Bayesian Networks 2016-2017
 Tutorial I - Solutions

Peter Lucas
LIACS, Leiden University

Exercise 1

a. Draw a Venn diagram with x and y and intersection $x \wedge y$. You will see that the area $x \wedge y$ is part of both x and y and thus counted twice if you compute $P(x \vee y)$ in terms of $P(x)$ and $P(y)$.
b. Proof:

$$
\begin{aligned}
x \vee y & \equiv(x \vee \neg x) \wedge(x \vee y) \\
& \equiv x \vee(\neg x \wedge y) \\
& \equiv(x \wedge \neg y) \vee(x \wedge y) \vee(\neg x \wedge y)
\end{aligned}
$$

these Boolean expressions are mutually exclusive.

$$
\begin{aligned}
& \Rightarrow P(x \vee y)=P(x \wedge \neg y)+P(x \wedge y)+P(\neg x \wedge y)(1) . \text { Using marginalisation: } P(x)= \\
& P(x \wedge y)+P(x \wedge \neg y)(2) \text { and } P(y)=P(y \wedge x)+P(y \wedge \neg x)(3) . \text { Using }(1),(2) \text { and }(3) \\
& P(x \vee y)=P(x)+P(\neg x \wedge y)=P(x)+P(y)-P(x \wedge y)
\end{aligned}
$$

Exercise 2

a. $P(a)=P(a, b)+P(a, \neg b)=0.3+0.4=0.7 ; P(b)=P(a, b)+P(\neg a, b)=0.3+0.2=0.5$.
b. $P(a \mid b)=\frac{P(a, b)}{P(b)}=0.3 / 0.5=0.6$.
c. $P(b \mid a)=\frac{P(a \mid b) P(b)}{P(a)}=\frac{0.6 \cdot 0.5}{0.7}=3 / 7$.

Exercise 3

a. Proof:

$$
P(X \mid Y)=P(X, Y) / P(Y)
$$

and

$$
P(Y \mid X)=P(Y, X) / P(X)
$$

as $P(X, Y)=P(Y, X)$ (commutativity of the conjunction) we have that

$$
P(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
$$

b. If you have the Bayesian network $X \rightarrow Y$ with parameter $P(Y \mid X)$ associated with the arc then you can change it into $X \leftarrow Y$ by computing the parameters $P(X \mid Y)$ using Bayes' rule from the old Bayesian network's parameters.
c. Computation would be in terms of $P\left(A_{1}, \ldots, A_{n} \mid B\right)$ and each of the probability distributions is exponential in the number of variable A_{i}. Solution is to take into account independence information.

Exercise 4

a. $P\left(x_{2} \vee \neg x_{3} \mid x_{1} \wedge x_{4}\right)=P\left(x_{2} \mid x_{1} \wedge x_{4}\right)+P\left(\neg x_{3} \mid x_{1} \wedge x_{4}\right)-P\left(x_{2} \wedge \neg x_{3} \mid x_{1} \wedge\right.$ x_{4}). Each of these terms can be computed easily using marginalisation and conditional probabilities. For example, $P\left(x_{2} \mid x_{1} \wedge x_{4}\right)=P\left(x_{2}, x_{1}, x_{4}\right) / P\left(x_{1}, x_{4}\right)$ and $P\left(x_{2}, x_{1}, x_{4}\right)=$ $P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)+P\left(x_{1}, x_{2}, \neg x_{3}, x_{4}\right)=0.1+0.03=0.13$, etc.
b. Many possible answers; one of them: $P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P\left(X_{1} \mid X_{2}, X_{3}, X_{4}\right) P\left(X_{2} \mid\right.$ $\left.X_{3}, X_{4}\right) P\left(X_{3}, X_{4}\right)$.
Computation of these factors, for example: $P\left(x_{3}, x_{4}\right)=P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)+$ $P\left(\neg x_{1}, x_{2}, x_{3}, x_{4}\right)+P\left(x_{1}, \neg x_{2}, x_{3}, x_{4}\right)+P\left(\neg x_{1}, \neg x_{2}, x_{3}, x_{4}\right)$; see problem for probabilities.

Exercise 5

a. $P(x \mid y, z)=0.3, P(\neg x \mid y, z)=0.7, P(x \mid \neg y, z)=0.3, P(\neg x \mid \neg y, z)=0.7$, $P(x \mid y, \neg z)=0.4, P(x \mid \neg y, \neg z)=0.4$, etc.
b. What is to be proven is that $P(X \mid Y, Z)=P(X \mid Z)(1) \Rightarrow P(Y \mid X, Z)=P(Y \mid Z)$ (2) for any value of X, Y, Z. Proof:

$$
\begin{aligned}
P(Y \mid X, Z) & =P(X, Z \mid Y) P(Y) / P(X, Z) \\
& =(P(X \mid Y, Z) P(Z \mid Y) P(Y)) /(P(X \mid Z) P(Z)) \\
& \stackrel{(1)}{=}(P(X \mid Z) P(Z, Y)) /(P(X \mid Z) P(Z)) \\
& =P(Z, Y) / P(Z) \\
& =P(Y \mid Z)
\end{aligned}
$$

So, $P(Y \mid X, Z)=P(Y \mid Z)$ if $X \Perp_{P} Y \mid Z$.

