
Learning Bayesian Networks

Parameters and Structure
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The focus of today ...

How to get data if you only have a model (structure and
probabilistic parameters determined by consulting
experts, specialised literature, etc)

How to learn probabilistic parameters if you have the
structure of a Bayesian network (constructed by hand),
data, but not the probabilistic parameters

How to learn the structure of a Bayesian network if you
know nothing but have data (from experiments)
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Learning Bayesian networks

?

Bayesian networks⇔ datasets?

Generating datasets from Bayesian networks and vice
versa

Learning:

parameter (distribution given structure) learning

structure (topology) learning
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Dataset generation

Let B = (G,P ) be a Bayesian network, with acyclic direct
graph (ADG) G = (V (G), A(G)), then a dataset D can be
generated as follows:

visit each vertex X ∈ V (G) in topological order

choose a value out of the domain of X, based on:

earlier choices of values for π(X), denoted by π̂(X)

a random number (generated by a RNG)

P (X | π̂(X))

B acts as a sample generator using likelihood weighting

Thus, the generated dataset D reflects the likelihoods in B
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Learning structure and parameters
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Learning structure and parameters

Consider a dataset D consisting of N observations:

When D contains no missing values, complete data

When learning BNs from data:

different ADGs can represent the same
independence structure and joint probability
distribution

those ADGs are equivalent

practical importance: selection of one ADG from a
set of equivalent ones
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Learning parameters from data

Estimating values of parameters corresponding to an ADG
structure and a probability distribution from a database.

Example of the structure of a BN and (tiny) dataset:

Gender (G)
(male/female)

IQ (I)
(low/average

high)

High Mark
(H)

(no/yes)

Student Gender IQ High Mark for BN Course

1 male low no

2 female average yes

3 male high yes

4 female high yes
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Learning parameters from data (cont.)

Probability as relative frequency,

P (X = x | Y = y) =
nx∧y
ny

where nx denotes the number of cases in which x holds
(n⊤: total number of cases).

For the previous example, we obtain:

P (G)

m f

0.5 0.5

P (I | G)

G l a h

m 0.5 0.0 0.5

f 0.0 0.5 0.5

P (H | I)

I n y

l 1 0

a 0 1

h 0 1
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Resulting Bayesian network

Prior probability:

no
yes

High Mark BN Course
low

average
high

IQ

male
female

GENDER

Male student:

no
yes

High Mark BN Course
low

average
high

IQ

male
female

GENDER

Female student:

no
yes

High Mark BN Course
low

average
high

IQ

male
female

GENDER

Good BN course student:

no
yes

High Mark BN Course
low

average
high

IQ

male
female

GENDER
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Incorporating prior knowledge

Compute the weighted average of

estimate P̂D(V | π(V )) of the conditional probability
distribution for variable V based on the dataset D

Θ reflects prior knowledge (discrete distribution)

These are combined as follows:

P (V | π(V ), D) =
n

n+ n0
P̂D(V | π(V )) +

n0
n+ n0

Θ

where

n is the size of the dataset D

n0 is the estimated size of the (virtual) ‘dataset’ on
which the prior knowledge is based (called equivalence
sample size)
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Example of prior knowledge

Professor S has prior knowledge about the likelihood that a
student has achieved a high mark for BN course, given a
particular IQ, based on having seen 200 students. We have,

n0 = 200

Prof. S says that θ = 0.8 of the students with a high IQ
have been awarded a high mark for the BN course

Available dataset D:

Student Gender IQ High Mark for BN Course

1 male low no

2 female average yes

3 male high yes

4 female high yes
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Example of prior knowledge (cont.)

Based on the dataset D above, it follows:

P̂D(H = y | I = h) = 1

n = 4

Prof. S and dataset D are combined as follows:

P (H = y | I = h,D) =
n

n+ n0
P̂D(H = y | I = h)

+
n0

n+ n0
θ

=
4

4 + 200
· 1 +

200

4 + 200
· 0.8

= 0.020 · 1 + 0.98 · 0.8 = 0.804

Remark: P (H = y | I = h) changed from 1 (data) to 0.804
(data and prior knowledge)
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Comparing models

Let D be data, G be the structure and θG be the parameters
(the family P (V | π(V ))) of a Bayesian network
Some common methods for comparison:

Likelihood: LθG(G) = Pr(D | G, θG), for given G and θG.
Estimating parameters by maximum log-likelihood:

l(G) = max
θG

log Pr(D | G, θG)

Marginal likelihood:

M(G) = Pr(D | G) =

∫

θG

Pr(D | G, θG) Pr(θG) dθG

with prior Pr(θG) and parameters θG marginalised out

(Pr is a density or probability distribution on data, structure,
and parameters)

Lecture 6: Learning – p. 13



Remarks

Let D = (r1, r2, . . . , rn), with ri a tuple (xi1, . . . , x
i
m) in the

database. Usual assumptions:

ri, rj , i 6= j, are independent

Pr(ri | ·) and Pr(rj | ·) come from the same distribution

θ = P (identically distributed)

Abbreviated i.i.d.

