2
1

(v2)PG
v2
2

(v6) + PG
¬v2
1

(¬v2)PG
¬v2
2

(v6)
Lecture 8: Inference (2) – p. 10

Clustering inference algorithm

Transform a BN into an equivalent polytree by merging
nodes

Removal of multiple paths between nodes

New node has as states all possible instantiations of
combined nodes

Probabilities updating on transformed polytree

V6

V4 V5

V2V1 V3

V6

V4, V5

V1, V2 V3

(a) (b)
Lecture 8: Inference (2) – p. 11

Junction tree algorithm: overview

Efficient method for clustering: junction tree algorithm

Junction trees

Constructing the junction tree

moralisation

triangulation

clustering nodes into a tree

Computing parameters of the junction tree

Using a message passing algorithm to compute
probabilities

Lecture 8: Inference (2) – p. 12

Junction tree

(Maximal) clique: a (maximal) complete subset of
nodes of an undirected graph

A junction tree represents a tree of maximal cliques

V1, V2, V3 V1, V3, V4 V1, V4, V5
V1, V3 V1, V4

Separator sets: variables shared by neighbours

A junction tree factorises as:

P (V) =

∏
C ϕC(VC)∏
S ϕS(VS)

with C cliques and S separators

For all pair of cliques C1 and C2, all nodes on the path
between C1 and C2 contain C1 ∩ C2 (running
intersection property)

Lecture 8: Inference (2) – p. 13

Moralisation

Let G be an acyclic directed graph, its associated
undirected moral graph Gm can be constructed by
moralisation:

1. add lines to all non-connected vertices, which have a
common child, and

2. replace each arc with a line in the resulting graph

Proposition: if G is an I-map, then so is Gm

V6

V4 V5

V2V1 V3

V6

V4 V5

V2V1 V3

(a) (b)
Lecture 8: Inference (2) – p. 14

Triangulation

A chord of a cycle is a pair Vi, Vj of non-consecutive

vertices in a cycle such that (Vi, Vj) is an edge in G

V6

V4 V5

V2V1 V3

V6

V4 V5

V2V1 V3

An undirected graph G is called chordal or triangulated if
every one of its cycles of length ≥ 4 posseses a chord

Theorem: every triangulated graph has a junction tree
Lecture 8: Inference (2) – p. 15

Constructing the junction tree

Given a triangulated graph G. A junction tree is obtained
using the following steps:

Find all the cliques, each one becomes a cluster, i.e., a
node in the junction tree

If two clusters have a non-empty intersection, create an
edge with the intersection as separator

If this graph contains a cycle, then all separators on this
cycle contain the same variable. Remove the cycle by
creating a maximal spanning tree: include as many
separators as possible while avoiding a cycle

Lecture 8: Inference (2) – p. 16

Example

V6

V4 V5

V2V1 V3

V6

V4 V5

V2V1 V3

a b

V1, V4, V5 V1, V2, V5

V2, V3, V5

V4, V5, V6

V1, V5

V5 V2, V5

V4, V5 V5

V1, V4, V5 V1, V2, V5

V2, V3, V5

V4, V5, V6

V1, V5

V2, V5

V4, V5

c d
Lecture 8: Inference (2) – p. 17

Computing parameters

Theorem. Let G be an I-map of a probability distribution P .
It holds that G is triangulated iff the probability distribution
can be factorised in terms of marginal densities over
variables in the cliques of G.

This can be done as follows:

Choose a node C in the junction tree that contains X
and all of X ’s parents

Multiply P (X | pa(X)) yielding C ’s table

Lecture 8: Inference (2) – p. 18

Example

V6

V4 V5

V2V1 V3

V1, V4, V5 V1, V2, V5

V2, V3, V5

V4, V5, V6

V1, V5

V2, V5

V4, V5

The original graph is factorised as:

P (V) = P (V6 | V4, V5)P (V5 | V2, V3)P (V4 | V1) · · ·

P (V3)P (V2)P (V1 | V2)

Lecture 8: Inference (2) – p. 19

Example

V6

V4 V5

V2V1 V3

V1, V4, V5 V1, V2, V5

V2, V3, V5

V4, V5, V6

V1, V5

V2, V5

V4, V5

The junction tree has parameters (e.g.):

ϕ(V2, V3, V5) = P (V5 | V2, V3)P (V3)

ϕ(V1, V2, V5) = P (V1 | V2)P (V2)

ϕ(V1, V4, V5) = P (V4 | V1)

ϕ(V4, V5, V6) = P (V6 | V4, V5)

P (V) =
∏

C
ϕC(VC)∏

S
ϕS(VS)

where the separator potentials ϕS(VS) are

set to 1 Lecture 8: Inference (2) – p. 20

Message passing

ϕV ϕW
ϕS

Updating works in 2 passes:

1. Updating from V to W (forward pass):

ϕ∗
S =

∑
V \S ϕV ϕ∗

W = ϕ∗

S

ϕS
ϕW

This sets the separator to the marginal in ϕV

2. Then, from W to V (backward pass):

ϕ∗∗
S =

∑
W\S ϕ∗

W ϕ∗
V = ϕ∗∗

S

ϕ∗

S

ϕV

Note: here the variables are implicit, i.e., ϕV = ϕV (V)
Lecture 8: Inference (2) – p. 21

Message passing: soundness

The update procedure

ϕ∗
S =

∑
V \S ϕV ϕ∗

W = ϕ∗

S

ϕS
ϕW

is sound, i.e., after an update the probability distribution is
the same (after step 1)

Proof. Note that nothing happens with ϕV , so define
ϕ∗
V = ϕV . Then:

P ∗(V ∪W) =
ϕ∗
V ϕ

∗
W

ϕ∗
S

=
ϕV ϕ

∗
SϕW

ϕ∗
SϕS

=
ϕV ϕW

ϕS
= P (V ∪W)

Exercise. Proof that after both passes (local consistency):

∑

V \S

ϕ∗
V =

∑

W\S

ϕ∗
W

Lecture 8: Inference (2) – p. 22

Global consistency junction trees

Global consistency: a cluster tree is globally consistent
if for any nodes V and W with intersection I we have:

∑

V \I

ϕV =
∑

W\I

ϕW

Junction trees are after the message passing globally
consistent:
Proof.
By induction on distance of the path between V0 and Vn.
Suppose they are neighbours: then by local
consistency. Otherwise, we have consistency of length
k. Since I will be in the separator between Vk and Vk+1

(running intersection property), local consistency can
again be applied, so the property follows for k + 1.

