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Abstract

In general the computation of probabilities in a Bayesian Network
(BN) is NP-hard. Thus it is in general not possible to efficiently compute
the probabilities in a BN. The computation can be de done more effi-
ciently if we apply specific algorithms to specific network structures. The
objective of this paper is to discuss two algorithms which address this
task: Variable Elimination Algorithm and Extend Variable Elimination
Algorithm.

1 Introduction

Computation of probabilities in Bayesian Network (BN) is NP-hard. Thus it is
in general computationally inefficient to compute the probabilities in a BN. This
has been proven by Cooper in [1]. The computation can be made more efficient
if a specific algorithm is applied to a specific network structure. In this paper
we will discuss two of these algorithms: These are Variable Elimination Algo-
rithm (VEA) and Extend Variable Elimination Algorithm (EVEA), which are
described in [9] and [10], respectively. VEA allows to do the computation more
efficiently by using a factorization of joint probabilities distributions. EVEA
extends this by also taking Casual Independence (CI) into account.

We will now discuss how the paper is structured. We will discuss in Chap-
ter 1.1 preliminary information that we use throughout this paper. Then, we
will briefly describe in Chapter 1.2 other algorithms that address the same prob-
lem as VEA and EVEA. Thereafter, we will elaborate in Chapter 2 VEA and
EVEA. We will discuss the experiments and results in Chapter 3. Finally, we
will conclude this paper in Chapter 4.

1.1 Preliminary Information

We will now describe preliminary information that we use to explain the two
algorithms in the chapter hereafter.

Definition 1 (Bayesian Network) We define a BN as an ordered pair N' =
(G, P)). Where G = (V, A) is an acyclic directed graph. The set of nodes (or



variables) in G is represented by V. The set of arcs in G is defined by A. Where
P is a joint probability distribution such that the following holds:

P(XV) - H P(XU|X7T(U))'
veV

Where 7(v) are the set of parents of a node v in G. We see in Figure 1 an
example of a BN. We will use it in order to explain VEA. It is factorized as
follows:

P(z1,...,27) = P(x1)P(xg|z1) P(a2|21) P(x3|2e) P(24|22) P(25|23, 24) P(27]25, 26).
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Figure 1: Example BN
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The probability distribution for a variable X € V is defined as P (X = z). We
formulate a joint probability formally as P (X3, ..., X, ), and particularly, when
X1,---, X, are independent variables then:

P(Xy,....Xn) =[] P(X), foralli=1,...,n.
XeV

We are able to compute a probability of a single variable by marginalizing out
the redundant variables out of the joint probability distribution. We do this as
follows:

P(z1) =Y P(x1,Y).

YeVv

We define a conditional probability as:
X
PX]Y) = —=——

We read this as the probability of X when information of Y is provided.



1.2 Related Work

CI refers to the situation where multiple causes contribute independently to a
common effect. A well-known example is the noisy OR-gate model[4]. Heckerman[5]
was the first to formalize the general concept of CI. The formalization was later
refined by Heckerman and Breese[6].

Kim and Pearl[7] showed how the use of noisy OR~gate can speed up inference
in a special kind of BNs known as polytrees; D’ Ambrosio[2][3] showed the same
for two level BNs with binary variables. For general BNs, Olesen et al[8]. and
Heckerman[5] proposed two ways of using causal independencies to transform
the network structures. Which is also involved in the following chapters.

2 Variable Elimination Algorithm (VEA)

We will now describe VEA which was proposed by Poole and Zhang in [9]. We
will start with describing the theoretical foundation and then we explain how
the algorithm can be applied on a BN by means of an example.

Definition 2 (leaf node) We define a leaf node in a BN A as a node which
does not have children.

Definition 3 (barren node) We consider a node barren with respect to a
query when it is a leaf node and it is not in X UY".

We formulate Proposition 1 based on Definition 1 and 2.

Proposition 1 Provided with a BN N and a leaf node v. We define a A’
as the BN from which v has been removed. Therefore we have the following
equality:

Py (XY =Yy) = Py (XY =Yp).

Definition 4 (moral graph) We define a moral graph m (G) of a directed
graph G = (V, A) as the graph from which the directions are removed and com-
mon parents are connected.

Definition 5 (m-separation) Given the following sets of nodes X, Y and

Z € m(QG). Given that X and Z are separated by Y. We say that X and Z are
m-separated by Y in G.
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Figure 2: We see on the left a BN. We see on the right its
moralized counterpart.

We are able to define Proposition 2 based on Definition 3 and 4.

Proposition 2. Given a BN N and a query Py (X|Y =Y;). We define N’
as the BN from which all the nodes that are m-separated from X by Y are
removed in /. This will result in the following equality:

Py (X|Y =Yy) = Py (X|Y =Yp).