Exercise 6

a. Proof:

$$
\begin{aligned}
P(X \mid Y, Z)= & P(X, Y \mid Z) / P(Y \mid Z) \\
\Leftrightarrow P(X, Y \mid Z)= & P(X \mid Y, Z) P(Y \mid Z) \\
& \text { Using } P(X \mid Y, Z)=P(X \mid Z), \text { yields } \\
P(X, Y \mid Z)= & P(X \mid Z) P(Y \mid Z)
\end{aligned}
$$

b. In Bayesian networks we often compute probabilities $P(X \mid Y)$, where $P(X \mid \cdots)$ is obtained by marginalisation of a conditional probability.

Exercise 7

a. We have a Bayesian network with variable X with associated probability distribution $P(X)$ that is computed by $f(x ; p)$ and $f(x ; p, n)$ respectively.
b. We have a Bayesian network with variable X with one parent variable Θ that corresponds to the parameter p for the Bernoulli case and with a second parent variable N for the binomial case. Such Bayesian networks with parameters explicitly represented are called augmented Bayesian networks. The prior density on Θ might be a beta distribution, whereas for N it might be a Poisson distribution.

Exercise 8

We have by Bayes' rule:

$$
\begin{aligned}
P(\text { flu } \mid \text { temp }>37.5) & =P(\text { temp }>37.5 \mid f l u) P(f l u) / P(\text { tem } p>37.5) \\
& =(1-P(\text { temp } \leq 37.5 \mid \text { flu })) P(\text { flu }) / P(\text { tem } p>37.5)
\end{aligned}
$$

$P($ temp $>37.5)$ can be computed by marginalisation and conditioning $(P(t e m p>37.5)=$ $P($ temp $>37.5 \mid f l u) P(f l u)+P($ temp $>37.5 \mid$ pneu $) P($ pneu $))$, but alternatively one can make use of the trick that $P(f l u \mid$ temp $>37.5)$ and $P($ pneu \mid temp $>37.5)$ add up to 1 and have the same denominator $P($ temp $>37.5)$ in their Bayes' rule reformulation.

Exercise 9

Consider Figure 1, which displays a Bayesian network in which the three vertices A, B and C interact to cause effect D through a noisy-AND. The intermediate variables I_{A}, I_{B} and I_{C} are note indicated in the figure, but it is assumed that for computational purposes these intermediate variables are implicitly present. The following probabilities have been specified by the designer of the Bayesian network:

$$
\begin{array}{ll}
P\left(i_{A} \mid a\right)=0.7 & P\left(i_{A} \mid \neg a\right)=0.9 \\
P\left(i_{B} \mid b\right)=0.4 & P\left(i_{B} \mid \neg b\right)=0.8 \\
P\left(i_{C} \mid c\right)=0.3 & P\left(i_{C} \mid \neg c\right)=0.3 \\
P(a)=0.4 & P(b)=0.7 \\
P(c)=0.8 & \\
P(e \mid d)=0.2 & P(e \mid \neg d)=0.6
\end{array}
$$

a. Compute $P^{*}(e)=P(e \mid a, b, c)$, i.e. the marginal probability of e given that $A=B=$ $C=$ true.
b. Compute $P^{*}(e)=P(e \mid a, b)$.

Solutions

a.

$$
\begin{aligned}
P(d \mid a, b, c)= & \sum_{I_{A}, I_{B}, I_{C}} P\left(d \mid I_{A}, I_{B}, I_{C}\right) P\left(I_{A} \mid a\right) P\left(I_{B} \mid b\right) P\left(I_{C} \mid c\right) \\
= & \sum_{I_{A} \wedge I_{B} I_{C}=\operatorname{true} P\left(I_{A} \mid a\right) P\left(I_{B} \mid b\right) P\left(I_{C} \mid c\right)} \\
= & \text { because we model an AND) } \\
= & 0.7 \cdot 0.4 \cdot 0.3=0.084
\end{aligned}
$$

Now we have that

Figure 1: Bayesian network: noisy-AND.

$$
\begin{aligned}
P(e \mid a, b, c,) & =\sum_{D} P(e, D \mid a, b, c,) \\
& =\sum_{D} P(e \mid D) P(D \mid a, b, c,) \text { (see above for } P(d \mid a, b, c) \\
& =0.2 \cdot 0.084+0.6 \cdot 0.916=0.5664
\end{aligned}
$$

b. $\quad P(e \mid a, b)=\sum_{C, D} P(e \mid C, D, a, b) P(C, D \mid a, b)$
$=\sum_{C, D} P(e \mid D) P(D \mid a, b, C) P(C \mid a, b)$
$=\sum_{C, D} P(e \mid D) P(D \mid a, b, C) P(C)$ (because A and B are independent of C)

We need to compute $P(d \mid a, b, c)$ (see above) and $P(d \mid a, b, \neg c)$. It appears that in this case we have that $P(d \mid a, b, c)=P(d \mid a, b, \neg c)$ (because in this case $P\left(i_{C} \mid c\right)=P\left(i_{C} \mid\right.$ $\neg c)$). If you fill in the equation you also get in this case that $P(e \mid a, b)=0.5664$.

