

Andrei A. Markov (1856-1922)

The focus of today ...

- Independence and probabilistic reasoning
- Why is representation of independence important?
- To describe scientific results (in psychology, sociology, physics, biology, ...)
- It is the foundation of statistical learning
- Bayes-ball algorithm
- Ways to represent independence information
- Properties of independence (axioms)

A Bayesian network

Thus: $P(\mathrm{FL}, \mathrm{MY}, \mathrm{FE})=P(\mathrm{MY} \mid \mathrm{FL}, \mathrm{FE}) P(\mathrm{FE} \mid \mathrm{FL}) P(\mathrm{FL})$
Example: $P(\neg f l, m y, f e)=0.20 \cdot 0.1 \cdot 0.9=0.018$

Independence and reasoning

Independence and reasoning

Conclusion: the arc from FEVER to MYALGIA can be removed, and hence only

$$
P(\mathrm{MY} \mid \mathrm{FL})(=P(\mathrm{MY} \mid \mathrm{FL}, \mathrm{FE}))
$$

need be specified

Importance of independence

- Compact knowledge representation
- Simplify the model structure
- Reduce parameter estimation
- Efficient reasoning (compute posterior probabilities) and learning of models
- Describe scientific results (Markov processes), e.g., in physics (Brownian motion), in economy (stock market fluctuations)
- Role of graphical models
- Testing for conditional independence from a joint distribution is time consuming
- Can be directly read off from the graphical model

Independence relation

Let $X, Y, Z \subseteq V$ be sets of (random) variables, and let P be a probability distribution of V then X is called conditionally independent of Y given Z, denoted as

$$
X \Perp_{P} Y \mid Z, \quad \text { iff } \quad P(X \mid Y, Z)=P(X \mid Z)
$$

Note: This relation is completely defined in terms of the probability distribution P, but there is a relationship to graphs, for example:

$$
\left\{X_{2}\right\} \Perp_{P}\left\{X_{3}\right\} \mid\left\{X_{1}\right\}
$$

Equivalences with indepedence

The following conditions are equivalent:

- $P(X \mid Y, Z)=P(X \mid Z)$ if $P(Y, Z)>0$ (why?)
- $P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)$ if $P(Y, Z)>0$
- $P(X, Y, Z)=P(X \mid Z) P(Y \mid Z) P(Z)$
- $P(X, Y, Z)=P(X, Z) P(Y, Z) / P(Z)$ if $P(Z)>0$
- $P(X \mid Y, Z)$ can be represented as the real function $\psi(X, Z)$, called a potential
- $P(X, Y \mid Z)$ can be written as $\phi(X, Z) \psi(Y, Z)$, with real potential functions ϕ and ψ
N.B. potentials are non-negative real functions, very similar to probability distributions, but they need not be normalised

Empirical sciences

Result from conventional analysis:

Directed graph:

Mixed graph:

The \Perp_{P} relation

The relation

$$
X \Perp_{P} Y \mid Z
$$

defines a ternary predicate

$$
\Perp_{P}(X, Y, Z)
$$

For this predicate particular properties hold, such as symmetry:

$$
X \Perp_{P} Y\left|Z \Longleftrightarrow Y \Perp_{P} X\right| Z
$$

These properties are in nature similar to properties as for equality $=$ (or some other relationship):

$$
x=y \Longleftrightarrow y=x
$$

(also called symmetry)

Properties of the \Perp_{P} relation (1)

P1 Symmetry: If Y provides no new information about X given Z, then X provides no additional information about Y. Let $X, Y, Z \subseteq V$ be sets of variables, then:

$$
X \Perp_{P} Y\left|Z \Longleftrightarrow Y \Perp_{P} X\right| Z
$$

Proof:

$$
\begin{aligned}
X \Perp_{P} Y \mid Z & \Leftrightarrow P(X \mid Y, Z) \stackrel{(1)}{=} P(X \mid Z) \\
\frac{P(X, Y, Z)}{P(Y, Z)} & \stackrel{(1)}{=} \frac{P(X, Z)}{P(Z)} \\
\frac{P(X, Y, Z)}{P(X, Z)} & \stackrel{(1)}{=} \frac{P(Y, Z)}{P(Z)} \\
P(Y \mid X, Z) & \stackrel{(1)}{=} P(Y \mid Z) \Longleftrightarrow Y \Perp_{P} X \mid Z
\end{aligned}
$$

