Inference in Bayesian Networks
Algorithms for general DAGs



Basic idea of Pearl’s algorithm

# Object-oriented approach: vertices are objects, which
have local information and carry out local computations

# Updating of probability distribution by message passing:
arcs are communication channels
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Multiply-connected networks inference

# At least two nodes are connected by more than one
path (in the underlying undirected path)

# Thus, some variables can influence another through
more than one causal mechanism

® And same evidence counted more than once
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Bayesian network inference algorithms

inference algorithms

conditioning elimination particle-based Zarlfltlomﬁl methO(.:'ls
type: usually exact type: usually exact type:approximate ype: usually approxi-
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Loopy belief propagation

9o

Apply Pearl’s propagation algorithm to
multiply-connected networks

In (undirected) cycles, messages may circle indefinately

Solutions:

s Stop after fixed number of iterations

s Stop when there are no significant changes in the
beliefs

If it converges, it is usually a good approximation

Lecture 8: Inference (2)

_p5



Problems with loopy belief propagation

# It may not converge
# Cycling error: old information is mistaken for new

Suppose V, observed and gets new information from V5:
® V, sends V3 a message with information about itself and node V5
® V3 passes that on to V; which in turn sends it to V>

® V5 misinterprets its own information for new and includes it into its distribution

o Convergence error: the propagation algorithm assumes
iIndependence of the parents
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Conditioning methods

The main ideas of these algorithms are as follows:

1. Find a cutset: if these nodes were instantiated, the
network behaves as if it were singly-connected

2. Compute the posterior probability distributions e.g.
using Pearl’s algorithm for every instantiation

3. Marginalisation/conditioning yields the requested
distribution

A set is called a loop cutset if every cyclic chain contains
three consecutive nodes X, X», X3 such that X5 is part of
the cutset and either:

® X;+ Xoand Xy — X3, Or
9 X1—>X2andX2—>X3
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Instantiated network

W—m w W W W

G structure of G2

Suppose V5 is cutset, then G can be instantiated by (e.g.) v
o Outgoing edges of V5 can be deleted
® CPTs are updated, e.g. Pgw. (Vs | V3) = Pa(Vs | ve, V3)

o |t holds that:
PG(‘/%UQ) — PGUQ (‘/?;7?)2)



Cutset conditioning: general idea

W—m w W W W

G structure of G2

Suppose we would like to compute P(vg):
# Find a cutset, e.g. {V2} (which others are there?)
# Delete edges: get singly-connected networks
o Compute Pgw (vg | v2) and Pg-vw (vg | —v2)
® P(vg) = Pgrz(ve | v2)P(v2) + Pz (v | —v2) P(—v3)
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Recursive conditioning: general idea

W—=m w W W W

G structure of G72 and G.?

Suppose we would like to compute P(vg):

# |f we use a cutset {14} it will decompose G into two
parts: G (with V5) and G (with V%)

o |t holds: Peros (2}2, 2}6) = PqujZ (UQ)PG;JZ (UG)
& So: P (2}6) = PG?1)2 (UQ)PG;Q (2}6) + PG;UQ (—IUQ)PGWQ (1}6)
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Clustering inference algorithm

# Transform a BN into an equivalent polytree by merging
nodes

» Removal of multiple paths between nodes

» New node has as states all possible instantiations of
combined nodes

# Probabilities updating on transformed polytree
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Junction tree algorithm: overview

Efficient method for clustering: junction tree algorithm
# Junction trees

# Constructing the junction tree
s moralisation
s triangulation
» clustering nodes into a tree

# Computing parameters of the junction tree

# Using a message passing algorithm to compute
probabilities

Lecture 8: Inference (2) — p. 12



Junction tree

(Maximal) clique: a (maximal) complete subset of
nodes of an undirected graph

A junction tree represents a tree of maximal cliques

TR Ve, VD

Vi, V3

Vi, Vy

Separator sets: variables shared by neighbours

A junction tree factorises as:

P(V)

_ g ec(Vo)

with C cliques and S separators

[1ses(Vs)

For all pair of cligues 7 and (5, all nodes on the path
between C; and (5 contain C'; N Cs (running

intersection property)
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Moralisation

Let G be an acyclic directed graph, its associated
undirected moral graph G™ can be constructed by
moralisation:

1. add lines to all non-connected vertices, which have a
common child, and

2. replace each arc with a line in the resulting graph
Proposition: if G is an I-map, then so is G™




Triangulation

A chord of a cycle is a pair V;, V; of non-consecutive
vertices in a cycle such that (V;,V;) is an edge in G

An undirected graph G is called chordal or triangulated if
every one of its cycles of length > 4 posseses a chord

Theorem: every triangulated graph has a junction tree
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Constructing the junction tree

Given a triangulated graph G. A junction tree is obtained
using the following steps:

# Find all the cliques, each one becomes a cluster, i.e., a
node in the junction tree

# If two clusters have a non-empty intersection, create an
edge with the intersection as separator

# If this graph contains a cycle, then all separators on this
cycle contain the same variable. Remove the cycle by
creating a maximal spanning tree: include as many
separators as possible while avoiding a cycle
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Vo, Vs

Vi, Vi, Vs O Vi, Vo, Vs
Vi, Vs
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Computing parameters

Theorem. Let GG be an I-map of a probabillity distribution P.
It holds that G is triangulated iff the probability distribution
can be factorised in terms of marginal densities over
variables in the cliques of G.

