Markov Independence–Part I & II

Andrei A. Markov (1856 – 1922)

The focus of today ...

- Independence and probabilistic reasoning
- Why is representation of independence important?
 - To describe scientific results (in psychology, sociology, physics, biology, ...)
 - It is the foundation of statistical learning
- Bayes-ball algorithm
- Ways to represent independence information
- Properties of independence (axioms)

A Bayesian network

 $P(\mathsf{FL},\mathsf{MY},\mathsf{FE})$

Thus: P(FL, MY, FE) = P(MY|FL, FE)P(FE|FL)P(FL)

Example: $P(\neg fl, my, fe) = 0.20 \cdot 0.1 \cdot 0.9 = 0.018$

Independence and reasoning

Independence and reasoning

Conclusion: the arc from FEVER to MYALGIA can be removed, and hence only

 $P(\mathsf{MY} \mid \mathsf{FL}) \ (= P(\mathsf{MY} \mid \mathsf{FL}, \mathsf{FE}))$

need be specified

Importance of independence

- Compact knowledge representation
 - Simplify the model structure
 - Reduce parameter estimation
- Efficient *reasoning* (compute posterior probabilities) and *learning* of models
- Describe scientific results (Markov processes), e.g., in physics (Brownian motion), in economy (stock market fluctuations)
- Role of graphical models
 - Testing for conditional independence from a joint distribution is time consuming
 - Can be directly read off from the graphical model

Independence relation

Let $X, Y, Z \subseteq V$ be sets of (random) variables, and let P be a probability distribution of V then X is called conditionally independent of Y given Z, denoted as

 $X \perp P Y \mid Z$, iff $P(X \mid Y, Z) = P(X \mid Z)$

Note: This relation is completely defined in terms of the probability distribution *P*, but there is *a relationship to graphs*, for example:

 ${X_2} \perp P {X_3} | {X_1}$

Equivalences with indepedence

The following conditions are equivalent:

- P(X | Y, Z) = P(X | Z) if P(Y, Z) > 0 (why?)
- $P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)$ if P(Y, Z) > 0
- $P(X, Y, Z) = P(X \mid Z)P(Y \mid Z)P(Z)$
- P(X, Y, Z) = P(X, Z)P(Y, Z)/P(Z) if P(Z) > 0
- $P(X \mid Y, Z)$ can be represented as the real function $\psi(X, Z)$, called a potential
- $P(X, Y \mid Z)$ can be written as $\phi(X, Z)\psi(Y, Z)$, with real potential functions ϕ and ψ

N.B. potentials are non-negative real functions, very similar to probability distributions, but they need not be normalised

Empirical sciences

Result from conventional analysis:

The $\perp \!\!\!\perp_P$ **relation**

The relation

$$X \perp\!\!\!\perp_P Y \mid Z$$

defines a ternary predicate

 $\perp\!\!\!\perp_P (X,Y,Z)$

For this predicate particular properties hold, such as symmetry:

$$X \perp\!\!\!\perp_P Y \mid Z \Longleftrightarrow Y \perp\!\!\!\!\perp_P X \mid Z$$

These properties are in nature similar to properties as for equality = (or some other relationship):

$$x = y \Longleftrightarrow y = x$$

(also called symmetry)

Properties of the $\perp _P$ **relation (1)**

P1 Symmetry: If *Y* provides no new information about *X* given *Z*, then *X* provides no additional information about *Y*. Let $X, Y, Z \subseteq V$ be sets of variables, then:

$$X \perp\!\!\!\perp_P Y \mid Z \Longleftrightarrow Y \perp\!\!\!\perp_P X \mid Z$$

Proof:

$$X \perp P Y \mid Z \Leftrightarrow P(X \mid Y, Z) \stackrel{(1)}{=} P(X \mid Z)$$
$$\frac{P(X, Y, Z)}{P(Y, Z)} \stackrel{(1)}{=} \frac{P(X, Z)}{P(Z)}$$
$$\frac{P(X, Y, Z)}{P(X, Z)} \stackrel{(1)}{=} \frac{P(Y, Z)}{P(Z)}$$
$$P(Y \mid X, Z) \stackrel{(1)}{=} P(Y \mid Z) \iff Y \perp P X \mid Z$$