Properties of the \Perp_{P} relation (2)

P2 Decomposition: If both Y and W are irrelevant with regard to our knowledge of X given Z, then they are also irrelevant separately. Let $X, Y, W, Z \subseteq V$ be disjoint sets of random variables:

$$
X \Perp_{P} Y \cup W\left|Z \Rightarrow X \Perp_{P} Y\right| Z \quad \wedge \quad X \Perp_{P} W \mid Z
$$

Proof:

$$
\begin{aligned}
X \Perp_{P} Y \cup W \mid Z & \Leftrightarrow P(X \mid Y, W, Z)=P(X \mid Z) \\
P(X \mid Y, Z) & =\sum_{W} P(X \mid Y, W, Z) P(W \mid Y, Z) \\
& =\sum_{W} P(X \mid Z) P(W \mid Y, Z) \\
& =P(X \mid Z) \sum_{W} P(W \mid Y, Z) \\
& =P(X \mid Z) \cdot 1=P(X \mid Z) \stackrel{(1)}{\Leftrightarrow} X \Perp_{P} Y \mid Z
\end{aligned}
$$

Analogously we obtain the proof for $X \Perp_{P} W \mid Z$.

Properties of the \Perp_{P} relation (3)

P3 Weak union: If both Y and W are irrelevant with regard to our knowledge of X given Z, then Y remains irrelevant for X given Z and W. Let $X, Y, W, Z \subseteq V$ be disjoint sets of random variables:

$$
X \Perp_{P} Y \cup W\left|Z \Rightarrow X \Perp_{P} Y\right| Z \cup W
$$

Proof: ... DIY
P4 Contraction: If Y is irrelevant to X given Z and if W is judged to be irrelevant to X after learning information about Y, then W must have been irrelevant prior to learning Y.
Let $X, Y, W, Z \subseteq V$ be disjoint sets of random variables of variables:

$$
X \Perp_{P} Y\left|Z \wedge X \Perp_{P} W\right| Y \cup Z \Rightarrow X \Perp_{P} W \cup Y \mid Z
$$

Proof: . . DIY

Properties of the \Perp_{P} relation (4)

P5 Intersection: Let Z be given. If Y is irrelevant to X after learning W, and W is irrelevant to X after learning Y, then neither Y, W nor their combination is relevant to X.
Let $X, Y, W, Z \subseteq V$ disjoint sets of random variables:

$$
X \Perp_{P} Y\left|Z \cup W \wedge X \Perp_{P} W\right| Z \cup Y \Rightarrow X \Perp_{P} Y \cup W \mid Z
$$

Proof: ... DIY

Note: This axiom only holds for strictly positive probability distributions, i.e. probability distributions that do not represent logical relationships.

- Semi-graphoid: Any model that satisfies axioms P1-P4
- Graphoid: Any model that satisfies axioms P1-P5

From probabilities to independence relation

Definition of an independence relation

Definition of an independence relation

Let $X, Y, Z, W \subseteq V$ be sets of objects. The independence relation $\Perp \subseteq \wp(V) \times \wp(V) \times \wp(V)$ is defined such that the following properties hold:

- Symmetry: $X \Perp Y|Z \Longleftrightarrow Y \Perp X| Z$
- Decomposition:

$$
X \Perp Y \cup W|Z \Rightarrow X \Perp Y| Z \quad \wedge \quad X \Perp W \mid Z
$$

- Weak union: $X \Perp Y \cup W|Z \Rightarrow X \Perp Y| Z \cup W$
- Contraction:

$$
X \Perp Y|Z \wedge X \Perp W| Y \cup Z \Rightarrow X \Perp W \cup Y \mid Z
$$

i.e. \Perp defines a semi-graphoid. Note that the intersection property need not hold

How to define an independence relation?

- List all the instances of \Perp
- List some of the instances of \Perp and add axioms from which other instances can be derived
- Define a joint probability distribution P and look into the numbers to see which instances of the independence relation \Perp hold (this yields \Perp_{P})
- Use a graph to encode \Perp, which yields \Perp_{G} (so, what type of graph - directed, undirected, chain?)

