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Answer the following TWO questions. Each question is worth 50 marks; the marks for each

part are shown in brackets.

Question 1

Consider the Bayesian network B = (G,P ), with acyclic directed graph G as shown in Figure
1, and joint probability distribution P given below. All variables in the network are assumed

A

B

D

C

J

Figure 1: Bayesian network of Question 1.

to be binary. A variable V having the value ⊤ (true) is also indicated by v, whereas ⊥ (false)
is also denoted by ¬v. The following (local) probability distributions are defined for this
network:

P (a) = 1, P (b) = 0.5, P (d) = 0.3

and

P (c | A,B) =











0.8 if A = B = ⊤
0.3 if A = ⊤ and B = ⊥
0 otherwise

Finally, it is assumed that variable J models a noisy Boolean function f (e.g. a noisy OR)
with the following parameters:

P (iC | c) = 0.5 P (iC | ¬c) = 0
P (iD | d) = 0.3 P (iD | ¬d) = 0

where IC represents an intermediate variable between C and J and ID an intermediate variable
between D and J , respectively. These variables are not indicated in the network of Figure
1, but used to represent a causal independence model with respect to variable J . In other
words, the family of probability distributions P (J | C,D) is defined in terms of the Boolean
function f , which corresponds to P (J | IC , ID), and the parameters P (IC | C) and P (ID | D)
respectively.

a. Compute the following probabilities (showing how you obtained your result): P (c), [15]
P (a | c), P (a | d), and P (a,¬b | c).
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b. Briefly discuss why it is usually cumbersome to specify a family of (arbitrary) probability [10]
distributions P (Y | X1, . . . ,Xn) for a variable Y of a Bayesian network, and explain
why causal independence models can help here. Also mention at least one other method
that can help in determining P (Y | X1, . . . ,Xn).

c. Suppose that the probability distribution P (J | IC , ID), or equivalently Boolean func- [10]
tion f , associated with the Bayesian network in Figure 1 represents a logical OR. Based
on this assumption, compute the (marginal) probability distribution P (J), i.e., the
probabilities P (j) and P (¬j).

d. In principle any Boolean function could have been taken to model the interactions
among the causes C and D giving rise to the effect J . Discuss the meaning of the [15]
causal independence model obtained by choosing a logical exclusive OR (XOR) as the
Boolean function. Compute P (J) (include the derivation of the result in your solution)
for that case.
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Question 2
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Figure 2: Bayesian network of Question 2.

Consider the Bayesian network B = (G,P ) shown in Figure 2, where G = (V (G), A(G)) is
the acyclic directed graph shown in the figure, and P is a probability distribution defined on
the variables corresponding to the vertices V (G) = {V1, V2, V3, V4, V5}. The following (local)
probability distributions are defined for P :

P (v1) = 0.4
P (v2 | v1, v4) = 0.5 P (v2 | ¬v1, v4) = 0.7
P (v2 | v1,¬v4) = 0.8 P (v2 | ¬v1,¬v4) = 0.4
P (v3 | v1, v2) = 0.6 P (v3 | ¬v1, v2) = 0.6
P (v3 | v1,¬v2) = 0.3 P (v3 | ¬v1,¬v2) = 0.3
P (v4) = 0.3
P (v5 | v2) = 0.2 P (v5 | ¬v2) = 0.7

a. Is the graph shown in Figure 2 a minimal or non-minimal directed I-map of P? Explain [10]
your answer. Construct the undirected graph that is an undirected I-map of P

b. Give at least 5 conditional and unconditional independence relationships |= which are [15]
represented in the graph G of the Bayesian network shown in Figure 2.
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c. The best structure of a Bayesian network B = (G,P ) can be determined by computing [15]
LθG

(G) = Pr(D | G, θG), where Pr is the joint probability distribution on datasets
D used for learning and Bayesian networks, where θG correspond to the probabilistic
parameters P of B. The measure LθG

(G) is called the likelihood of graph G. Assuming
that the cases d in the database D are independent, finding the best structure amounts
to optimising LθG

(G), or usually

log LθG
(G) = lθG

(G) =
∑

d∈D

log Pr(d | G, θG) =
∑

d∈D

log P (d),

i.e., we use the parameters P of B to compute the likelihood of each tuple d in database
D.

Briefly discuss the validity of the assumptions behind this method. Would this measure
give the same or different likelihoods for Markov equivalent Bayesian networks? Explain
your answer.

d. Learning Bayesian network structure using a search-and-score method also requires the [10]
use of a search algorithm, typically greedy search. What are the limitations of greedy
search in the structure learning context, and give at least one way by means of which
this limitation can be circumvented.
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