Properties of the $\perp _P$ **relation (2)**

P2 Decomposition: If both Y and W are irrelevant with regard to our knowledge of X given Z, then they are also irrelevant separately. Let $X, Y, W, Z \subseteq V$ be disjoint sets of random variables:

$$X \perp\!\!\!\!\perp_P Y \cup W \mid Z \; \Rightarrow \; X \perp\!\!\!\!\!\perp_P Y \mid Z \; \land \; X \perp\!\!\!\!\!\perp_P W \mid Z$$

Proof:

$$X \perp_{P} Y \cup W \mid Z \iff P(X \mid Y, W, Z) = P(X \mid Z) \quad (1)$$

$$P(X \mid Y, Z) = \sum_{W} P(X \mid Y, W, Z) P(W \mid Y, Z)$$

$$= \sum_{W} P(X \mid Z) P(W \mid Y, Z)$$

$$= P(X \mid Z) \sum_{W} P(W \mid Y, Z)$$

$$= P(X \mid Z) \cdot 1 = P(X \mid Z) \stackrel{(1)}{\Leftrightarrow} X \perp_{P} Y \mid Z$$

Analogously we obtain the proof for $X \perp P W \mid Z$.

Properties of the $\perp _P$ **relation (3)**

P3 Weak union: If both *Y* and *W* are irrelevant with regard to our knowledge of *X* given *Z*, then *Y* remains irrelevant for *X* given *Z* and *W*. Let $X, Y, W, Z \subseteq V$ be disjoint sets of random variables:

$$X \perp\!\!\!\perp_P Y \cup W \mid Z \quad \Rightarrow \quad X \perp\!\!\!\!\perp_P Y \mid Z \cup W$$

Proof: \cdots *DIY*

P4 Contraction: If Y is irrelevant to X given Z and if W is judged to be irrelevant to X after learning information about Y, then W must have been irrelevant prior to learning Y.

Let $X, Y, W, Z \subseteq V$ be disjoint sets of random variables of variables:

 $X \perp\!\!\!\perp_P Y \mid Z \land X \perp\!\!\!\!\perp_P W \mid Y \cup Z \Rightarrow X \perp\!\!\!\!\perp_P W \cup Y \mid Z$

Proof: \cdots *DIY*

Properties of the $\perp P$ **relation (4)**

P5 Intersection: Let *Z* be given. If *Y* is irrelevant to *X* after learning *W*, and *W* is irrelevant to *X* after learning *Y*, then neither *Y*, *W* nor their combination is relevant to *X*.

Let $X, Y, W, Z \subseteq V$ disjoint sets of random variables:

```
X \perp\!\!\!\!\perp_P Y \mid Z \cup W \land X \perp\!\!\!\!\!\perp_P W \mid Z \cup Y \Rightarrow X \perp\!\!\!\!\!\perp_P Y \cup W \mid Z
```

Proof: \cdots *DIY*

Note: This axiom only holds for *strictly positive* probability distributions, i.e. probability distributions that do **not** represent *logical relationships*.

- Semi-graphoid: Any model that satisfies axioms P1–P4
- Graphoid: Any model that satisfies axioms P1–P5

From probabilities to independence relation

Definition of an independence relation

Definition of an independence relation

Let $X, Y, Z, W \subseteq V$ be sets of objects. The independence relation $\coprod \subseteq \wp(V) \times \wp(V) \times \wp(V)$ is defined such that the following properties hold:

- Decomposition:
 $X \perp Y \cup W \mid Z \implies X \perp Y \mid Z \land X \perp W \mid Z$
- Weak union: $X \perp \!\!\!\perp Y \cup W \mid Z \Rightarrow X \perp \!\!\!\perp Y \mid Z \cup W$

• Contraction: $X \perp\!\!\!\!\perp Y \mid Z \land X \perp\!\!\!\!\perp W \mid Y \cup Z \Rightarrow X \perp\!\!\!\!\perp W \cup Y \mid Z$

i.e. $\bot\!\!\!\bot$ defines a semi-graphoid. Note that the intersection property need not hold

How to define an independence relation?