Explicit enumeration

Consider $V=\{1,2,3,4\}$ and \Perp :

$\{1\} \Perp\{4\} \mid \varnothing$	$\{4\} \Perp\{2\} \mid\{1\}$	$\{2\} \Perp\{4\} \mid \varnothing$
$\{4\} \Perp\{3\} \mid\{1\}$	$\{3\} \Perp\{4\} \mid \varnothing$	$\{4\} \Perp\{2,3\} \mid\{1\}$
$\{4\} \Perp\{1\} \mid \varnothing$	$\{1\} \Perp\{4\} \mid\{2\}$	$\{4\} \Perp\{2\} \mid \varnothing$
$\{3\} \Perp\{4\} \mid\{2\}$	$\{4\} \Perp\{3\} \mid \varnothing$	$\{1,3\} \Perp\{4\} \mid\{2\}$
$\{1,2\} \Perp\{4\} \mid \varnothing$	$\{4\} 山\{1\} \mid\{2\}$	$\{1,3\} \Perp\{4\} \mid \varnothing$
$\{4\} \Perp\{3\} \mid\{2\}$	$\{2,3\} \Perp\{4\} \mid \varnothing$	$\{4\} \Perp\{1,3\} \mid\{2\}$
$\{4\} \Perp\{1,2\} \mid \varnothing$	$\{1\} \Perp\{4\} \mid\{3\}$	$\{4\} \Perp\{1,3\} \mid \varnothing$
$\{2\} \Perp\{4\} \mid\{3\}$	$\{4\} \Perp\{2,3\} \mid \varnothing$	$\{1,2\} \Perp\{4\} \mid\{3\}$
$\{1,2,3\} \Perp\{4\} \mid \varnothing$	$\{1\} \Perp\{2\} \mid\{4\}$	$\{4\} \Perp\{1,2,3\} \mid \varnothing$
$\{2\} 山\{1\} \mid\{4\}$	$\{1\} \Perp\{2\} \mid \varnothing$	$\{3\} \Perp\{4\} \mid\{1,2\}$
$\{2\} \Perp\{1\} \mid \varnothing$	$\{4\} \Perp\{3\} \mid\{1,2\}$	$\{1,4\} \Perp\{2\} \mid \varnothing$
$\{2\} \Perp\{4\} \mid\{1,3\}$	$\{2,4\} \Perp\{1\} \mid \varnothing$	$\{4\} \Perp\{2\} \mid\{1,3\}$
$\{2\} \Perp\{1,4\} \mid \varnothing$	$\{1\} \Perp\{4\} \mid\{2,3\}$	$\{1\} \Perp\{2,4\} \mid \varnothing$
$\{4\} \Perp\{1\} \mid\{2,3\}$	$\{2\} \Perp\{4\} \mid\{1\}$	$\{4\} \Perp\{1,2\} \mid\{3\}$
$\{3\} \Perp\{4\} \mid\{1\}$	$\{4\} \Perp\{1\} \mid\{3\}$	$\{2,3\} \Perp\{4\} \mid\{1\}$
$\{4\} \Perp\{2\} \mid\{3\}$		

Use of independence axioms

Lemma Let $X, Y, Z, W \subseteq V$ be sets of random variables:

$$
X \Perp Y|Z \quad \wedge \quad X \cup Z \Perp W| Y \quad \Rightarrow \quad X \Perp W \mid Z
$$

Proof: It holds that

$$
\begin{array}{r}
X \cup Z \Perp W\left|Y \Rightarrow_{\text {symm }} W \Perp X \cup Z\right| Y \\
\Rightarrow_{\mathrm{wu}} W \Perp X\left|Y \cup Z \Rightarrow_{\text {symm }} X \Perp W\right| Y \cup Z
\end{array}
$$

From $X \Perp Y \mid Z$ and $X \Perp W \mid Y \cup Z$, using contraction, it follows that $X \Perp W \cup Y \mid Z$. Now, by using decomposition, it follows that $X \Perp W \mid Z$

