
Markov Independence–Part I & II
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The focus of today ...

Independence and probabilistic reasoning

Why is representation of independence important?

To describe scientific results (in psychology,
sociology, physics, biology, ...)

It is the foundation of statistical learning

Bayes-ball algorithm

Ways to represent independence information

Properties of independence (axioms)
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A Bayesian network

Flu (FL)

(yes/no)

Fever (FE)

(yes/no)

Myalgia (MY)

(yes/no)

P (FL,MY,FE)

P (FL = y) = 0.1

P (FE = y|FL = y) = 0.95

P (FE = y|FL = n) = 0.1

P (MY = y|FL = y,FE = y) = 0.96

P (MY = y|FL = y, FE = n) = 0.96

P (MY = y|FL = n,FE = y) = 0.20

P (MY = y|FL = n,FE = n) = 0.20

Thus: P (FL,MY, FE) = P (MY|FL, FE)P (FE|FL)P (FL)

Example: P (¬fl,my, fe) = 0.20 · 0.1 · 0.9 = 0.018
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Independence and reasoning
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Independence and reasoning

Conclusion: the arc from FEVER to MYALGIA can be
removed, and hence only

P (MY | FL) (= P (MY | FL, FE))

need be specified
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Importance of independence

Compact knowledge representation

Simplify the model structure

Reduce parameter estimation

Efficient reasoning (compute posterior probabilities)
and learning of models

Describe scientific results (Markov processes), e.g., in
physics (Brownian motion), in economy (stock market
fluctuations)

Role of graphical models

Testing for conditional independence from a joint
distribution is time consuming

Can be directly read off from the graphical model
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Independence relation

Let X,Y, Z ⊆ V be sets of (random) variables, and let P be
a probability distribution of V then X is called conditionally
independent of Y given Z, denoted as

X ⊥⊥P Y | Z, iff P (X | Y, Z) = P (X | Z)

Note: This relation is completely defined in terms of the
probability distribution P , but there is a relationship to
graphs, for example:

{X2} ⊥⊥P {X3} | {X1}

1 2

3
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Equivalences with indepedence

The following conditions are equivalent:

P (X | Y, Z) = P (X | Z) if P (Y, Z) > 0 (why?)

P (X,Y | Z) = P (X | Z)P (Y | Z) if P (Y, Z) > 0

P (X,Y, Z) = P (X | Z)P (Y | Z)P (Z)

P (X,Y, Z) = P (X,Z)P (Y, Z)/P (Z) if P (Z) > 0

P (X | Y, Z) can be represented as the real function
ψ(X,Z), called a potential

P (X,Y | Z) can be written as φ(X,Z)ψ(Y, Z), with real
potential functions φ and ψ

N.B. potentials are non-negative real functions, very similar
to probability distributions, but they need not be normalised
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Empirical sciences

Result from conventional analysis:

Treatment 1
Outcome

Disease 1
Treatment 2

Outcome

Disease 2

Directed graph:

Treatment 1
Outcome

Disease 1
Treatment 2

Outcome

Disease 2

Health

Status

Mixed graph:

Treatment 1
Outcome

Disease 1
Treatment 2

Outcome

Disease 2
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The ⊥⊥P relation

The relation

X ⊥⊥P Y | Z

defines a ternary predicate

⊥⊥P (X,Y, Z)

For this predicate particular properties hold, such as
symmetry:

X ⊥⊥P Y | Z ⇐⇒ Y ⊥⊥P X | Z

These properties are in nature similar to properties as for
equality = (or some other relationship):

x = y ⇐⇒ y = x

(also called symmetry)
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Properties of the ⊥⊥P relation (1)

P1 Symmetry: If Y provides no new information about X
given Z, then X provides no additional information about Y .
Let X,Y, Z ⊆ V be sets of variables, then:

X ⊥⊥P Y | Z ⇐⇒ Y ⊥⊥P X | Z

Proof:
X ⊥⊥P Y | Z ⇔ P (X | Y, Z)

(1)
= P (X | Z)

P (X,Y, Z)

P (Y, Z)

(1)
=

P (X,Z)

P (Z)

P (X,Y, Z)

P (X,Z)

(1)
=

P (Y, Z)

P (Z)

P (Y | X,Z)
(1)
= P (Y | Z) ⇐⇒ Y ⊥⊥P X | Z
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Properties of the ⊥⊥P relation (2)

P2 Decomposition: If both Y and W are irrelevant with regard to our

knowledge of X given Z, then they are also irrelevant separately.