- List all the instances of $\bot \bot$
- List some of the instances of <u>II</u> and add axioms from which other instances can be derived
- Define a joint probability distribution P and look into the numbers to see which instances of the independence relation \bot hold (this yields $\bot P$)
- Use a graph to encode $\perp \perp$, which yields $\perp \perp_G$ (so, what type of graph directed, undirected, chain?)

Explicit enumeration

Consider $V = \{1, 2, 3, 4\}$ and $\bot\!\!\!\!\bot$:

$\{1\} \perp\!\!\!\perp \{4\} \mid \varnothing$	$\{4\} \perp\!\!\!\perp \{2\} \mid \{1\}$	$\{2\} \perp\!\!\!\perp \{4\} \mid \varnothing$
$\{4\} \perp\!\!\!\perp \{3\} \mid \{1\}$	$\{3\} \perp\!\!\!\perp \{4\} \mid \varnothing$	$\{4\} \perp\!\!\!\perp \{2,3\} \mid \{1\}$
$\{4\} \perp\!\!\!\perp \{1\} \mid \varnothing$	$\{1\} \perp\!\!\!\perp \{4\} \mid \{2\}$	$\{4\} \perp\!\!\!\perp \{2\} \mid \varnothing$
$\{3\} \perp\!\!\!\perp \{4\} \mid \{2\}$	$\{4\} \perp\!\!\!\perp \{3\} \mid \varnothing$	$\{1,3\} \perp\!\!\!\perp \{4\} \mid \{2\}$
$\{1,2\} \perp\!\!\!\perp \{4\} \mid \varnothing$	$\{4\} \perp\!\!\!\perp \{1\} \mid \{2\}$	$\{1,3\} \perp\!\!\!\perp \{4\} \mid \varnothing$
$\{4\} \perp\!\!\!\perp \{3\} \mid \{2\}$	$\{2,3\} \perp\!\!\!\perp \{4\} \mid \varnothing$	$\{4\} \perp\!\!\!\perp \{1,3\} \mid \{2\}$
$\{4\} \perp\!\!\!\perp \{1,2\} \mid \varnothing$	$\{1\} \perp\!\!\!\perp \{4\} \mid \{3\}$	$\{4\} \perp\!\!\!\perp \{1,3\} \mid \varnothing$
$\{2\} \perp\!\!\!\perp \{4\} \mid \{3\}$	$\{4\} \perp\!\!\!\perp \{2,3\} \mid \varnothing$	$\{1,2\} \perp\!\!\!\perp \{4\} \mid \{3\}$
$\{1,2,3\} \perp\!\!\!\perp \{4\} \mid \varnothing$	$\{1\} \perp\!\!\!\perp \{2\} \mid \{4\}$	$\{4\} \perp\!\!\!\perp \{1,2,3\} \mid \varnothing$
$\{2\} \perp\!\!\!\perp \{1\} \mid \{4\}$	$\{1\} \perp\!\!\!\perp \{2\} \mid \varnothing$	$\{3\} \perp\!\!\!\perp \{4\} \mid \{1,2\}$
$\{2\} \perp\!\!\!\perp \{1\} \mid \varnothing$	$\{4\} \perp\!\!\!\perp \{3\} \mid \{1,2\}$	$\{1,4\} \perp\!\!\!\perp \{2\} \mid \varnothing$
$\{2\} \perp\!\!\!\perp \{4\} \mid \{1,3\}$	$\{2,4\} \perp\!\!\!\perp \{1\} \mid \varnothing$	$\{4\} \perp\!\!\!\perp \{2\} \mid \{1,3\}$
$\{2\} \perp\!\!\!\perp \{1,4\} \mid \varnothing$	$\{1\} \perp\!\!\!\perp \{4\} \mid \{2,3\}$	$\{1\} \perp\!\!\!\perp \{2,4\} \mid \varnothing$
$\{4\} \perp\!\!\!\perp \{1\} \mid \{2,3\}$	$\{2\} \perp\!\!\!\perp \{4\} \mid \{1\}$	$\{4\} \perp\!\!\!\perp \{1,2\} \mid \{3\}$
$\{3\} \perp\!\!\!\perp \{4\} \mid \{1\}$	$\{4\} \perp\!\!\!\perp \{1\} \mid \{3\}$	$\{2,3\} \perp\!\!\!\perp \{4\} \mid \{1\}$
$\{4\} \perp\!\!\!\perp \{2\} \mid \{3\}$		Lecture 4-