Consequence:

LθG(G) = Pr(D | G, θG)

=

n∏

i=1

Pr(ri | G, θG)

=

n∏

i=1

PG(x
i
1, . . . , x

i
m)
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Learning structure from data

Given the above dataset D and the following Bayesian
networks:

G I HG1:

G I HG2:

G I HG3:

G I HG4:

G

I

HG5: ...

Which one is best?
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Learning structure from data (cont.)

Inducing the structure of a BN from the data:

Search-and-score methods:

search algorithm: select subset of (high-quality) BNs

quality measure (score): decide which one of the
(candidate) networks is the best

Constraint-based structure learning: identifies ADG
structure that best encodes a set of conditional
dependence and independence assumptions

Two ADGs representing the same set of condition
dependence and independence statements are Markov
equivalent
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Search & Score: find a quality measure

A quality measure is a criterion by which one can order
a set of possible BNs

Desired property: networks leading to the same
independence structure should be assigned the same
quality value

Let D be a dataset (multi-set) of cases, and B = (G,P ) and
B′ = (G′, P ′) be two Bayesian networks, then

q =
Pr(G | D)

Pr(G′ | D)

is a (Bayesian) measure, with Pr a probability distribution
defined on BNs and datasets, that can be used to rank
Bayesian-network structures
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Find a quality measure (cont.)

Note that:

q =
Pr(G,D)/Pr(D)

Pr(G′, D)/Pr(D)
=

Pr(G,D)

Pr(G′, D)

and

Pr(G,D) = Pr(D | G) Pr(G)

Hence:

log Pr(G,D) = log Pr(D | G) + log Pr(G)

must be determined for each Bayesian network B
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Determining Pr(D | G) (cont.)

Let B = (G,P ) be a Bayesian network, with
G = (V (G), A(G)), and joint probability distribution PB.

Assumption 1: no missing values in D

Assumption 2: cases v ∈ D have occurred
independently

Assumption 3: discrete network parameters

A common quality measure of a Bayesian model is:

Pr(D | G) =

N∏

i=1

qi∏

j=1

ri∏

k=1

θijk
nijk
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Determining Pr(D | G) (cont.)

In the above formula,

N is the number of variables in the model

qi denotes de number of states over the parents of Xi in
the graph (qi = 1, if Xi has no parents)

ri denote the number of states for a variable Xi,

θ is the estimate of the parameters of the model, and

nijk denotes the number of cases in the database with

Xi in its kth state and parent of Xi in its jth state

This measure estimates the maximum likelihood
parameters for the model
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Maximum likelihood score

Pr(D | G) =

N∏

i=1

qi∏

j=1

ri∏

k=1

θijk
nijk

Usually the log of this value is considered:

log Pr(D | G) =

N∑

i=1

qi∑

j=1

ri∑

k=1

nijk · log

(
nijk
nij

)

Given a complete database, this becomes a matter of
frequency counting, where the parameters are maximized

by θ̂ijk = nijk

nij
and nij =

∑ri
k=1 nijk
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Example

Assume the database,

Student Gender IQ High Mark for BN Course

1 male low no

2 female average yes

3 male high yes

4 female high yes

and the model described by the graph G1

G I HG1:
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Example (cont.)

There are 3 variables/vertices (N = 3)

Vertex G does not have any parents

lg Pr(D | G1) =
∑

G

nG lg
nG
n

+
∑

I

∑

G

nI∧G lg
nI∧G
nG

+
∑

I

∑

H

nH∧I lg
nH∧I

nI

Note: lg ≡ log2
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Example (cont.)

lg Pr(D | G1) = 2 lg
2

4
+ 2 lg

2

4
+

1 lg
1

2
+ 0 lg

0

2
+

0 lg
0

2
+ 1 lg

1

2
+

1 lg
1

2
+ 1 lg

1

2
+

1 lg
1

1
+ 0 lg

0

1
+ 0 lg

0

2
+

0 lg
0

1
+ 1 lg

1

1
+ 2 lg

2

2

= −8
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Another example

Assume the same database,

Student Gender IQ High Mark for BN Course

1 male low no

2 female average yes

3 male high yes

4 female high yes

and another model described by the graph G2

G I HG2:
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Example (cont.)

There are 3 variables/vertices (N = 3)

Vertex G and H do not have any parents

lg Pr(D | G2) =
∑

G

nG lg
nG
n

+
∑

I

∑

G

nI∧G lg
nI∧G
nG

+
∑

H

nH lg
nH
n
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Another example (cont.)

lg Pr(D | G2) = 2 lg
2

4
+ 2 lg

2

4
+

1 lg
1

2
+ 0 lg

0

2
+

0 lg
0

2
+ 1 lg

1

2
+

1 lg
1

2
+ 1 lg

1

2
+

1 lg
1

4
+ 3 lg

3

4

= −11.25

⇒ Pr(D | G1) > Pr(D | G2)
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What about the prior Pr(G)?