Use of a joint probability distribution

Let X, Y and Z be binary variables with the following joint distribution:

$$
\begin{array}{rlrl}
P(x, y, z) & =0.00675 & P(\neg x, y, z) & =0.01575 \\
P(x, y, \neg z) & =0.002565 & P(\neg x, y, \neg z) & =0.253935 \\
P(x, \neg y, z) & =0.00825 & P(\neg x, \neg y, z) & =0.01925 \\
P(x, \neg y, \neg z) & =0.006935 & P(\neg x, \neg y, \neg z) & =0.686565
\end{array}
$$

Check whether any of the following independence relations hold:

$$
\begin{gathered}
X \Perp Y \mid \varnothing \Leftrightarrow P(X \mid Y)=P(X) \\
X \Perp Z \mid \varnothing \Leftrightarrow P(X \mid Z)=P(X) \\
Y \Perp Z \mid \varnothing \Leftrightarrow P(Y \mid Z)=P(Y) \\
Y \Perp X \mid \varnothing \Leftrightarrow P(Y \mid X)=P(Y) \\
Z \Perp X \mid \varnothing \Leftrightarrow P(Z \mid X)=P(Z) \\
Z \Perp Y \mid \varnothing \Leftrightarrow P(Z \mid Y)=P(Z)
\end{gathered}
$$

$$
\begin{aligned}
& X \Perp Y \mid Z \Leftrightarrow P(X \mid Y, Z)=P(X \mid Z) \\
& X \Perp Z \mid Y \Leftrightarrow P(X \mid Z, Y)=P(X \mid Y) \\
& Y \Perp Z \mid X \Leftrightarrow P(Y \mid Z, X)=P(Y \mid X) \\
& Y \Perp X \mid Z \Leftrightarrow P(Y \mid X, Z)=P(Y \mid Z) \\
& Z \Perp X \mid Y \Leftrightarrow P(Z \mid X, Y)=P(Z \mid Y) \\
& Z \Perp Y \mid X \Leftrightarrow P(Z \mid Y, X)=P(Z \mid X)
\end{aligned}
$$

As an undirected graph

Basic idea:

- Each variable V is represented as a vertex in an undirected graph $G=(V(G), E(G))$, with set of vertices $V(G)$ and set of edges $E(G)$
- the independence relation \Perp_{G} is encoded as the absence of edges; a missing edge between vertices u and v indicates that random variables X_{u} and X_{v} are (conditionally) independent

Global Markov property - separation

Let $G=(V(G), E(G))$ be an undirected graph, and let
$U, Z, W \subseteq V(G)$ be sets of vertices in G. The set W
(u-)separates U and Z, denoted as

$$
U \Perp_{G} Z \mid W
$$

if every path from a vertex in U to a vertex in Z contains at least one vertex in W; otherwise these sets are
(u-)connected

Remarks:

- This criterion is known as the global Markov property or (u-)separation criterion for undirected graphs
- Note that \Perp_{G} indicates that the independence relation is defined in terms of $G\left(\mathrm{cf} . \Perp_{P}\right)$
- If there are no paths between two vertices u and v, then $\{u\} \Perp_{G}\{v\} \mid \varnothing$

Example

Consider the following undirected graph G :

- $\{1\} \Perp_{G}\{3,6\} \mid\{2\}$
- $\{4\} \Perp_{G}\{6\} \mid\{2,5\}$
- $\{4\} \Perp_{G}\{6\} \mid\{1,2,3,5\}$
- $\{1\} \not \perp_{G}\{5\} \mid\{4\}$, as the path $1-2-5$ does not contain 4
- $\{1,5,6\} \Perp_{G}\{7\} \mid \varnothing$

D-map and I-map

Let V be a set and let \Perp be an independence relation defined on V. Let $G=(V(G), E(G))$ be an undirected graph with $V(G)=V$, then for each $X, Y, Z \subseteq V$:

- G is called an undirected dependence map, D-map for short, if

$$
X \Perp Y\left|Z \Rightarrow X \Perp_{G} Y\right| Z
$$

- G is called an undirected independence map, I-map for short, if

$$
X \Perp_{G} Y|Z \Rightarrow X \Perp Y| Z
$$

- G is called an undirected perfect map, or P-map for short, if G is both a D-map and an I-map, or, equivalently

$$
X \Perp Y\left|Z \Longleftrightarrow X \Perp_{G} Y\right| Z
$$

D-map and I-map for \Perp_{P}

Let P be probability distribution of X. Let $G=(V(G), E(G))$ be an undirected graph, then for each $U, W, Z \subseteq V(G)$:

- G is called an undirected dependence map, D-map for short, if

$$
X_{U} \Perp_{P} X_{W}\left|X_{Z} \Rightarrow U \Perp_{G} W\right| Z
$$

- G is called an undirected independence map, I-map for short, if

$$
U \Perp_{G} W\left|Z \Rightarrow X_{U} \Perp_{P} X_{W}\right| X_{Z}
$$

- G is called an undirected perfect map, or P-map for short, if G is both a D-map and an I-map, or, equivalently

Examples D-maps

Let $V=\{1,2,3,4\}$ be a set and X_{V} the corresponding set of random variables, and consider the independence relation \Perp_{P}, defined by

$$
\begin{aligned}
& \left\{X_{1}\right\} \Perp_{P}\left\{X_{4}\right\} \mid\left\{X_{2}, X_{3}\right\} \\
& \left\{X_{2}\right\} \Perp_{P}\left\{X_{3}\right\} \mid\left\{X_{1}, X_{4}\right\}
\end{aligned}
$$

The following undirected graphs are examples of D-maps:

Markov network

A pair $\mathcal{M}=(G, P)$, where

- $G=(V(G), E(G))$ is an undirected graph with set of vertices $V(G)$ and set of edges $E(G)$,
- P is a joint probability distribution of $X_{V(G)}$, and
- G is an I-map of P
is said to be a Markov network or Markov random field
Example $\mathcal{M}=(G, \phi)=(G, P)$:

Potential:
$\phi\left(X_{1}, X_{2}, X_{3}\right)=\psi\left(X_{1}, X_{2}\right) \tau\left(X_{2}, X_{3}\right)$,
or joint probability distribution:
$P\left(X_{1}, X_{2}, X_{3}\right)=\frac{P\left(X_{1}, X_{2}\right) P\left(X_{2}, X_{3}\right)}{P\left(X_{2}\right)}$

D-maps and I-maps again

Let \Perp be an independence relation. D-maps and I-maps are limited in expressiveness in the following sense:

- A pair of neighbour vertices in a D-map for \Perp are dependent. However, not all dependent variables are neighbours
- A pair of non-neighbour variables in an I-map for \Perp corresponds to independent variables, but not each pair of independent variables in an I-map are non-neighbours

Examples of I-maps

Let $V=\{1,2,3,4\}$ be a set with random variables X_{V}, and consider the independence relation \Perp_{P} :

$$
\begin{aligned}
& \left\{X_{1}\right\} \Perp_{P}\left\{X_{4}\right\} \mid\left\{X_{2}, X_{3}\right\} \\
& \left\{X_{2}\right\} \Perp_{P}\left\{X_{3}\right\} \mid\left\{X_{1}, X_{4}\right\}
\end{aligned}
$$

The following undirected graphs are examples of I-maps:

(So, what is the P-map?)

Obvious properties

Lemma For each independence relation \Perp there exists an undirected D-map.

Proof:

The undirected graph $G=(V, \varnothing)$ is a D-map for \Perp

Lemma For each independence relation \Perp there exists an undirected I-map.

Proof:

The undirected graph $G=(V, V \times V)$ is an I-map for \Perp

Expressiveness: directed vs undirected

Directed graphs are more subtle when it comes to expressing independence information than undirected graphs

d-Separation: 3 situations

A chain k ($=$ path in undirected underlying graph) in an acyclic directed graph $G=(V(G), A(G))$ can be blocked:

Diverging

2 blocks (d-separates) 1 and $3:\{1\} \Perp\{3\} \mid\{2\}$ Serial

2 blocks (d-separates) 1 and 3: $\{1\} \Perp\{3\} \mid\{2\}$
Converging

2 d-connects 1 and 3: $\{1\} \not \Perp\{3\} \mid\{2\}$
(same holds for successors of 2); note $\{1\} \Perp\{3\} \mid \varnothing$