Let X, Y,W,Z ⊆ V be disjoint sets of random variables:

X ⊥⊥P Y ∪W | Z ⇒ X ⊥⊥P Y | Z ∧ X ⊥⊥P W | Z

Proof:

X ⊥⊥P Y ∪W | Z ⇔ P (X | Y,W,Z) = P (X | Z) (1)

P (X | Y, Z) =
∑

W

P (X | Y,W,Z)P (W | Y, Z)

=
∑

W

P (X | Z)P (W | Y, Z)

= P (X | Z)
∑

W

P (W | Y, Z)

= P (X | Z) · 1 = P (X | Z)
(1)
⇔ X ⊥⊥P Y | Z

Analogously we obtain the proof for X ⊥⊥P W | Z. Lecture 4-5: Independence – p. 12



Properties of the ⊥⊥P relation (3)

P3 Weak union: If both Y and W are irrelevant with regard to our

knowledge of X given Z, then Y remains irrelevant for X given Z and W .

Let X, Y,W,Z ⊆ V be disjoint sets of random variables:

X ⊥⊥P Y ∪W | Z ⇒ X ⊥⊥P Y | Z ∪W

Proof: · · · DIY

P4 Contraction: If Y is irrelevant to X given Z and if W is judged to be

irrelevant to X after learning information about Y , then W must have been

irrelevant prior to learning Y .

Let X, Y,W,Z ⊆ V be disjoint sets of random variables of variables:

X ⊥⊥P Y | Z ∧ X ⊥⊥P W | Y ∪ Z ⇒ X ⊥⊥P W ∪ Y | Z

Proof: · · · DIY
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Properties of the ⊥⊥P relation (4)

P5 Intersection: Let Z be given. If Y is irrelevant to X after learning W ,

and W is irrelevant to X after learning Y , then neither Y,W nor their

combination is relevant to X .

Let X, Y,W,Z ⊆ V disjoint sets of random variables:

X ⊥⊥P Y | Z ∪W ∧ X ⊥⊥P W | Z ∪ Y ⇒ X ⊥⊥P Y ∪W | Z

Proof: · · · DIY

Note: This axiom only holds for strictly positive probability distributions,

i.e. probability distributions that do not represent logical relationships.

Semi-graphoid: Any model that satisfies axioms P1–P4

Graphoid: Any model that satisfies axioms P1–P5
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From probabilities to independence relation

Probability
Distribution P

Properties
Independence relation ⊥⊥P

P1 Symmetry
P2 Decomposition

P3 Weak union
P4 Contraction
P5 Intersection
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Definition of an independence relation

Probability
Distribution P

Properties
Independence
Relation ⊥⊥P

P1 Symmetry
P2 Decomposition

P3 Weak union
P4 Contraction
P5 Intersection

Independence
Relation ⊥⊥

P1 Symmetry
P2 Decomposition

P3 Weak union
P4 Contraction
P5 Intersection

Constraints
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Definition of an independence relation

Let X,Y, Z,W ⊆ V be sets of objects. The independence
relation ⊥⊥ ⊆ ℘(V )× ℘(V )× ℘(V ) is defined such that the
following properties hold:

Symmetry: X ⊥⊥ Y | Z ⇐⇒ Y ⊥⊥ X | Z

Decomposition:
X ⊥⊥ Y ∪W | Z ⇒ X ⊥⊥ Y | Z ∧ X ⊥⊥W | Z

Weak union: X ⊥⊥ Y ∪W | Z ⇒ X ⊥⊥ Y | Z ∪W

Contraction:
X ⊥⊥ Y | Z ∧ X ⊥⊥W | Y ∪ Z ⇒ X ⊥⊥ W ∪ Y | Z

i.e. ⊥⊥ defines a semi-graphoid. Note that the intersection
property need not hold
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How to define an independence relation?

