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1 Representation and notation

Let P (V ) be a joint probability distribution, where V stands for a set of random variables.
Now assume that V = S ∪ U , where S and U are disjoint sets of random variables. Then we
use the notation

∑

V \S

P (V )

to represent the (marginalised) joint probability distribution obtained by summing out the
variables V with the exception of S, i.e.

∑

V \S

P (V ) = P (S)

Sometimes we use potentials, denoted by ϕ, rather than probability distributions. Potentials
are functions that look very similar to probability distributions. However, there are two
differences with probability distributions:

(1) They need not sum to 1;

(2) There is no notation for conditioning as in probability distributions (i.e. P (· | ·)).

For example if ϕ(V1, V2) is defined in terms of a probability distribution, it may represent
P (V1 | V2), but also P (V1, V2) or P (V2 | V1), and even P (V1) or P (V2). Simply look at how it
is defined to find out which of these is the case.

2 Motivation

We illustrate the basic ideas of probabilistic inference in junction trees by means of a simple
example. Consider the Bayesian network shown in Figure 1(a). Assume we have the following
probability distribution associated with the Bayesian network (following the structure of the
graph, i.e. condition a variable on its parents):

P (v1 | v2) = 0.2 P (v1 | ¬v2) = 0.6
P (¬v1 | v2) = 0.8 P (¬v1 | ¬v2) = 0.4
P (v3 | v2) = 0.5 P (v3 | ¬v2) = 0.7
P (¬v3 | v2) = 0.5 P (¬v3 | ¬v2) = 0.3
P (v2) = 0.9 P (¬v2) = 0.1
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(a) Bayesian network

V1 V2 V3

(b) triangulated graph

V1, V2 V2, V3V2

(c) junction tree

Figure 1: Example Bayesian network, triangulated graph and junction tree.

We know that a Bayesian network defines a joint probability distribution on its associated
variables, i.e.

P (XV ) =
∏

v∈V

P (Xv | Xπ(v))

with π(v) the set of parents of vertex v ∈ V , and V the set of vertices of the associated acyclic
directed graph G = (V,A). So in this case we have:

P (V1, V2, V3) = P (V1 | V2)P (V2)P (V3 | V2)

For example:

P (v1,¬v2, v3) = P (v1 | ¬v2)P (¬v2)P (v3 | ¬v2) = 0.6 · 0.1 · 0.3 = 0.018

The algorithm to transform the Bayesian network into a junction tree transforms the
Bayesian network first into a triangulated graph (See slides of the lecture on probabilistic
inference). This is an undirected graph, where children on a converging connection are con-
nected by a line (called moralisation), and chords are added to cut a cycle of more than three
vertices short (called triangulation. In this example, there is no need for moralisation (no con-
verging connection) and triangulation (not cycles), and thus the resulting triangulated graph
is just the original directed graph with the direction of the edges removed. Check that Figure
1(a) and 1(b) represent exactly the same independence statements (slides lectures 4–5). We
finally transform the triangulated graph into a junction tree by first constructing cliques Ci:
C1 = {V1, V2} and C2 = {V2, V3} and their intersections, called separators S, here S = {V2}.

Finally we have to define probability distributions on the cliques and separators using
potentials. Here we have different options.

(Choice 1) One choice is for example to define:

ϕV1,V2
= P (V1 | V2)

ϕV2
= 1

ϕV2,V3
= P (V3 | V2)P (V2)
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Note that we have given the probabilities given above that
∑

V1,V2

ϕV1,V2
(V1, V2) =

∑

V1,V2

P (V1 | V2) = 0.2 + 0.6 + 0.8 + 0.4 = 2

and so, this potential is not normalised. Actually, it would not make sense to normalise it
in this case, as we are dealing with two probability distributions represented in the potential
(P (V1 | v2) and P (V1 | ¬v2)). However, when it had represented a joint probability distribu-
tions, as for example ϕV2,V3

does, and it is not normalised, it is possible to normalise it. For
ϕV2,V3

this is not needed, as we already have that
∑

V2,V3
ϕV2,V3

(V2, V3) = 1.
Clearly, given the potentials defined above, we have that the joint probability distribution

P (V1, V2, V3) can be obtained as follows:

P (V1, V2, V3) =
ϕV1,V2

ϕV2,V3

ϕV2

= P (V1 | V2)P (V2)P (V3 | V2)

However, we might also have defined the potentials as follows (Choice 2):