This can be done as follows:

o Choose a node C in the junction tree that contains X
and all of X’s parents

» Multiply P(X | pa(X)) yielding C’s table
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Example

Vi,Va, Vs >

T,V Vs

Vi, Vs

Vi, Ve Vo

The original graph is factorised as:

P(V)

Vi, Vs

P(Ve | Vi, V5)P(Vs | Vo, V3)P(Vy | V1) - -

P(V3)P(Va)P(V1 | Vo)
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Example

Ch, Vi Vs
(p—) (W
@ @ Vi, Va, Vs A, Ve, Vs
V1, Vs
Vy, Vs
%) TV, Ve, Vo

The junction tree has parameters (e.g.):
(V27‘/37V5) — P(V5 VQ)‘/B)P(VS)
e(V1,Va,V5) = P(V1 | Va)P(V3)
p(V1,Va,V5) = P(Vy|W1)
oV, V5,Ve) = P(Ve | Va, Vs)

P(V) = %C; :‘;f; Egg)) where the separator potentials ¢g(Vs) are
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Message passing

o

-

-

Updating works in 2 passes:

1. Updating from V to W (forward pass):

_<Ps

L5 =D\ PV Py = Sow

This sets the separator to the marginal in ¢y,
2. Then, from W to V (backward pass):

P5 =D w\s P Py = PV

Note: here the variables are implicit, i.e., oy = oy (V)

Lecture 8: Inference

(@) -

p. 21



Message passing: soundness

The update procedure

__¢s

P = D\s PV Py = Gepw

IS sound, i.e., after an update the probability distribution is
the same (after step 1)

Proof. Note that nothing happens with ¢y, so define
QO*V = V. Then:

@5 Pg¥s ¥S

Exercise. Proof that after both passes (local consistency):

D oev =) ¢

V\S W\S
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Global consistency junction trees

# Global consistency: a cluster tree is globally consistent
iIf for any nodes VV and W with intersection I we have:

Y oov=> ow

V\I W\ I

# Junction trees are after the message passing globally
consistent:
Proof.
By induction on distance of the path between 1 and V.
Suppose they are neighbours: then by local
consistency. Otherwise, we have consistency of length
k. Since I will be in the separator between V. and V.. ¢
(running intersection property), local consistency can
again be applied, so the property follows for k& + 1.

Lecture 8: Inference (2) — p. 23



The need for triangulation

Suppose we would not triangulate:

V5 appears in two non-neighbouring cligues. There is no
guarantee that marginal V5 should be equal, i.e.,

D 0ass(Va, Va, V) = Y ouse(Va, Vs, Vo)
Vo, Vs Vi, Ve
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Reasoning in Junction Trees

If a variable V Is observed, we modify the potential ¢
which includes Vg such that the marginal is Vi and
otherwise the same

A node (' can send a message to another node (5 if it
has received a message from all its other neighbours

Choose an arbitrary node as root and collect and
distribute messages to and from this node

Afterwards, it holds:

pc(Ve)=P(Ve | Vi)

Moreover:
ws(Vs) =P(Vs | Vi)
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Proof sketch correctness

o

-

-

Recall that after the update procedure it holds that
> ev (V) = ¢5(5). So then:

P(W) = » P(VUW)
V\S

v (V)ew (W)
Vz\; ws(S)
> s ev(V)ew (W)

= ) = o (W)

In general, factors are eliminated one by one

rence (2) —p. 26



Sampling

Logic sampling traverses the tree from the root nodes:
# |Initialise Count(x,e) = 0 and Count(e) =0

# Randomly choose a variable from the root nodes,
weighted by the priors

# Repeat: randomly choose values for the children,
weighted by the conditional probability given the known
values of the parents

# If e is in the assignment, then increase Count(e) by 1

# If both x and e are in the assignment, then increase
Count(x,e) by 1

After many iterations:

Count(x, e)
Count(e)

P(x |e) =
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Example

@ P(v1) = 0.8, P(—v1) = 0.2

P(v2|v1) = 0.4, P(—w2|vy) = 0.6
P(?)2|—|”01) = 0.9, P<—|1)2|—|U1) = 0.1

To calculate P(v; | v2) sample e.g. 1000 instantiations

Count(vy,v2) ~ 320(= 0.8 - 0.4 - 1000)
Count(—wvy,v2) ~ 180(= 0.2 - 0.9 - 1000)
C'ount(vg) ~ 500

So P(vy | vg) ~ 320/500 = 0.64
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Convergence

estimated probability
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Complexity

Computational complexity loop cutset conditioning:

O(n - d - 29%"), where n is the number of vertices, d is the
maximal in-degree and [ is the number of vertices in the
cutset

Computational complexity junction tree algorithm:
O(n - 2°) where c Iis the number of vertices in the largest
cligue

However, generally probabilistic inference within an
arbitrary network is NP-hard

s Also for approximate inference!

Empirically: sometimes approximate inference can be
used to compute marginals if exact methods falil
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Ideas for seminar topics

nference by weighted model counting
nference by arc reversal
_oopy belief propagation
_ifted belief propagation

© o o o ©

nference with continuous variables

= and many more!
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