Example blockage

- The chain $4,2,5$ from 4 to 5 is blocked by $\{2\}$
- The chain $1,2,5,6$ from 1 to 6 is blocked by $\{5\}$, and also by $\{2\}$ and $\{2,5\}$
- The chain $3,4,6,5$ from 3 to 5 is blocked by $\{4\}$ and $\{4,6\}$, but not by $\{6\}$

Directed global Markov property

Let $G=(V(G), A(G))$ be an acyclic directed graph, and let $U, W, Z \subseteq V(G)$ be sets of vertices in G. The set Z
d-separates U and W, denoted as

$$
U \Perp_{G}^{d} W \mid Z
$$

if every chain from a vertex in U to a vertex in W is blocked by Z

Remarks

- This criterion is known as the global Markov property or d-separation criterion for acyclic directed graphs
- Note that \Perp_{G}^{d} indicates that the independence relation is defined in terms of $G\left(\mathrm{cf}. \Perp_{P}\right)$

Bayes-ball algorithm

Basic idea:

- simulate the transfer of probabilistic information by a bouncing ball
- if the ball is not allowed to pass through a vertex C from a vertex A to another vertex B, then these are conditionally independent given C
Principal operations:
- an unobserved vertex passes balls through but also bounces balls back from children
- an observed vertex bounces balls back from parents, but blocks balls from children

Example

bayesball.nlogo (based on R.D. Shachter, "Bayes-Ball: The rational pastime for determining irrelevance and requisite information in belief networks and influence diagrams")

Start
End

There is also a local Markov property

Let $G=(V(G), A(G))$ be an acyclic, directed graph, then the following local Markov property holds:

$$
\left\{v_{i}\right\} \not{ }_{G}^{d} \nu\left(v_{i}\right) \mid \pi\left(v_{i}\right)
$$

with $\nu\left(v_{i}\right)$ non-descendants of vertex v_{i}, and $\pi\left(v_{i}\right)$ set of parents

Markov blanket

- Set of parents, children and co-parents of a node (for X these are the nodes in blue)
- The conditional distribution of X conditioned on all the other variables in the graph is dependent only on the variables in the Markov blanket

Directed D-map and I-map

Let V be a set and let \Perp be an independence relation defined on V. Let $G=(V(G), A(G))$ be an acyclic directed graph, then for each $X, Y, Z \subseteq V$:

- G is called a directed dependence map, D-map for short, if

$$
X \Perp Y\left|Z \Rightarrow X \Perp_{G}^{d} Y\right| Z
$$

- G is called a directed independence map, I-map for short, if

$$
X \Perp{ }_{G}^{d} Y|Z \Rightarrow X \Perp Y| Z
$$

- G is called a directed perfect map, or P-map for short, if G is both a D-map and an I-map, or, equivalently

$$
X \Perp Y\left|Z \Longleftrightarrow X \Perp_{G}^{d} Y\right| Z
$$

Examples directed I-maps

Consider the following independence relation \Perp_{P} :

$$
\begin{array}{rll}
\left\{X_{1}\right\} & \Perp_{P} & \left\{X_{2}\right\} \mid \varnothing \\
\left\{X_{1}, X_{2}\right\} & \Perp_{P} & \left\{X_{4}\right\} \mid\left\{X_{3}\right\}
\end{array}
$$

and the following directed I -maps of P :

Minimal directed I-map

In the context of Bayesian networks, we are interested in I-maps that contain as few arcs as possible (makes probability tables smaller), i.e. minimal directed I-maps

Let $G=V(G), A(G))$ be an acyclic directed graph and let $P\left(X_{V(G)}\right)$ be a probability distribution of $X_{V(G)} . G$ is said to be a minimal directed I-maps of P, if

- G is a directed I-map of P, and
- none of the subgraphs of G is a directed I-map of P

Example:

Example minimal directed I-map

So, $P(X, Y, Z)=P(Z \mid X, Y) P(X) P(Y)$:
$P(x, y, z)=0.6 \cdot 0.3 \cdot 0.85=0.153$
$P(x, y, \neg z)=0.102$
$P(\neg x, y, z)=0.1309$

Verify:

1) $X \Perp_{G}^{d} Y \mid \varnothing \Rightarrow P(X \mid Y)=P(X)$
2) $X \not \Perp{ }_{G}^{d} Y \mid Z \Rightarrow P(X \mid Y, Z) \neq P(X \mid Z)$