List all the instances of ⊥⊥

List some of the instances of ⊥⊥ and add axioms from
which other instances can be derived

Define a joint probability distribution P and look into the
numbers to see which instances of the independence
relation ⊥⊥ hold (this yields ⊥⊥P )

Use a graph to encode ⊥⊥, which yields ⊥⊥G (so, what
type of graph — directed, undirected, chain?)
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Explicit enumeration

Consider V = {1, 2, 3, 4} and ⊥⊥:

{1} ⊥⊥ {4} | ∅ {4} ⊥⊥ {2} | {1} {2} ⊥⊥ {4} | ∅

{4} ⊥⊥ {3} | {1} {3} ⊥⊥ {4} | ∅ {4} ⊥⊥ {2, 3} | {1}

{4} ⊥⊥ {1} | ∅ {1} ⊥⊥ {4} | {2} {4} ⊥⊥ {2} | ∅

{3} ⊥⊥ {4} | {2} {4} ⊥⊥ {3} | ∅ {1, 3} ⊥⊥ {4} | {2}

{1, 2} ⊥⊥ {4} | ∅ {4} ⊥⊥ {1} | {2} {1, 3} ⊥⊥ {4} | ∅

{4} ⊥⊥ {3} | {2} {2, 3} ⊥⊥ {4} | ∅ {4} ⊥⊥ {1, 3} | {2}

{4} ⊥⊥ {1, 2} | ∅ {1} ⊥⊥ {4} | {3} {4} ⊥⊥ {1, 3} | ∅

{2} ⊥⊥ {4} | {3} {4} ⊥⊥ {2, 3} | ∅ {1, 2} ⊥⊥ {4} | {3}

{1, 2, 3} ⊥⊥ {4} | ∅ {1} ⊥⊥ {2} | {4} {4} ⊥⊥ {1, 2, 3} | ∅

{2} ⊥⊥ {1} | {4} {1} ⊥⊥ {2} | ∅ {3} ⊥⊥ {4} | {1, 2}

{2} ⊥⊥ {1} | ∅ {4} ⊥⊥ {3} | {1, 2} {1, 4} ⊥⊥ {2} | ∅

{2} ⊥⊥ {4} | {1, 3} {2, 4} ⊥⊥ {1} | ∅ {4} ⊥⊥ {2} | {1, 3}

{2} ⊥⊥ {1, 4} | ∅ {1} ⊥⊥ {4} | {2, 3} {1} ⊥⊥ {2, 4} | ∅

{4} ⊥⊥ {1} | {2, 3} {2} ⊥⊥ {4} | {1} {4} ⊥⊥ {1, 2} | {3}

{3} ⊥⊥ {4} | {1} {4} ⊥⊥ {1} | {3} {2, 3} ⊥⊥ {4} | {1}

{4} ⊥⊥ {2} | {3} Lecture 4-5: Independence – p. 19



Use of independence axioms

Lemma Let X,Y, Z,W ⊆ V be sets of random variables:

X ⊥⊥ Y | Z ∧ X ∪ Z ⊥⊥ W | Y ⇒ X ⊥⊥W | Z

Proof: It holds that

X ∪ Z ⊥⊥ W | Y ⇒symm W ⊥⊥ X ∪ Z | Y

⇒wu W ⊥⊥ X | Y ∪ Z ⇒symm X ⊥⊥ W | Y ∪ Z

From X ⊥⊥ Y | Z and X ⊥⊥ W | Y ∪ Z, using contraction, it
follows that X ⊥⊥ W ∪ Y | Z. Now, by using decomposition,
it follows that X ⊥⊥ W | Z

Lecture 4-5: Independence – p. 20



Use of a joint probability distribution

Let X,Y and Z be binary variables with the following joint

distribution:

P (x, y, z) = 0.00675

P (x, y,¬z) = 0.002565

P (x,¬y, z) = 0.00825

P (x,¬y,¬z) = 0.006935

P (¬x, y, z) = 0.01575

P (¬x, y,¬z) = 0.253935

P (¬x,¬y, z) = 0.01925

P (¬x,¬y,¬z) = 0.686565

Check whether any of the following independence relations hold:

X ⊥⊥ Y | ∅ ⇔ P (X | Y ) = P (X)

X ⊥⊥ Z | ∅ ⇔ P (X | Z) = P (X)

Y ⊥⊥ Z | ∅ ⇔ P (Y | Z) = P (Y )

Y ⊥⊥ X | ∅ ⇔ P (Y | X) = P (Y )

Z ⊥⊥ X | ∅ ⇔ P (Z | X) = P (Z)

Z ⊥⊥ Y | ∅ ⇔ P (Z | Y ) = P (Z)

X ⊥⊥ Y | Z ⇔ P (X | Y, Z) = P (X | Z)

X ⊥⊥ Z | Y ⇔ P (X | Z, Y ) = P (X | Y )

Y ⊥⊥ Z | X ⇔ P (Y | Z,X) = P (Y | X)

Y ⊥⊥ X | Z ⇔ P (Y | X,Z) = P (Y | Z)

Z ⊥⊥ X | Y ⇔ P (Z | X,Y ) = P (Z | Y )

Z ⊥⊥ Y | X ⇔ P (Z | Y,X) = P (Z | X)
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As an undirected graph

Basic idea:

Each variable V is represented as a vertex in an
undirected graph G = (V (G), E(G)), with set of vertices
V (G) and set of edges E(G)

the independence relation ⊥⊥G is encoded as the
absence of edges; a missing edge between vertices u
and v indicates that random variables Xu and Xv are
(conditionally) independent
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Global Markov property – separation

Let G = (V (G), E(G)) be an undirected graph, and let
U,Z,W ⊆ V (G) be sets of vertices in G. The set W
(u-)separates U and Z, denoted as

U ⊥⊥G Z | W

if every path from a vertex in U to a vertex in Z contains at
least one vertex in W ; otherwise these sets are
(u-)connected

Remarks:

This criterion is known as the global Markov property or
(u-)separation criterion for undirected graphs

Note that ⊥⊥G indicates that the independence relation
is defined in terms of G (cf. ⊥⊥P )

If there are no paths between two vertices u and v, then
{u} ⊥⊥G {v} | ∅
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Example

Consider the following undirected graph G:

2 5

6

4

3

1 7

{1} ⊥⊥G {3, 6} | {2}

{4} ⊥⊥G {6} | {2, 5}

{4} ⊥⊥G {6} | {1, 2, 3, 5}

{1} 6⊥⊥G {5} | {4}, as the path 1− 2− 5 does not contain
4

{1, 5, 6} ⊥⊥G {7} | ∅
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D-map and I-map

Let V be a set and let ⊥⊥ be an independence relation
defined on V . Let G = (V (G), E(G)) be an undirected graph
with V (G) = V , then for each X,Y, Z ⊆ V :

G is called an undirected dependence map, D-map for
short, if

X ⊥⊥ Y | Z ⇒ X ⊥⊥G Y | Z

G is called an undirected independence map, I-map for
short, if

X ⊥⊥G Y | Z ⇒ X ⊥⊥ Y | Z

G is called an undirected perfect map, or P-map for
short, if G is both a D-map and an I-map, or,
equivalently

X ⊥⊥ Y | Z ⇐⇒ X ⊥⊥G Y | Z
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D-map and I-map for ⊥⊥P

Let P be probability distribution of X. Let G = (V (G), E(G))
be an undirected graph, then for each U,W,Z ⊆ V (G):

G is called an undirected dependence map, D-map for
short, if

XU ⊥⊥P XW | XZ ⇒ U ⊥⊥G W | Z

G is called an undirected independence map, I-map for
short, if

U ⊥⊥G W | Z ⇒ XU ⊥⊥P XW | XZ

G is called an undirected perfect map, or P-map for
short, if G is both a D-map and an I-map, or,
equivalently

XU ⊥⊥P XW | XZ ⇐⇒ U ⊥⊥G W | Z
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Examples D-maps

Let V = {1, 2, 3, 4} be a set and XV the corresponding set of
random variables, and consider the independence relation
⊥⊥P , defined by