Use of independence axioms

Lemma Let $X, Y, Z, W \subseteq V$ be sets of random variables:

 $X \perp\!\!\!\perp Y \mid Z \quad \wedge \quad X \cup Z \perp\!\!\!\perp W \mid Y \quad \Rightarrow \quad X \perp\!\!\!\perp W \mid Z$

Proof: It holds that

$$X \cup Z \perp \!\!\!\perp W \mid Y \Rightarrow_{\mathsf{symm}} W \perp \!\!\!\perp X \cup Z \mid Y$$
$$\Rightarrow_{\mathsf{wu}} W \perp \!\!\!\perp X \mid Y \cup Z \Rightarrow_{\mathsf{symm}} X \perp \!\!\!\perp W \mid Y \cup Z$$

From $X \perp\!\!\!\perp Y \mid Z$ and $X \perp\!\!\!\perp W \mid Y \cup Z$, using contraction, it follows that $X \perp\!\!\!\perp W \cup Y \mid Z$. Now, by using decomposition, it follows that $X \perp\!\!\!\perp W \mid Z$

Use of a joint probability distribution

Let X, Y and Z be binary variables with the following joint distribution:

P(x,y,z)	=	0.00675	$P(\neg x, y, z)$	=	0.01575
$P(x,y,\neg z)$	=	0.002565	$P(\neg x, y, \neg z)$	—	0.253935
$P(x,\neg y,z)$	=	0.00825	$P(\neg x, \neg y, z)$	=	0.01925
$P(x, \neg y, \neg z)$	=	0.006935	$P(\neg x, \neg y, \neg z)$	=	0.686565

Check whether any of the following independence relations hold:

 $X \perp \!\!\!\perp Y \mid \varnothing \Leftrightarrow P(X \mid Y) = P(X)$ $X \perp \!\!\!\perp Z \mid \varnothing \Leftrightarrow P(X \mid Z) = P(X)$ $Y \perp \!\!\!\perp Z \mid \varnothing \Leftrightarrow P(Y \mid Z) = P(Y)$ $Y \perp \!\!\!\perp X \mid \varnothing \Leftrightarrow P(Y \mid X) = P(Y)$ $Z \perp \!\!\!\perp X \mid \varnothing \Leftrightarrow P(Z \mid X) = P(Z)$ $Z \perp \!\!\!\perp Y \mid \varnothing \Leftrightarrow P(Z \mid Y) = P(Z)$

$X \perp\!\!\!\perp Y \mid Z \iff P(X \mid Y, Z) = P(X \mid Z)$
$X \perp\!\!\!\perp Z \mid Y \iff P(X \mid Z, Y) = P(X \mid Y)$
$Y \perp\!\!\!\perp Z \mid X \iff P(Y \mid Z, X) = P(Y \mid X)$
$Y \perp\!\!\!\perp X \mid Z \iff P(Y \mid X, Z) = P(Y \mid Z)$
$Z \perp\!\!\!\perp X \mid Y \iff P(Z \mid X, Y) = P(Z \mid Y)$
$Z \perp\!\!\!\perp Y \mid X \iff P(Z \mid Y, X) = P(Z \mid X)$

As an undirected graph

Basic idea:

- Each variable V is represented as a vertex in an undirected graph G = (V(G), E(G)), with set of vertices V(G) and set of edges E(G)
- the independence relation \coprod_G is encoded as the absence of edges; a missing edge between vertices u and v indicates that random variables X_u and X_v are (conditionally) independent

Global Markov property – separation

Let G = (V(G), E(G)) be an undirected graph, and let $U, Z, W \subseteq V(G)$ be sets of vertices in G. The set W (u-)separates U and Z, denoted as

 $U \perp\!\!\!\perp_G Z \mid W$

if every path from a vertex in U to a vertex in Z contains at least one vertex in W; otherwise these sets are (u-)connected

Remarks:

- This criterion is known as the global Markov property or (u-)separation criterion for undirected graphs
- Note that \bot_G indicates that the independence relation is defined in terms of *G* (cf. \bot_P)
- If there are no paths between two vertices u and v, then $\{u\} \perp _G \{v\} \mid \varnothing$

Example

Consider the following undirected graph *G*:

- $\ \, \bullet \ \, \{1\} \perp _G \{3,6\} \mid \{2\}$
- $\ \, \bullet \ \, \{4\} \perp _G \{6\} \mid \{2,5\}$
- $\ \, \bullet \ \, \{4\} \perp _G \{6\} \mid \{1,2,3,5\}$
- $\{1\} \not \perp_G \{5\} \mid \{4\}$, as the path 1-2-5 does not contain 4

D-map and I-map

Let *V* be a set and let $\perp \!\!\!\perp$ be an independence relation defined on *V*. Let G = (V(G), E(G)) be an undirected graph with V(G) = V, then for each $X, Y, Z \subseteq V$:

G is called an undirected dependence map, D-map for short, if

 $X \perp\!\!\!\perp Y \mid Z \Rightarrow X \perp\!\!\!\perp_G Y \mid Z$

G is called an undirected independence map, I-map for short, if

$$X \perp\!\!\!\perp_G Y \mid Z \Rightarrow X \perp\!\!\!\perp Y \mid Z$$

G is called an undirected perfect map, or P-map for short, if G is both a D-map and an I-map, or, equivalently

$$X \perp\!\!\!\perp Y \mid Z \Longleftrightarrow X \perp\!\!\!\perp_G Y \mid Z$$

D-map and I-map for $\perp \!\!\!\perp_P$

Let *P* be probability distribution of *X*. Let G = (V(G), E(G)) be an undirected graph, then for each $U, W, Z \subseteq V(G)$:

G is called an undirected dependence map, D-map for short, if

$$X_U \perp\!\!\!\perp_P X_W \mid X_Z \Rightarrow U \perp\!\!\!\perp_G W \mid Z$$

G is called an undirected independence map, I-map for short, if

$$U \perp\!\!\!\perp_G W \mid Z \Rightarrow X_U \perp\!\!\!\perp_P X_W \mid X_Z$$

G is called an undirected perfect map, or P-map for short, if G is both a D-map and an I-map, or, equivalently

 $X_U \perp\!\!\!\perp_P X_W \mid X_Z \Longleftrightarrow U \perp\!\!\!\!\perp_G W \mid Z_{\text{Lecture 4-5: Inc}}$

Examples D-maps

Let $V = \{1, 2, 3, 4\}$ be a set and X_V the corresponding set of random variables, and consider the independence relation \coprod_P , defined by

$$\{X_1\} \perp P \{X_4\} \mid \{X_2, X_3\} \{X_2\} \perp P \{X_3\} \mid \{X_1, X_4\}$$

The following undirected graphs are examples of D-maps:

Markov network

A pair $\mathcal{M} = (G, P)$, where

- G = (V(G), E(G)) is an *undirected* graph with set of vertices V(G) and set of edges E(G),
- *P* is a joint probability distribution of $X_{V(G)}$, and
- G is an *I-map* of P

is said to be a Markov network or Markov random field

Example
$$\mathcal{M} = (G, \phi) = (G, P)$$
:

D-maps and I-maps again

Let $\perp\!\!\!\perp$ be an independence relation. D-maps and I-maps are limited in expressiveness in the following sense:

- A pair of neighbour vertices in a D-map for <u>II</u> are dependent. However, not all dependent variables are neighbours
- A pair of non-neighbour variables in an I-map for corresponds to independent variables, but not each pair of independent variables in an I-map are non-neighbours

Examples of I-maps

Let $V = \{1, 2, 3, 4\}$ be a set with random variables X_V , and consider the independence relation $\bot _P$:

$$\{X_1\} \perp P \{X_4\} \mid \{X_2, X_3\} \{X_2\} \perp P \{X_3\} \mid \{X_1, X_4\}$$

The following undirected graphs are examples of I-maps:

Obvious properties

Lemma For each independence relation $\perp \perp$ there exists an undirected D-map.