Exercise 10

a. See the network of lecture 2, page 31 .
b. See lecture 2, pages 32-33.
c. $P^{*}\left(v_{2}\right)=P\left(v_{2} \mid v_{2}\right)=1, P^{*}\left(\neg v_{2}\right)=P\left(\neg v_{2} \mid v_{2}\right)=0$, and

$$
\begin{aligned}
P^{*}\left(v_{4}\right) & =P\left(v_{4} \mid v_{2}\right) \\
& =P\left(v_{4} \mid v_{3}\right) P\left(v_{3} \mid v_{2}\right)+P\left(v_{4} \mid \neg v_{3}\right) P\left(\neg v_{3} \mid v_{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
P\left(V_{3} \mid v_{2}\right) & =P\left(V_{3} \mid v_{1}, v_{2}\right) P\left(v_{1} \mid v_{2}\right)+P\left(V_{3} \mid \neg v_{1}, v_{2}\right) P\left(\neg v_{1} \mid v_{2}\right) \\
& =P\left(V_{3} \mid v_{1}, v_{2}\right) P\left(v_{1}\right)+P\left(V_{3} \mid \neg v_{1}, v_{2}\right) P\left(\neg v_{1}\right)
\end{aligned}
$$

because $V_{1} \Perp_{P} V_{2} \mid \varnothing$. The rest is just filling in numbers. $P^{*}\left(v_{1}\right)=P\left(v_{1}\right)$.
d. This is easy as (Bayes' rule again):

$$
\begin{aligned}
P^{*}\left(v_{2}\right) & =P\left(v_{2} \mid v_{4}\right) \\
& =P\left(v_{4} \mid v_{2}\right) P\left(v_{2}\right) / P\left(v_{4}\right) \\
& =\sum_{V_{3}} P\left(v_{4}, V_{3} \mid v_{2}\right) P\left(v_{2}\right) / P\left(v_{4}\right) \\
& =\sum_{V_{3}} P\left(v_{4} \mid V_{3}\right) P\left(V_{3} \mid v_{2}\right) P\left(v_{2}\right) / P\left(v_{4}\right)
\end{aligned}
$$

$$
=\sum_{V_{3}} P\left(v_{4} \mid V_{3}\right) \sum_{V_{1}} P\left(V_{3} \mid V_{1}, v_{2}\right) P\left(V_{1}\right) P\left(v_{2}\right) / P\left(v_{4}\right)
$$

$P\left(v_{4}\right)$ is computed in slides $32-33$ of Lecture 2 . The rest of the probability distributions can be looked up in the Bayesian network.
e. Use the factorisation of the Bayesian network

$$
P\left(v_{1}, \neg v_{2}, v_{3}, v_{4}\right)=P\left(v_{4} \mid v_{3}\right) P\left(v_{3} \mid v_{1}, \neg v_{2}\right) P\left(v_{1}\right) P\left(\neg v_{2}\right)
$$

Exercise 11

a. Again Bayes' rule:

$$
P\left(\neg v_{5} \mid v_{3}\right)=P\left(v_{3} \mid \neg v_{5}\right) P\left(v_{5}\right) / P\left(v_{3}\right)
$$

Hence, we only have to compute $P\left(v_{3} \mid \neg v_{5}\right)=\sum_{V_{2}, V_{4}} P\left(v_{3}, V_{2}, V_{4} \mid \neg v_{5}\right)=\cdots$.
b. If the inference algorithm does not take this into account, the probabilistic information may cycle for ever.

Exercise 12

a. $V_{1} \Perp_{G} V_{4} \mid V_{3}$
$V_{2} \Perp_{G} V_{4} \mid V_{3}$
$\left\{V_{1}, V_{2}\right\} \Perp_{G} V_{4} \mid V_{3}$, plus the independence axioms applied (such as symmetry, etc).
b. $V_{1} \Perp_{G} V_{2} \mid \varnothing$, plus the independence axioms.
c. $V_{1} \not \Perp_{G} V_{2} \mid V_{3}$.
$V_{1} \not \Perp_{G} V_{2} \mid V_{4}$
$V_{1} \not \Perp_{G} V_{2}\left|\left\{V_{3}, V_{4}\right\} V_{3} \not \perp_{G} V_{4}\right| W$
$V_{2} \not \Perp_{G} V_{1} \mid W$
$V_{3} \not \perp_{G} V_{2} \mid W$, any proper W,
$V_{3} \not \perp_{G}\left\{V_{1}, V_{2}\right\} \mid W$,
$V_{4} \not \perp_{G} V_{2} \mid U$, any U with $V_{3} \notin U$
$V_{4} \not \perp_{G} V_{1} \mid U$, any U with $V_{3} \notin U$, and some combinations.

