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Exercise 1

a. Draw a Venn diagram with x and y and intersection x ∧ y. You will see that the area
x ∧ y is part of both x and y and thus counted twice if you compute P (x ∨ y) in terms
of P (x) and P (y).

b. Proof:

x ∨ y ≡ (x ∨ ¬x) ∧ (x ∨ y)

≡ x ∨ (¬x ∧ y)

≡ (x ∧ ¬y) ∨ (x ∧ y) ∨ (¬x ∧ y)

these Boolean expressions are mutually exclusive.
⇒ P (x ∨ y) = P (x ∧ ¬y) + P (x ∧ y) + P (¬x ∧ y) (1). Using marginalisation: P (x) =
P (x ∧ y) + P (x ∧ ¬y) (2) and P (y) = P (y ∧ x) + P (y ∧ ¬x) (3). Using (1), (2) and (3)
P (x ∨ y) = P (x) + P (¬x ∧ y) = P (x) + P (y)− P (x ∧ y).

Exercise 2

a. P (a) = P (a, b)+P (a,¬b) = 0.3+0.4 = 0.7; P (b) = P (a, b)+P (¬a, b) = 0.3+0.2 = 0.5.

b. P (a | b) = P (a,b)
P (b) = 0.3/0.5 = 0.6.

c. P (b | a) = P (a|b)P (b)
P (a) = 0.6·0.5

0.7 = 3/7.

Exercise 3

a. Proof:

P (X | Y ) = P (X,Y )/P (Y )

and

P (Y | X) = P (Y,X)/P (X)

as P (X,Y ) = P (Y,X) (commutativity of the conjunction) we have that

P (X | Y ) =
P (Y | X)P (X)

P (Y )
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b. If you have the Bayesian network X → Y with parameter P (Y | X) associated with the
arc then you can change it into X ← Y by computing the parameters P (X | Y ) using
Bayes’ rule from the old Bayesian network’s parameters.

c. Computation would be in terms of P (A1, . . . , An | B) and each of the probability dis-
tributions is exponential in the number of variable Ai. Solution is to take into account
independence information.

Exercise 4

a. P (x2 ∨ ¬x3 | x1 ∧ x4) = P (x2 | x1 ∧ x4) + P (¬x3 | x1 ∧ x4) − P (x2 ∧ ¬x3 | x1 ∧
x4). Each of these terms can be computed easily using marginalisation and conditional
probabilities. For example, P (x2 | x1∧x4) = P (x2, x1, x4)/P (x1, x4) and P (x2, x1, x4) =
P (x1, x2, x3, x4) + P (x1, x2,¬x3, x4) = 0.1 + 0.03 = 0.13, etc.

b. Many possible answers; one of them: P (X1,X2,X3,X4) = P (X1 | X2,X3,X4)P (X2 |
X3,X4)P (X3,X4).

Computation of these factors, for example: P (x3, x4) = P (x1, x2, x3, x4)+
P (¬x1, x2, x3, x4) + P (x1,¬x2, x3, x4) + P (¬x1,¬x2, x3, x4); see problem for probabili-
ties.

Exercise 5

a. P (x | y, z) = 0.3, P (¬x | y, z) = 0.7, P (x | ¬y, z) = 0.3, P (¬x | ¬y, z) = 0.7,
P (x | y,¬z) = 0.4, P (x | ¬y,¬z) = 0.4, etc.

b. What is to be proven is that P (X | Y,Z) = P (X | Z)(1) ⇒ P (Y | X,Z) = P (Y | Z)
(2) for any value of X,Y,Z. Proof:

P (Y | X,Z) = P (X,Z | Y )P (Y )/P (X,Z)

= (P (X | Y,Z)P (Z | Y )P (Y )) / (P (X | Z)P (Z))

(1)
= (P (X | Z)P (Z, Y ))/(P (X | Z)P (Z))

= P (Z, Y )/P (Z)

= P (Y | Z)

So, P (Y | X,Z) = P (Y | Z) if X ⊥⊥P Y | Z.

Exercise 6

a. Proof:

P (X | Y,Z) = P (X,Y | Z)/P (Y | Z)

⇔ P (X,Y | Z) = P (X | Y,Z)P (Y | Z)

Using P (X | Y,Z) = P (X | Z), yields

P (X,Y | Z) = P (X | Z)P (Y | Z)

b. In Bayesian networks we often compute probabilities P (X | Y ), where P (X | · · ·) is
obtained by marginalisation of a conditional probability.
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Exercise 7

a. We have a Bayesian network with variable X with associated probability distribution
P (X) that is computed by f(x; p) and f(x; p, n) respectively.

b. We have a Bayesian network with variable X with one parent variable Θ that corre-
sponds to the parameter p for the Bernoulli case and with a second parent variable N
for the binomial case. Such Bayesian networks with parameters explicitly represented
are called augmented Bayesian networks. The prior density on Θ might be a beta
distribution, whereas for N it might be a Poisson distribution.