{X1} ⊥⊥P {X4} | {X2, X3}

{X2} ⊥⊥P {X3} | {X1, X4}

The following undirected graphs are examples of D-maps:

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

1
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Markov network

A pair M = (G,P ), where

G = (V (G), E(G)) is an undirected graph with set of
vertices V (G) and set of edges E(G),

P is a joint probability distribution of XV (G), and

G is an I-map of P

is said to be a Markov network or Markov random field

Example M = (G,φ) = (G,P ):

1 2

3

Potential:
φ(X1, X2, X3) = ψ(X1, X2)τ(X2, X3),

or joint probability distribution:

P (X1, X2, X3) =
P (X1,X2)P (X2,X3)

P (X2)
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D-maps and I-maps again

Let ⊥⊥ be an independence relation. D-maps and I-maps
are limited in expressiveness in the following sense:

A pair of neighbour vertices in a D-map for ⊥⊥ are
dependent. However, not all dependent variables are
neighbours

A pair of non-neighbour variables in an I-map for ⊥⊥
corresponds to independent variables, but not each pair
of independent variables in an I-map are
non-neighbours
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Examples of I-maps

Let V = {1, 2, 3, 4} be a set with random variables XV , and
consider the independence relation ⊥⊥P :

{X1} ⊥⊥P {X4} | {X2, X3}

{X2} ⊥⊥P {X3} | {X1, X4}

The following undirected graphs are examples of I-maps:

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

1

(So, what is the P-map?)
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Obvious properties

Lemma For each independence relation ⊥⊥ there exists an
undirected D-map.

Proof:

The undirected graph G = (V,∅) is a D-map for ⊥⊥

Lemma For each independence relation ⊥⊥ there exists an
undirected I-map.

Proof:

The undirected graph G = (V, V × V ) is an I-map for ⊥⊥

Lecture 4-5: Independence – p. 31



Expressiveness: directed vs undirected

Directed graphs are more subtle when it comes to
expressing independence information than undirected
graphs

2 3

1

2 3

1

2 3

1

2 3

1

vs
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d-Separation: 3 situations
A chain k (= path in undirected underlying graph) in an
acyclic directed graph G = (V (G), A(G)) can be blocked:

1 2 3

Diverging

2 blocks (d-separates) 1 and 3: {1} ⊥⊥ {3} | {2}

1 2 3

Serial

2 blocks (d-separates) 1 and 3: {1} ⊥⊥ {3} | {2}

1 2 3

Converging

2 d-connects 1 and 3: {1} 6⊥⊥ {3} | {2}

(same holds for successors of 2); note {1} ⊥⊥ {3} | ∅
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Example blockage

4 5

6

2

1

7

3

The chain 4, 2, 5 from 4 to 5 is blocked by {2}

The chain 1, 2, 5, 6 from 1 to 6 is blocked by {5}, and also
by {2} and {2, 5}

The chain 3, 4, 6, 5 from 3 to 5 is blocked by {4} and
{4, 6}, but not by {6}

Lecture 4-5: Independence – p. 34



Directed global Markov property

Let G = (V (G), A(G)) be an acyclic directed graph, and let
U,W,Z ⊆ V (G) be sets of vertices in G. The set Z
d-separates U and W , denoted as

U ⊥⊥d
G W | Z

if every chain from a vertex in U to a vertex in W is blocked
by Z

Remarks

This criterion is known as the global Markov property or
d-separation criterion for acyclic directed graphs

Note that ⊥⊥d
G indicates that the independence relation

is defined in terms of G (cf. ⊥⊥P )
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Bayes-ball algorithm

Basic idea:

simulate the transfer of probabilistic information by a
bouncing ball

if the ball is not allowed to pass through a vertex C from
a vertex A to another vertex B, then these are
conditionally independent given C

Principal operations:

an unobserved vertex passes
balls through but also bounces
balls back from children

an observed vertex bounces
balls back from parents, but
blocks balls from children
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Example

bayesball.nlogo (based on R.D. Shachter, “Bayes-Ball: The
rational pastime for determining irrelevance and requisite
information in belief networks and influence diagrams”)