We will show by means of an example how Proposition 1 and Proposition 2 can
be applied in order to reduce the structure of a BN such that the computation
of a probability can be done more efficiently. We see in Figure 1 the initial
BN. We will remove X7 in Figure 3. The node has been coloured. Proposition
1 allows use to remove this node because it has no children and is thus a leaf
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Figure 3: A visual demonstration of simplefying the network
structure.
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We apply again Proposition 1 on Xg because after removing X7 it has become
a leaf node. In the next figure we apply Proposition 2 on node X;. The figure
thereafter shows the final BN.

We use the BN in Figure 1 as an example to compute the probability of X;.
We naively compute this my summing X; out as follows:

P(z1) = Z P (21, X2, X3, X4, X5, X6, X7)
X,;EV/Zl

In order to obtain P(x;) we use the whole network. If we assume that the
probabilities distributions are binary valued it would imply that we would have
to store 2". Thus in this particular situation we store 128 numbers. This could
be done more efficient by using factorisations of potentials. We will provide a
definition of a potential and two variants of it.

Definition 6 (potential) A potential is a non-normalized variant of proba-
bility distribution.

Definition 7 (joint potential) We define a joint potential Pg (V) as a multi-
plication of the potentials in set S defined over a set of variables V.

Definition 8 (marginal potential) We define a marginal potential Pg (X)
by marginalizing out the variables outside of X from the joint potential Pg(V).

We have introduced the fundamental theory which explains when a node is
allowed to be removed and what is needed to understand VEA.

Efficiently computing the probabilities of a BN consists of three stages. The
objective of the first stage is to find an elimination ordering. That is an order-
ing of the variables that need to be removed. The second stage defines how the
third stage will do the calculations and in which order. The third stage does the
calculations. It takes as input a set of potentials. Then a variable is summed
out and the result is returned.

VEA is an example of the second stage that we described above. We will
demonstrate how a variable is marginalized by means of a set of potentials. We
are interested in marginalizing x; out the network from Figure 1. We do this
as follows:

wam (xg, 1‘6) = Z P($1)P($2|$1)P(l‘6|1‘1).

We are left with the following set of probability distributions which constitutes
the BN: {P(z3|z2), P(x4|x2), P(as|xs, x4), P(xr|2s, x6), ¥z, (X2, 26)}.

We will apply VEA in order to compute the query: P(z7,z¢). Given the BN
in Figure 1 and are provided with the following the following elimination order
(z2, 23,24, %5, %6). Then we will have the following initial situation:

ZIo: xIs3: Ty Is5: Tg-:
P(.’Z?Q‘ml) P($5|$3,5L‘4) P(l‘7‘$5,$6) P(JC6|1‘1)
P(x3|zs)

P(x4|z)




We define v,, (z3,24) = >, P(wa|z1)P(z3]|2r2) P(24|z2) and reduce to:

xT3: Ty: I5: Te-
P(xs|xs,x4) P(x7|zs,x6) P(xzg|z1)
w(l?g ($37 56'4)

Then we define 1., (z4,25) = >_,. P(¥5|r3, 24)1s, (23, 24) and reduce to:

T4 Is5: Te:
Vo, (x4, 25)  Plar|ws,z6) Plxs|ar)

We define ¢, (z5) = >_,, ¥z, (24, 25) and we obtain:

Ts: Te:
P(z7|zs,16) P(welr1)
¢I4 (:Cg,)

We define ., (z6,27) = >_,, P(w7|rs, 26)te, (75).

Tg-
P(zg|z1)
1/’15 (:C67 l’7)

wIG (337) = Zmﬁ P($7‘x5’x6)'¢)w5 (3?6,.%'7).

Algorithm 1 Procedure VEA(S, P(X,Y =Yp), W)

Input:
e S: a set of potentials

e P(X,Y =Y)): astandard query

e W: elimination ordering
Output: Ps(X,Y =Y))
Set Y to Yj in the potentials S, resulting in S;.
Associate each potential ¢ of S; with the variable that appears earliest in W
among all variables of 1.
while W is not empty do
Remove the first variable on W. Denote this variable by v.
Call procedure do third stage. To multiply all the potentials associated v
together and to sum out v from the product, resulting ,,.
Associate 1, with the variable that appears earliest in W among all the

variables of v,,.
return The potential from the removal of the last variable in W which is

Ps(X,Y =Y))

2.1 Extended Variable Elimination Algorithm (EVEA)

Now that we have explained the VEA. We will describe an extension on this
algorithm the EVEA. We will start with explaining CI. In case a BN is not
restricted to how a node depends on its parents, it would result in an exponential
number of conditional probabilities for each node. We are able to efficiently
solve this problem by means of CI. We define an effect e which has m parents:



€1,C2, " ,Cm, and c1,Co, -,y are said to be causal independent w.r.t. e if
there exists random variables &1,&s, - , &y, that have the same set of possible
values as e such that:

1. For each i, &; probabilistically depends on ¢; and is conditionally indepen-
dent of all other c¢;’s and all other {;’s given c¢;;

2. There exists a commutative and associative binary operator x over the
frame of e such that e = & % o % - - % &,

There are several CI, i.e. noisy OR-gates, noisy MAX-gates, noisy AND-gates,
noisy adders , etc.