(1) Try to incorporate background knowledge about B, or

(2) Assume that all Bayesian networks are equally likely,
i.e. Pr(G) is a uniform probability distribution

For (2) it holds that:

log Pr(G,D) = log Pr(D | G) + c

with c ∈ R, a constant

Hence,

log q = log Pr(D | G)− log Pr(D | G′)

This is called the logarithmic Bayes factor
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Limitations of Pr(G,D)

We have seen that the

log Pr(G,D) = log Pr(D | G) + log Pr(G)

can be used as a quality measure

However, Pr(G,D) is usually higher for more complex (i.e.
with more arcs) networks

So, a measure that takes into account the complexity of a
candidate network is needed
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Penalising factor

Solution: add factor r that penalises complexity

r = −
1

2
k · log n

where k number of parameters required to completely
specify the joint probability distribution, n = |D| is the size of
the database

For BN with binary variables, k =
∑

X∈V (G) 2
|π(X)|

Result:

Q(G,D) = log Pr(G) + log Pr(D | G)−
1

2
k · log n
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Quality measure Q

Combined

Density of G

Q
u

al
it

y 
Q

(G
,D

) 0
Match −H(G,D)

Penalty −1/2K*log N

Q(G,D) = log Pr(G)− n ·H(G,D)−
1

2
k · log n

where:

Pr(G): prior probability of G

log Pr(D | G) = −n ·H(G,D): value of match

−1
2k · log n: penalty term
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How many ADGs have to be considered?

Network structures for N vertices (Robinson formula):

f(N) =

N∑

i=1

(−1)i+1

(
N

i

)
2i(N−i)f(N − i)

N Number of ADGs

1 1

2 3

3 25
...

...

8 783,702,329,343

9 1,213,442,454,842,881

10 4,175,098,976,430,598,143
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Searching for an optimal graph

. . .

The space of possible directed acyclic graphs for N
variables is very large

Therefore, heuristic methods are necessary in order to
optimize the score in such space
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K2 algorithm

An ordering of the nodes is assumed

A maximum number of parents for each node is also
given

It holds that initial node does not have parents

Then, for each node,

it starts with the empty set of parents

adds as parent the node preceding it in the given
order, if this produces an increase in the score

It continues adding parents while the score increases
and the number of parents does not exceed the
maximum
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Heuristic search

Algorithm for a graph G:

(1) add (or delete) one arc

(2) compute the gain in quality

(3) repeat (1) and (2) for every possible arc

(4) choose the arc with maximal gain, and add (delete) it

The above algorithm is called for the null graph (adding), or
the complete graph (deleting)
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Structure constraints

Background knowledge in terms of constraints on the
structure of the ADG can be specified (e. g., X ⊥⊥ Y | Z)

That is, makes use of particular properties of graphical
models, namely conditional dependences and
independences

It is essential to induce such relations from the
probability distribution implied by the data

Can recover the correct ADG (i.e., perfect map) when
possible

Does not get stuck in local optima, unlike search
strategies which aim to optimise a scoring function
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PC Algorithm

The PC (Peter & Clark) algorithm (implemented in Tetrad
and Hugin tools) have the following steps:

Test the conditional independence between each pair of
variables in order to derive the conditional dependences
and independences

Identify the graph skeleton (= undirected graph)
induced by those relations

Identify convergent connections (X → Z ← Y
structures)

Identify derived directions
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Example

From data, determine the validity of conditional statements
such as X ⊥⊥ Y | SXY

For instance,

⊥⊥= {B ⊥⊥ E | ∅, B ⊥⊥ R | ∅, B ⊥⊥W | A,A ⊥⊥ R | E,

E ⊥⊥ W | A,R ⊥⊥W | A}

6⊥⊥= {B 6⊥⊥ A | ∅, B 6⊥⊥ A | E,B 6⊥⊥ A | R,B 6⊥⊥ A | W,

B 6⊥⊥ A | {E,R}, B 6⊥⊥ A | {E,W}, B 6⊥⊥ A | {R,W},

B 6⊥⊥ A | {E,R,W}, A 6⊥⊥ E | ∅, . . . , A 6⊥⊥ W | ∅, . . . ,

E 6⊥⊥ R | ∅, . . .}
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Example (cont)

The skeleton of the graph is constructed from the
conditional dependence and independence statements

For each pair of variables X and Y where no independence
statement X ⊥⊥ Y | SXY exists, the undirected edge (X,Y )
is created in the skeleton.

Given the previous statements,

W

A R

B E
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Example (cont)

Once the skeleton has been identified, convergent
connections are then identified

Based on the skeleton, search for subsets of variables
{X,Y, Z} s.t. X and Y are neighbours, and Z and Y are
neighbours while X and Z are not neighbours. For each
subset, a collider (converging connection) X → Y ← Z is
created.

W

A R

B E

Lecture 6: Learning – p. 40



Example (cont)

Directions of arcs are then derived, following four rules.
Rules are repeatedly applied until no further edge can be
given an orientation. In our example, this results in (a).

Since based on data alone the direction between E and R
cannot be determined, direction can be either chosen at
random or provided by expert knowledge (if any).

W

A R

B E

W

A R

B E

(a) (b)
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