Start End
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There is also a local Markov property

Let G = (V (G), A(G)) be an acyclic, directed graph, then the
following local Markov property holds:

{vi} ⊥⊥d
G ν(vi) | π(vi)

with ν(vi) non-descendants of vertex vi, and π(vi) set of
parents

v i
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ν

( )i

ν

( )v i

( )v i

v
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Markov blanket

Set of parents, children and
co-parents of a node
(for X these are the nodes in blue)

The conditional distribution of
X conditioned on all the other
variables in the graph is depen-
dent only on the variables in

the Markov blanket
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Directed D-map and I-map

Let V be a set and let ⊥⊥ be an independence relation
defined on V . Let G = (V (G), A(G)) be an acyclic directed
graph, then for each X,Y, Z ⊆ V :

G is called a directed dependence map, D-map for
short, if

X ⊥⊥ Y | Z ⇒ X ⊥⊥d
G Y | Z

G is called a directed independence map, I-map for
short, if

X ⊥⊥d
G Y | Z ⇒ X ⊥⊥ Y | Z

G is called a directed perfect map, or P-map for short, if
G is both a D-map and an I-map, or, equivalently

X ⊥⊥ Y | Z ⇐⇒ X ⊥⊥d
G Y | Z
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Examples directed I-maps

Consider the following independence relation ⊥⊥P :

{X1} ⊥⊥P {X2} | ∅

{X1, X2} ⊥⊥P {X4} | {X3}

and the following directed I-maps of P :

1 2

3

4

1 2

3

4
1 2

3

4

1 2

3

4
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Minimal directed I-map

In the context of Bayesian networks, we are interested in
I-maps that contain as few arcs as possible (makes
probability tables smaller), i.e. minimal directed I-maps

Let G = V (G), A(G)) be an acyclic directed graph and let
P (XV (G)) be a probability distribution of XV (G). G is said to

be a minimal directed I-maps of P , if

G is a directed I-map of P , and

none of the subgraphs of G is a directed I-map of P

Example:

2 3

4

1
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Example minimal directed I-map

So, P (X, Y, Z) = P (Z | X, Y )P (X)P (Y ):

P (x, y, z) = 0.6 · 0.3 · 0.85 = 0.153

P (x, y,¬z) = 0.102

P (¬x, y, z) = 0.1309

. . .

Verify:

1) X ⊥⊥d

G
Y | ∅ ⇒ P (X | Y ) = P (X)

2) X 6⊥⊥d

G
Y | Z ⇒ P (X | Y, Z) 6= P (X | Z)
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Relationship directed and undirected graphs

Directed graphs contain independences that become
dependences after conditioning (instantiating variables)

Undirected graphs do not have this property

However, undirected subgraphs can be generated, by
making potentially dependent parents of a child
dependent

Example:

1 3

2

Original

1 3

2

Moral Graph
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Moralisation

Let G be an acyclic directed graph; its associated
undirected moral graph Gm can be constructed by
moralisation:

1. add lines to all non-connected vertices, which have a
common child, or descendant of a common child, and

2. replace each arc with a line in the resulting graph

3 4 5

6 7 8
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Moralisation

Let G be an acyclic directed graph; its associated
undirected moral graph Gm can be constructed by
moralisation:

1. add lines to all non-connected vertices, which have a
common child, or descendant of a common child, and

2. replace each arc with a line in the resulting graph

3 4 5

6 7 8

9

10

11

12

13
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Comments

Resulting undirected (moral) graph is an I-map of the
associated probability distribution

However, it contains too many dependences!