Definition 9 (convergent variable) In a BN a convergent variable collects
and combines different independent parents of itself, and non-convergent vari-
able is called regular variable

The VEA which we described earlier emphasizes on the factorization of the
joint probability distributions. The EVEA extends the VEA by means of CI.
Thus we are able factorize the form P(e|cy, -, ¢p) as follows:

Proposition 3 Let e be a node in a BN and let ¢y, cs, -+ , ¢, be the parents
of e. If ¢1,c9,-+,cp, are causally independent w.r.t. e, then the conditional
probability P(e|ci, - ,¢m) can be obtained from the conditional probabilities
P(&|ci) as follows:

Ple=aler, - ,em) = Z P& = ailer) - P(€m = amlem),

Qpke Q=0

where for each value a of e. The symbol * indicates the base combination op-
erator of e.

Furthermore, Zhang and Poole introduced an operator for combining factors
which contains convergent variables. Consider two factors f and g, let ey, - , eg
be the convergent variables that appears in both f and g, let A be the list of
regular variables in both f and g, let B be the list of variables that appear only
in f, and C be the list of variables that appear only in g. Suppose *; is the
base combination operator of e;. Then, the combination f ® g of f and g is a
function of variables ey, - - , ex and of the variables in A, B and C"

f®g(€1 =01, ,6 :ak7A7B7C)

Q11¥112=01 Q1 ¥ Qg2 =k

f(el =011, , € = O[k17A,B)g(€1 = 12, , € = O[kQ,A,C)
And the combination operator ® has several properties:

Proposition 4 If f and g do not share any convergent variables, then f ® g is
simply the multiplication of f and g. And the operator ® is both commutative
and associative.
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Figure 4: A BN

Proposition 5 Suppose f and g are factors and variable z appears in f and
not in g, then:

S (f9)=0_hy

z

d(teg=0_NHeog

z

With the combination operator ®, one could factorize P(e|cy, - ,cm) as:
P(e‘clﬂ U ,Cm) = ®:L(11fi(€7 Ci)

For example, in the BN shown in Figure 4, the joint probability P(a, b, ¢, e1, €2, €3)
could be factorized into following list of factors:

P(a), P(b), P(c), P(e1|a, b, c), P(es|a, b, c), P(esler, e2)

Now we can see that all the e;’s are convergent variables, so we could further
factorize their conditional probabilities as:

P(eila,b,c) = fii(e1,a) ® fiz(e1,b) ® fiz(e1,c)
P(esla,b,c) = fai(ez,a) ® faslez,b) ® faz(ez,c)
P(esler, e2) = fai(es, e1) @ faa(es, ea)

here for instance f11(e1,a) is the contributing factor of a to e;. Hence the fac-
tors in the factorization of a joint probability distribution could be divided into
heterogeneous factors with others before and homogeneous factors.

Definition 9 (heterogeneous factor) A heterogeneous factor is the factor
that needs to be combined with the other heterogeneous factors by the operator
® before it can be combined with other factors by multiplication.

Definition 10 (homogeneous factor) In contrast a heterogeneous factor,
the factor that directly could be combined by multiplication is called homoge-
neous factor.



The f;;’s are heterogeneous factors since they need to combine with other fi;’s
then it could be combined with other factors by multiplication. While P(a),
P(b), P(c) in this case are homogeneous factors since they only need to be com-
bined with each other by multiplication.

To support the propositions above, the concept of deputation is introduced.

Definition 11 (deputation) Deputation is a transformation that one can ap-
ply to a BN so that the factorization of the joint probability distribution in the
BN could respect the propositions above. Let € be a convergent variable. To
dipute € is to make a copy € of €, make the parents of ¢ be parents of ¢, replace
e with ¢’ in the contributing factors of €, make ¢’ the only parent of €, and set
the conditional probability P(e|¢’) as:

: _
P(ele) = {1 ife=ce¢

0 otherwise

And € is the deputy of €, after the deputation, variable € becomes a new reqular
variable, and € becomes a convergent variable. The variables that are regular
variables before deputation are denoted as old regular variables. What’s more,
P(e|¢’) is a homogeneous factor.