Exercise 8

We have by Bayes’ rule:

P (flu | temp > 37.5) = P (temp > 37.5 | flu)P (flu)/P (temp > 37.5)

= (1− P (temp ≤ 37.5 | flu))P (flu)/P (temp > 37.5)

P (temp > 37.5) can be computed by marginalisation and conditioning (P (temp > 37.5) =
P (temp > 37.5 | flu)P (flu)+P (temp > 37.5 | pneu)P (pneu)), but alternatively one can make
use of the trick that P (flu | temp > 37.5) and P (pneu | temp > 37.5) add up to 1 and have
the same denominator P (temp > 37.5) in their Bayes’ rule reformulation.

Exercise 9

Consider Figure 1, which displays a Bayesian network in which the three vertices A, B and
C interact to cause effect D through a noisy-AND. The intermediate variables IA, IB and
IC are note indicated in the figure, but it is assumed that for computational purposes these
intermediate variables are implicitly present. The following probabilities have been specified
by the designer of the Bayesian network:

P (iA | a) = 0.7 P (iA | ¬a) = 0.9
P (iB | b) = 0.4 P (iB | ¬b) = 0.8
P (iC | c) = 0.3 P (iC | ¬c) = 0.3

P (a) = 0.4 P (b) = 0.7
P (c) = 0.8

P (e | d) = 0.2 P (e | ¬d) = 0.6

a. Compute P ∗(e) = P (e | a, b, c), i.e. the marginal probability of e given that A = B =
C = true.

b. Compute P ∗(e) = P (e | a, b).

Solutions

a. P (d | a, b, c) =
∑

IA,IB,IC
P (d | IA, IB , IC)P (IA | a)P (IB | b)P (IC | c)

=
∑

IA∧IB∧IC=true P (IA | a)P (IB | b)P (IC | c)

(because we model an AND)
= 0.7 · 0.4 · 0.3 = 0.084

Now we have that
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Figure 1: Bayesian network: noisy-AND.

P (e | a, b, c, ) =
∑

D P (e,D | a, b, c, )
=

∑
D P (e | D)P (D | a, b, c, ) (see above for P (d | a, b, c)

= 0.2 · 0.084 + 0.6 · 0.916 = 0.5664

b. P (e | a, b) =
∑

C,D P (e | C,D, a, b)P (C,D | a, b)

=
∑

C,D P (e | D)P (D | a, b, C)P (C | a, b)

=
∑

C,D P (e | D)P (D | a, b, C)P (C) (because A and B are independent of C)

We need to compute P (d | a, b, c) (see above) and P (d | a, b,¬c). It appears that in this
case we have that P (d | a, b, c) = P (d | a, b,¬c) (because in this case P (iC | c) = P (iC |
¬c)). If you fill in the equation you also get in this case that P (e | a, b) = 0.5664.

Exercise 10

a. See the network of lecture 2, page 31.

b. See lecture 2, pages 32-33.

c. P ∗(v2) = P (v2 | v2) = 1, P ∗(¬v2) = P (¬v2 | v2) = 0, and

P ∗(v4) = P (v4 | v2)

= P (v4 | v3)P (v3 | v2) + P (v4 | ¬v3)P (¬v3 | v2)

where

P (V3 | v2) = P (V3 | v1, v2)P (v1 | v2) + P (V3 | ¬v1, v2)P (¬v1 | v2)

= P (V3 | v1, v2)P (v1) + P (V3 | ¬v1, v2)P (¬v1)

because V1 ⊥⊥P V2 | ∅. The rest is just filling in numbers. P ∗(v1) = P (v1).

d. This is easy as (Bayes’ rule again):

P ∗(v2) = P (v2 | v4)

= P (v4 | v2)P (v2)/P (v4)

=
∑

V3

P (v4, V3 | v2)P (v2)/P (v4)

=
∑

V3

P (v4 | V3)P (V3 | v2)P (v2)/P (v4)
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=
∑

V3

P (v4 | V3)
∑

V1

P (V3 | V1, v2)P (V1)P (v2)/P (v4)

P (v4) is computed in slides 32-33 of Lecture 2. The rest of the probability distributions
can be looked up in the Bayesian network.

e. Use the factorisation of the Bayesian network

P (v1,¬v2, v3, v4) = P (v4 | v3)P (v3 | v1,¬v2)P (v1)P (¬v2)

Exercise 11

a. Again Bayes’ rule:

P (¬v5 | v3) = P (v3 | ¬v5)P (v5)/P (v3)

Hence, we only have to compute P (v3 | ¬v5) =
∑

V2,V4
P (v3, V2, V4 | ¬v5) = · · ·.

b. If the inference algorithm does not take this into account, the probabilistic information
may cycle for ever.

Exercise 12

a. V1 ⊥⊥G V4 | V3

V2 ⊥⊥G V4 | V3

{V1, V2} ⊥⊥G V4 | V3, plus the independence axioms applied (such as symmetry, etc).

b. V1 ⊥⊥G V2 | ∅, plus the independence axioms.

c. V1 6⊥⊥G V2 | V3.
V1 6⊥⊥G V2 | V4

V1 6⊥⊥G V2 | {V3, V4} V3 6⊥⊥G V4 |W
V2 6⊥⊥G V1 | W
V3 6⊥⊥G V2 | W , any proper W ,
V3 6⊥⊥G {V1, V2} |W ,
V4 6⊥⊥G V2 | U , any U with V3 6∈ U
V4 6⊥⊥G V1 | U , any U with V3 6∈ U , and some combinations.
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