Lecture 8: Inference (2) – p. 23

The need for triangulation

Suppose we would not triangulate:

V6

V4 V5

V2V1 V3 V1, V2

V1, V4 V2, V3, V5

V4, V5, V6

V5 appears in two non-neighbouring cliques. There is no
guarantee that marginal V5 should be equal, i.e.,

∑

V2,V3

ϕ235(V2, V3, V5) =
∑

V4,V6

ϕ456(V4, V5, V6)

Lecture 8: Inference (2) – p. 24

Reasoning in Junction Trees

If a variable VE is observed, we modify the potential ϕ
which includes VE such that the marginal is VE and
otherwise the same

A node C1 can send a message to another node C2 if it
has received a message from all its other neighbours

Choose an arbitrary node as root and collect and
distribute messages to and from this node

Afterwards, it holds:

ϕC(VC) = P (VC | VE)

Moreover:

ϕS(VS) = P (VS | VE)

Lecture 8: Inference (2) – p. 25

Proof sketch correctness

ϕV ϕW
ϕS

Recall that after the update procedure it holds that∑
V \S ϕV (V) = ϕ∗

S(S). So then:

P (W) =
∑

V \S

P (V ∪W)

=
∑

V \S

ϕV (V)ϕW (W)

ϕS(S)

=

∑
V \S ϕV (V)ϕW (W)

ϕS(S)
= ϕ∗

W (W)

In general, factors are eliminated one by one Lecture 8: Inference (2) – p. 26

Sampling

Logic sampling traverses the tree from the root nodes:

Initialise Count(x, e) = 0 and Count(e) = 0

Randomly choose a variable from the root nodes,
weighted by the priors

Repeat: randomly choose values for the children,
weighted by the conditional probability given the known
values of the parents

If e is in the assignment, then increase Count(e) by 1

If both x and e are in the assignment, then increase
Count(x, e) by 1

After many iterations:

P (x | e) =
Count(x, e)

Count(e)
Lecture 8: Inference (2) – p. 27

Example

V1

V2

P (v1) = 0.8, P (¬v1) = 0.2

P (v2|v1) = 0.4, P (¬v2|v1) = 0.6
P (v2|¬v1) = 0.9, P (¬v2|¬v1) = 0.1

To calculate P (v1 | v2) sample e.g. 1000 instantiations

Count(v1, v2) ≃ 320(= 0.8 · 0.4 · 1000)

Count(¬v1, v2) ≃ 180(= 0.2 · 0.9 · 1000)

Count(v2) ≃ 500

So P (v1 | v2) ≃ 320/500 = 0.64
Lecture 8: Inference (2) – p. 28

Convergence

0 500 1000 1500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

samples

es
tim

at
ed

 p
ro

ba
bi

lit
y

Lecture 8: Inference (2) – p. 29

Complexity

Computational complexity loop cutset conditioning:

O(n · d · 2d+l), where n is the number of vertices, d is the
maximal in-degree and l is the number of vertices in the
cutset

Computational complexity junction tree algorithm:
O(n · 2c) where c is the number of vertices in the largest
clique

However, generally probabilistic inference within an
arbitrary network is NP-hard

Also for approximate inference!

Empirically: sometimes approximate inference can be
used to compute marginals if exact methods fail

Lecture 8: Inference (2) – p. 30

References

Darwiche, A. (2000) Recursive conditioning Artificial
Intelligence 126(1-2) pp. 5–41.

Pearl, J. (1988) Probabilistic Reasoning in Intelligent
Systems. Morgan Kauffman. ISBN 0-934613-73-7

Spiegelhalter, D. J. and Lauritzen, S. L. (1990)
Sequential updating of conditional probabilities on
directed graphical structures. Networks, 20, pp.
579-605

Max Henrion: Propagating uncertainty in Bayesian
networks by probabilistic logic sampling. UAI, 1986, pp.
149-164

Lecture 8: Inference (2) – p. 31

Ideas for seminar topics

Inference by weighted model counting

Inference by arc reversal

Loopy belief propagation

Lifted belief propagation

Inference with continuous variables

⇒ and many more!

Lecture 8: Inference (2) – p. 32

	Basic idea of Pearl's algorithm
	Multiply-connected networks inference
	Bayesian network inference algorithms
	Loopy belief propagation
	Problems with loopy belief propagation
	Conditioning methods
	Instantiated network
	Cutset conditioning: general idea
	Recursive conditioning: general idea
	Clustering inference algorithm
	Junction tree algorithm: overview
	Junction tree
	Moralisation
	Triangulation
	Constructing the junction tree
	Example
	Computing parameters
	Example
	Example
	Message passing
	Message passing: soundness
	Global consistency junction trees
	The need for triangulation
	Reasoning in Junction Trees
	Proof sketch correctness
	Sampling
	Example
	Convergence
	Complexity
	References
	Ideas for seminar topics