Proof:

The undirected graph $G = (V, \emptyset)$ is a D-map for $\bot \!\!\!\bot$

Lemma For each independence relation $\perp\!\!\perp$ there exists an undirected I-map.

Proof:

The undirected graph $G = (V, V \times V)$ is an I-map for $\bot\!\!\!\bot$

Expressiveness: directed vs undirected

Directed graphs are more subtle when it comes to expressing independence information than undirected graphs

VS

d-Separation: 3 situations

A chain k (= path in undirected underlying graph) in an acyclic directed graph G = (V(G), A(G)) can be blocked:

Example blockage

- The chain 4, 2, 5 from 4 to 5 is blocked by $\{2\}$
- The chain 1, 2, 5, 6 from 1 to 6 is blocked by $\{5\}$, and also by $\{2\}$ and $\{2, 5\}$
- The chain 3, 4, 6, 5 from 3 to 5 is blocked by $\{4\}$ and $\{4, 6\}$, but *not* by $\{6\}$

Directed global Markov property

Let G = (V(G), A(G)) be an acyclic directed graph, and let $U, W, Z \subseteq V(G)$ be sets of vertices in *G*. The set *Z* d-separates *U* and *W*, denoted as

 $U \perp\!\!\!\perp^d_G W \mid Z$

if every chain from a vertex in U to a vertex in W is blocked by ${\cal Z}$

Remarks

- This criterion is known as the global Markov property or d-separation criterion for acyclic directed graphs
- ▶ Note that $\bot \bot_G^d$ indicates that the independence relation is defined in terms of *G* (cf. $\bot \bot_P$)

Bayes-ball algorithm

Basic idea:

- simulate the transfer of probabilistic information by a bouncing ball
- if the ball is not allowed to pass through a vertex C from a vertex A to another vertex B, then these are conditionally independent given C

Principal operations:

- an unobserved vertex passes balls through but also bounces balls back from children
- an observed vertex bounces balls back from parents, but blocks balls from children

Example

bayesball.nlogo (based on R.D. Shachter, "Bayes-Ball: The rational pastime for determining irrelevance and requisite information in belief networks and influence diagrams")

There is also a local Markov property

Let G = (V(G), A(G)) be an acyclic, directed graph, then the following local Markov property holds:

 $\{v_i\} \perp \!\!\!\perp_G^d \nu(v_i) \mid \pi(v_i)$

with $\nu(v_i)$ non-descendants of vertex v_i , and $\pi(v_i)$ set of parents

Markov blanket

- Set of parents, children and co-parents of a node (for X these are the nodes in blue)
- The conditional distribution of X conditioned on all the other variables in the graph is dependent <u>only</u> on the variables in the Markov blanket

Directed D-map and I-map

Let *V* be a set and let \bot be an independence relation defined on *V*. Let G = (V(G), A(G)) be an acyclic directed graph, then for each $X, Y, Z \subseteq V$:

G is called a directed dependence map, D-map for short, if

$$X \perp\!\!\!\perp Y \mid Z \Rightarrow X \perp\!\!\!\perp^d_G Y \mid Z$$

G is called a directed independence map, I-map for short, if

$$X \perp\!\!\!\perp^d_G Y \mid Z \Rightarrow X \perp\!\!\!\perp Y \mid Z$$

G is called a directed perfect map, or P-map for short, if G is both a D-map and an I-map, or, equivalently

$$X \perp\!\!\!\perp Y \mid Z \Longleftrightarrow X \perp\!\!\!\perp^d_G Y \mid Z$$

Examples directed I-maps

Consider the following independence relation $\perp \!\!\!\perp_P$:

$$\{X_1\} \quad \amalg_P \quad \{X_2\} \mid \varnothing$$
$$\{X_1, X_2\} \quad \amalg_P \quad \{X_4\} \mid \{X_3\}$$

and the following directed I-maps of P:

Minimal directed I-map

In the context of Bayesian networks, we are interested in I-maps that contain as few arcs as possible (makes probability tables smaller), i.e. minimal directed I-maps

Let G = V(G), A(G)) be an acyclic directed graph and let $P(X_{V(G)})$ be a probability distribution of $X_{V(G)}$. *G* is said to be a minimal directed I-maps of *P*, if