Example: {1} ⊥⊥d
G {3} | ∅, whereas {1} 6⊥⊥Gm {3} | ∅

1 3

2

Original

1 3

2

Moral Graph

Conclusion: make moralisation ‘dynamic’ (i.e. a function
of the set on which we condition)

For this the notion of ‘ancestral set’ is required
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Ancestral set

Let G = (V (G), A(G)) be an acyclic directed graph, then if
for W ⊆ V (G) it holds that π(v) ⊆ W for all v ∈ W , then W is
called an ancestral set of W . An(W ) denotes the smallest
ancestral set containing W

3 4 5

6 7 8

9

10

11

12

13

An({6}) = {3, 4, 6, 9}
An({10, 7}) = {7, 6, 3, 4, 9, 10}
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‘Dynamic’ moralisation

Let P be a joint probability distribution of a Bayesian
network B = (G,P ), then

XU ⊥⊥P XV | XW

holds iff U and V are (u-)separated by W in the moral
induced subgraph Gm of G with vertices An(U ∪ V ∪W )

Example:

1 3

2

Original

1 3

2

Moral Graph

X1 6⊥⊥P X3 | X2; An({1, 2, 3}) = {1, 2, 3}
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‘Dynamic’ moralisation

Let P be a joint probability distribution of a Bayesian
network B = (G,P ), then

XU ⊥⊥P XV | XW

holds iff U and V are (u-)separated by W in the moral
induced subgraph Gm of G with vertices An(U ∪ V ∪W )

Example:

1 3

2

Original

1 3

Moral Graph

X1 ⊥⊥P X3 | ∅; An({1, 3}) = {1, 3}
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Moralisation and d-separation

Let G = (V (G), A(G)) be an acyclic directed graph and let
U,W, S ⊆ V (G) be disjoint sets of vertices. Then, U and W
are d-separated by S, i.e.

U ⊥⊥d
G W | S

iff U and W are separated in the moral graph of the set of
vertices An(U ∪W ∪ S), i.e.

U ⊥⊥Gm
An(U∪W∪S)

W | S

Proof: Cowell et al, “Probabilistic Networks and Expert
Systems”, 1999, Springer, New York, page 72
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Example (1)

{10} 6⊥⊥d
G {13} | {7, 8}

3 4 5
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Example (1)

{10} 6⊥⊥Gm
An({10,7,8,13})

{13} | {7, 8}

3 4 5

6 7 8

9

10

11

12

13
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Example (2)

{10} ⊥⊥d
G {13} | ∅

3 4 5

6 7 8

9

10

11

12

13
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Example (2)

{10} ⊥⊥Gm
An({10,13})

{13} | ∅

9

10

11

12

13
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Conclusions

Conditional independence is defined as a logic that
supports:

symbolic reasoning about dependence and
independence information

makes it possible to abstract away from the
numerical detail of probability distributions

the process of assessing probability distributions

Looking at graphs makes it easier to find probability
distributions that are equivalent (important in learning)

Conditional independence is currently being extended
towards causal independence (a logic of causality) =
maximal ancestral graphs

Lecture 4-5: Independence – p. 56


	Markov Independence--Part I & II
	The focus of today ...
	A Bayesian network
	Independence and reasoning
	Independence and reasoning
	Importance of independence
	Independence relation
	Equivalences with indepedence
	Empirical sciences
	The $idr _P$ relation
	Properties of the $idr _P$ relation (1)
	Properties of the $idr _P$ relation (2)
	Properties of the $idr _P$ relation (3)
	Properties of the $idr _P$ relation (4)
	From probabilities to independence relation
	Definition of an independence relation
	Definition of an independence relation
	How to define an independence relation?
	Explicit enumeration
	Use of independence axioms
	Use of a joint probability distribution
	As an undirected graph
	Global Markov property -- separation
	Example
	D-map and I-map
	D-map and I-map for $idr _P$
	Examples D-maps
	Markov network
	D-maps and I-maps again
	Examples of I-maps
	Obvious properties
	Expressiveness: directed vs undirected
	d-Separation: emph {3} situations
	Example blockage
	Directed global Markov property
	Bayes-ball algorithm
	Example
	There is also a local Markov property
	Markov blanket
	Directed D-map and I-map
	Examples directed I-maps
	Minimal directed I-map
	Example minimal directed I-map
	Relationship directed and undirected graphs
	Moralisation
	Moralisation
	Comments
	Ancestral set
	`Dynamic' moralisation
	`Dynamic' moralisation
	Moralisation and d-separation
	Example (1)
	Example (1)
	Example (2)
	Example (2)
	Conclusions