Relationship directed and undirected graphs

- Directed graphs contain independences that become dependences after conditioning (instantiating variables)
- Undirected graphs do not have this property
- However, undirected subgraphs can be generated, by making potentially dependent parents of a child dependent

Example:

Moralisation

Let G be an acyclic directed graph; its associated undirected moral graph G^{m} can be constructed by moralisation:

1. add lines to all non-connected vertices, which have a common child, or descendant of a common child, and
2. replace each arc with a line in the resulting graph

Moralisation

Let G be an acyclic directed graph; its associated undirected moral graph G^{m} can be constructed by moralisation:

1. add lines to all non-connected vertices, which have a common child, or descendant of a common child, and
2. replace each arc with a line in the resulting graph

Comments

- Resulting undirected (moral) graph is an I-map of the associated probability distribution
- However, it contains too many dependences!

Example: $\{1\} \Perp_{G}^{d}\{3\} \mid \varnothing$, whereas $\{1\} \not \bigwedge_{G^{m}}\{3\} \mid \varnothing$

- Conclusion: make moralisation 'dynamic' (i.e. a function of the set on which we condition)
- For this the notion of 'ancestral set' is required

Ancestral set

Let $G=(V(G), A(G))$ be an acyclic directed graph, then if for $W \subseteq V(G)$ it holds that $\pi(v) \subseteq W$ for all $v \in W$, then W is called an ancestral set of W. $\operatorname{An}(W)$ denotes the smallest ancestral set containing W

'Dynamic' moralisation

Let P be a joint probability distribution of a Bayesian network $\mathcal{B}=(G, P)$, then

$$
X_{U} \Perp_{P} X_{V} \mid X_{W}
$$

holds iff U and V are (u-)separated by W in the moral induced subgraph G^{m} of G with vertices $\operatorname{An}(U \cup V \cup W)$

Example:

$$
X_{1} \not \boldsymbol{H}_{P} X_{3} \mid X_{2} ; \quad \operatorname{An}(\{1,2,3\})=\{1,2,3\}
$$

Original

Moral Graph

'Dynamic' moralisation

Let P be a joint probability distribution of a Bayesian network $\mathcal{B}=(G, P)$, then

$$
X_{U} \Perp_{P} X_{V} \mid X_{W}
$$

holds iff U and V are (u-)separated by W in the moral induced subgraph G^{m} of G with vertices $\operatorname{An}(U \cup V \cup W)$

Example:

$$
X_{1} \Perp_{P} X_{3} \mid \varnothing ; \quad \operatorname{An}(\{1,3\})=\{1,3\}
$$

Moralisation and d-separation

Let $G=(V(G), A(G))$ be an acyclic directed graph and let $U, W, S \subseteq V(G)$ be disjoint sets of vertices. Then, U and W are d-separated by S, i.e.

$$
U \Perp_{G}^{d} W \mid S
$$

iff U and W are separated in the moral graph of the set of vertices $\operatorname{An}(U \cup W \cup S)$, i.e.

$$
U \Perp_{G_{\text {An }(U \cup W \cup S)}^{m}} W \mid S
$$

Proof: Cowell et al, "Probabilistic Networks and Expert Systems", 1999, Springer, New York, page 72

Example (1)

$\{10\} \not \operatorname{Al}_{G}^{d}\{13\} \mid\{7,8\}$

Example (1)

$$
\{10\} \ln _{\left.G_{\text {Anf(10, }}^{m}, 8,133\right)}\{13\} \mid\{7,8\}
$$

Example (2)

$\{10\} \Perp_{G}^{d}\{13\} \mid \varnothing$

Example (2)

$\{10\} \Perp_{G_{\operatorname{An}(\{10,33)}^{m}}\{13\} \mid \varnothing$

Conclusions

- Conditional independence is defined as a logic that supports:
- symbolic reasoning about dependence and independence information
- makes it possible to abstract away from the numerical detail of probability distributions
- the process of assessing probability distributions
- Looking at graphs makes it easier to find probability distributions that are equivalent (important in learning)
- Conditional independence is currently being extended towards causal independence (a logic of causality) = maximal ancestral graphs