 \blacksquare G is a directed I-map of P, and

• none of the subgraphs of G is a directed I-map of PExample:

Example minimal directed I-map

So, $P(X, Y, Z) = P(Z \mid X, Y)P(X)P(Y)$: $P(x, y, z) = 0.6 \cdot 0.3 \cdot 0.85 = 0.153$ $P(x, y, \neg z) = 0.102$ $P(\neg x, y, z) = 0.1309$

Verify:
1)
$$X \perp \!\!\!\perp_G^d Y \mid \varnothing \Rightarrow P(X \mid Y) = P(X)$$

2) $X \not \perp_G^d Y \mid Z \Rightarrow P(X \mid Y, Z) \neq P(X \mid Z)$

Relationship directed and undirected graphs

- Directed graphs contain independences that become dependences after conditioning (instantiating variables)
- Undirected graphs do not have this property
- However, undirected subgraphs can be generated, by making potentially dependent parents of a child dependent

Example:

Moralisation

Let G be an acyclic directed graph; its associated undirected moral graph G^m can be constructed by moralisation:

- 1. add lines to all non-connected vertices, which have a common child, or descendant of a common child, and
- 2. replace each arc with a line in the resulting graph

Moralisation

Let G be an acyclic directed graph; its associated undirected moral graph G^m can be constructed by moralisation:

- 1. add lines to all non-connected vertices, which have a common child, or descendant of a common child, and
- 2. replace each arc with a line in the resulting graph

Comments

- Resulting undirected (moral) graph is an I-map of the associated probability distribution
- However, it contains too many dependences!

Example: $\{1\} \perp \!\!\!\perp_{G}^{d} \{3\} \mid \varnothing$, whereas $\{1\} \not \perp_{G^{m}} \{3\} \mid \varnothing$

- Conclusion: make moralisation 'dynamic' (i.e. a function of the set on which we condition)
- For this the notion of 'ancestral set' is required

Ancestral set

Let G = (V(G), A(G)) be an acyclic directed graph, then if for $W \subseteq V(G)$ it holds that $\pi(v) \subseteq W$ for all $v \in W$, then W is called an ancestral set of W. An(W) denotes the smallest ancestral set containing W

'Dynamic' moralisation

Let *P* be a joint probability distribution of a Bayesian network $\mathcal{B} = (G, P)$, then

 $X_U \perp\!\!\!\perp_P X_V \mid X_W$

holds iff U and V are (u-)separated by W in the moral induced subgraph G^m of G with vertices $An(U \cup V \cup W)$

Example:

'Dynamic' moralisation

Let *P* be a joint probability distribution of a Bayesian network $\mathcal{B} = (G, P)$, then

 $X_U \perp\!\!\!\perp_P X_V \mid X_W$

holds iff U and V are (u-)separated by W in the moral induced subgraph G^m of G with vertices $An(U \cup V \cup W)$

Example:

Moralisation and d-separation

Let G = (V(G), A(G)) be an acyclic directed graph and let $U, W, S \subseteq V(G)$ be disjoint sets of vertices. Then, U and W are d-separated by S, i.e.

$$U \perp\!\!\!\perp^d_G W \mid S$$

iff U and W are separated in the moral graph of the set of vertices $An(U \cup W \cup S)$, i.e.

$$U \perp \!\!\!\!\perp_{G^m_{\mathrm{An}(U \cup W \cup S)}} W \mid S$$

Proof: Cowell et al, "Probabilistic Networks and Expert Systems", 1999, Springer, New York, page 72

Example (1)

$\{10\} \not\!\!\!\perp^d_G \{13\} \mid \{7,8\}$

Example (1)

$\{10\} \perp\!\!\!\perp^d_G \{13\} \mid \varnothing$

Example (2)

Conclusions

- Conditional independence is defined as a logic that supports:
 - symbolic reasoning about dependence and independence information
 - makes it possible to abstract away from the numerical detail of probability distributions
 - the process of assessing probability distributions
- Looking at graphs makes it easier to find probability distributions that are equivalent (important in learning)
- Conditional independence is currently being extended towards causal independence (a logic of causality) = maximal ancestral graphs