O OO

Figure 5: The BN in Figure 4 After the Deputation

So a deputation BN is obtained from a BN by deputing all the convergent vari-
ables. Figure 5 shows the deputation of BN in Figure 4. The joint probability

/ ! !/
P(aa b7 C,€1,€1,€2,€9,€3, 63)7
into homogeneous factors:

P(a),P(b),P(c),P(el\ell)7P(eg|e/2),P(e3|eg),



and heterogeneous factors

fll(ellva):f12(6/17b)7f13(6/170)7f21(6/27a)af22(6/2ab)7f23(6/270)vf31(6ga61)7f32(e/3762)'

This factorization has three important properties. That are:
1. each heterogeneous factor contains one and only one convergent variable.

2. each convergent variable ¢’ appears in one and only on homogeneous fac-
tor.

3. except for the deputing functions, none of the homogeneous factors contain
any convergent variables.

More importantly, deputation does not change the answer to a query, which is
Proposition 6 The posterior probability P(X|Y = Yp) is the same in a BN as
in its deputation.

With the concepts and propositions that we have described above we are able
to extend the sum-out procedure in the Variable Elimination algorithm to
sum-outl. We see in Algorithm 3 a high level description of sum-outi. Algo-
rithm 3 describes in pseudo-code how to compute P(X|Y = Yp) which is called
EVEA.

Algorithm 2 Procedure sum-out1(Fy, Fa, 2)

Input:
e Fi: A list of homogeneous factors,

e F5: A list of heterogeneous factors,

e z a variable
Output: A list of heterogeneous factors and a list of homogeneous factors.
1. Remove from F; all the factors that contain z, multiply them resulting in,
say, f. If there are no such factors, set f = nil
2. Remove from F5 all the factors that contain z, combine them by using ®
resulting in, say, g. If there are no such factors, set g = nil.
3.
if g = nil then,
add the new (homogeneous) factor > f to Fi.
else
add the new (hetergeneous) factor ) fg to Fa

4. return (F; ,F3)

3 Experiments and Results

In the experiment section two CPCS networks are used to test the performance
of the algorithms mentioned above. The first CPCS network has 364 nodes,
while the other one consists of 422 nodes and 867 arcs. In both networks each
non-root variable is a convergent variable with base combination operator MAX.
Besides VEA and EVEA, two other VEA-based approaches are also tested. The
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Algorithm 3 Procedure EVEA(F, JF1, X, Y, Yo, p)

Input:
e Fi: The list of homogeneous factors in the deputation BN

e F5: The list of heterogeneous factors in the deputation BN
e X: A list of query variables

e Y: A list of observed variables

e Y): The corresponding list of observed values

e p: A legitimate elimination ordering, in which the deputy variable should
be summed out before its corresponding new regular variable
Output: h(X)/> s h(X)
1. Set the observed variables in all factors to their observed values
2.
while p is not empty do
Remove the first variable z from p
(F1, F2) = sum-outl(Fy, Fa, 2)
3. h = multiplication of all factors in F; X combination(by ®) of all factors
in .7:2
4. return h(X)/ > y h(X)

first one is denoted by "PD”, which is first applying parent-divorcing method
invented by Olesen et al. to transform the BN then using VEA. The other one
"TT” firstly transforms BN by temporal transformation by Heckerman and then
uses VEA.

To simplify the comparison, the execution time is limited within 10 seconds
and the computation resource is limited within 10 MB. The authors test dif-
ferent situations with 5, 10 and 15 observations, and 50 randomly generated
queries are involved in the experiment. They found that CTP based approaches
could not handle the two CPCS networks under the constraints above, while
VEA-based approaches can.

The statistics are shown in Figure 6. In the charts, the curve “5vel”, for in-
stance, displays the time statistics for EVEA on queries with five observations.
Points on the X-axis represent CPU times in seconds. For any time point, the
corresponding point on the Y-axis represents the number of five observation
queries that were each answered within the time by EVEA. And obviously EVEA
could answer all the queries within 10 second, much better than PD and TT
methods, since in some cases they could not answer the queries.
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Figure 6: Comparisons in the 364-node BN.
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Figure 7: Comparisons in the 422-node BN.
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In the experiment with 422-nodes network the same constraints are involved,
and the results in shown in Figure 7. One can see that EVEA is much faster than
the others, but not all the queries are answered, this is because of the memory
limitation, if we change the memory limitation to 20 or 40 MB, then all the
queries could be solved within several seconds. What’s more, from the time
consuming PD is better than T'T, but in Figure 7 we find that TT could answer
most of the queries, more than other methods, which is also due to the memory
limitation. But still we can say that EVEA is better than other 3 VEA-based
methods.

4 Conclusions

We will now conclude this paper. Cooper has proved in [1] that computation
of probabilities in a BN is NP-hard. In order to perform this computation
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more efficient we could use specific algorithms on specific network structures.
We have discussed VE and EVEA. VE uses factorisations of joint probability
distributions in order to compute probabilities of a BN more efficient. EVEA
extends VE by also using CI. We have seen that using EVEA allows us to
compute the probabilities in a BN more efficient then the other algorithms with
which it was compared.
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