ϕV1,V2
= P (V1 | V2)P (V2)

ϕV2
= 1

ϕV2,V3
= P (V3 | V2)

and even as follows (Choice 3):

ϕV1,V2
= P (V1 | V2)P (V2)

ϕV2
= P (V2)

ϕV2,V3
= P (V3 | V2)P (V2)

Note that in all cases P (V1, V2, V3) will be the same.
Let us now assume that we adopt the first definition of the potentials. In that case

the clique C1 only knows the family of probability distributions P (V1 | V2) (one probability
distribution P (V1 | v2) and one probability distribution P (V1 | ¬v2)). However, in order to
compute P (V1) or P (V2) we also need P (V2), as:

P (V1) =
∑

V2

P (V1 | V2)P (V2)

and

P (V2) =
∑

V1

P (V1 | V2)P (V2)

This information is not available in C1, but it is in clique C2. This explains the idea of
using message passing to obtain this information from other cliques. For this definition of
potentials, C1 needs information from C2; for the second example definition of potentials it
appears that C2 needs information from C1. In general, it is not clear beforehand whether a
clique will or will not need information from its neighbours. Hence, we need a general purpose
algorithm.
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ϕV ϕW
ϕS

Figure 2: Schematic structure of message passing scheme.

3 Inference in junction trees

The general scheme for message passing in junction trees is shown in Figure 2. The example
above can be easily translated into this general scheme, as we have:

ϕV = ϕV1,V2

ϕS = ϕV2

ϕW = ϕV2,V3

The algorithm for message passing consists of two phases:

1. Updating from V to W (forward pass):

ϕ∗
S =

∑
V \S ϕV ϕ∗

W =
ϕ∗

S

ϕS
ϕW

This sets the separator to the marginal in ϕV .

2. Then, from W to V (backward pass):

ϕ∗∗
S =

∑
W\S ϕ∗

W ϕ∗
V =

ϕ∗∗

S

ϕ∗

S

ϕV

Let us first see how this works for the examples above. Let us consider Choice 1 for the
potentials (see above). We get:

ϕ∗
S =

∑

V \S

ϕV

=
∑

V1

ϕV1,V2

=
∑

V1

P (V1 | V2)

= 1

= ϕ∗
V2

Next, we update ϕW = ϕV 2,V3
:

ϕ∗
W =

ϕ∗
S

ϕS

ϕW =
ϕ∗
V2

ϕV2

ϕV2,V3
= 1/1ϕV2,V3

= ϕ∗
V2,V3

So, here nothing has changed as ϕV2,V3
= ϕ∗

V2,V3
.

Subsequently, a message is passed back from W = C2 to V = C1:

ϕ∗∗
S =

∑

W\S

ϕ∗
W

=
∑

V3

ϕ∗
V2,V3

=
∑

V3

P (V3 | V2)P (V2)

= P (V2)
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Finally, we compute:

ϕ∗
V =

ϕ∗∗
S

ϕ∗
S

ϕV =
ϕ∗∗
V2

ϕ∗
V2

ϕV1,V2
=

P (V2)

1
P (V1 | V2) = P (V1 | V2)P (V2)

So, now clique C1 knows P (V2) and we can compute P (V1) and P (V2).
Investigate what happens when we had used Choice 2 or Choice 3 for the definition of the

potentials.
Using the probabilities given above for the Bayesian network in Figure 1, we would get:

ϕ∗
V2
(v2) = ϕ∗

V2
(¬v2) = 1, ϕ∗

V2,V3
(v2, v3) = 0.5 · 0.9 = 0.45, ϕ∗

V2,V3
(¬v2, v3) = 0.7 · 0.1 = 0.07,

ϕ∗
V2,V3

(¬v2,¬v3) = 0.3 · 0.1 = 0.03, ϕ∗∗
V2
(v2) = 0.9, ϕ∗∗

V2
(¬v2) = 0.1, ϕ∗

V1,V2
(v1, v2) = 0.9 · 0.2 =

0.18, ϕ∗
V1,V2

(¬v1, v2) = 0.9 · 0.8 = 0.72, ϕ∗
V1,V2

(v1,¬v2) = 0.1 · 0.6 = 0.06, ϕ∗
V1,V2

(¬v1,¬v2) =
0.1 · 0.4 = 0.04. Note that now:∑

V1,V2

ϕ∗
V1,V2

(V1, V2) = 0.18 + 0.72 + 0.06 + 0.04 = 1

4 Proof of correctness

Although the formulas for message passing given above appear to work correctly, we also would
like to know in general whether the algorithm is correct. It does require some derivations,
but in the end it is straightforward to obtain them.

4.1 Basics

Refer again to Figure 2. The following definitions will be used

P (V,W ) =
ϕV ϕW

ϕS
(1)

This is the definition for the joint probability for junction trees. The general formula is as
follows (see slides):

P (V ) =

∏
C∈C ϕC∏
S∈S ϕS

where C is the set of cliques and S the set of separators of a junction tree, and V =
⋃

C∈C C.
Using marginalisation, we obtain the following formulas:

P (V ) =
∑

W\S

P (V,W )

and

P (W ) =
∑

V \S

P (V,W )

and finally,

P (S) =
∑

(V ∪W )\S

P (V,W ) =
∑

V \S

P (V ) =
∑

W\S

P (W )

Also recall the message passing formulas:

ϕ∗
S =

∑
V \S ϕV ϕ∗

W =
ϕ∗

S

ϕS
ϕW

and

ϕ∗∗
S =

∑
W\S ϕ∗

W ϕ∗
V =

ϕ∗∗

S

ϕ∗

S

ϕV
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4.2 Forward pass

The derivation of the formula for the forward pass stage of message passing is easy, using
Equation (1):

P (W ) =
∑

V \S

P (V,W )

=
∑

V \S

ϕV ϕW

ϕS

=
ϕW

ϕS

∑

V \S

ϕV

=
ϕW

ϕS

ϕ∗
S

=
ϕ∗
S

ϕS
ϕW = ϕ∗

W (2)

Thus, after the forward pass the updated potential of W , i.e. ϕ∗
W , is equal to the joint

probability distribution P (W ). The ratio
ϕ∗

S

ϕS
is often called the update ratio.

4.3 Backward pass

We start by using the basic result from subsection 4.1 that

P (S) =
∑

W\S

P (W ) =
∑

W\S

ϕ∗
W

according to Equation (2). The algorithm uses the notation

ϕ∗∗
S =

∑

W\S

ϕ∗
W (3)

for this result. Using the notation used in the algorithm:

ϕ∗
V =

ϕ∗∗
S

ϕ∗
S

ϕV (4)

We wish to prove that

ϕ∗
V = P (V )

as this means that, together with the result above, that the algorithm is correct.
We start as follows:

P (V,W ) =
ϕV ϕW

ϕS

·
ϕ∗
S

ϕ∗
S

=
ϕV ϕ

∗
W

ϕ∗
S

(5)

using Equation (2).
From Equation (4), we derive by switching terms, that

ϕV =
ϕ∗
V ϕ

∗
S

ϕ∗∗
S
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Substituting this result into Equation (5) gives:

P (V,W ) =
P (W )ϕ∗

V

ϕ∗∗
S

=
P (W )ϕ∗

V

P (S)

using Equation (3).
Now we proceed as follows:

P (V ) =
∑

W\S

P (V,W )

=
∑

W\S

P (W )ϕ∗
V

P (S)

=
ϕ∗
V

P (S)

∑

W\S

P (W )

=
ϕ∗
V

P (S)
P (S)

= ϕ∗
V

So after termination of the algorithm, we have that ϕ∗
V = P (V ) and we already had that

ϕ∗
W = P (W ), in other words, the algorithm is correct.

4.4 Local consistency

If we now pass back information again from V to W then of course nothing will change, as
the situation is already stable. Passing back again means computing:

ϕ∗∗∗
S =

∑

V \S

ϕ∗
V

This must be the same as ϕ∗∗
S =

∑
W\S ϕ

∗
W , and that is what we need to prove.

So, to be proved is whether ϕ∗∗∗
S = ϕ∗∗

S holds. The proof goes as follows:

ϕ∗∗∗
S =

∑

V \S

ϕ∗
V

=
∑

V \S

ϕ∗∗
S

ϕ∗
S

ϕV

=
ϕ∗∗
S

ϕ∗
S

∑

V \S

ϕV

=
ϕ∗∗
S

ϕ∗
S

ϕ∗
S

= ϕ∗∗
S

So, that was pretty easy. To conclude, after finishing with message passing, probabilistic
information about the separator S obtained from V is exactly the same as the probabilistic
information obtained from W , called local consistency.

7


