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Elementary probability theory

We adopt the following notations with respect to probability distributions and Boolean vari-
ables. Let X denote a variable; if X is a binary variable, e.g. taking either the value true or
false, X = true is also denoted by simply x; similarly, X = false is also referred to by ¬x.

Furthermore, when it is not really important to know what value a variable takes, we just
refer to the variable itself. For example, P (X) either stands for P (x) or P (¬x). Of course,
a statement like P (X) = 0.7 would be silly, as in this case it does matter where X really
stands for: if it would be x, then P (x) = 0.7 and P (¬x) = 0.3, and if it would be ¬x, then
P (¬x) = 0.7 and P (x) = 0.3.

Finally, the expression
∑

X P (X) means summing over all possible values of the variable
X; if X is binary, then

∑

X

P (X) = P (x) + P (¬x)

This notation can be generalised for joint probability distributions, e.g.
∑

X,Y

P (X,Y, a) = P (x, y, a) + P (¬x, y, a) + P (x,¬y, a) + P (¬x,¬y, a)

Of course, the same notation can also be used for conditional probability distributions, as
those conform to the axioms of probability theory as well:

∑

X

P (X | Y ) = P (x | Y ) + P (¬x | Y )

Exercise 1

Let P be a probability distribution defined on the set of Boolean expressions B, i.e. the
following axioms hold for P :

• P (⊤) = 1;

• P (⊥) = 0;

• P (x ∨ y) = P (x) + P (y), if x ∧ y = ⊥, i.e. x and y are disjoint, x, y ∈ B.
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a. Draw a Venn diagram with x, y and x ∧ y, for the case that x ∧ y 6= ⊥.

b. Now prove that the following holds in general:

P (x ∨ y) = P (x) + P (y)− P (x ∧ y)

Exercise 2

Let P be a joint probability distribution, defined as follows (note that P (A,B) is a shorthand
for P (A ∧B)).

P (a, b) = 0.3 P (¬a, b) = 0.2
P (a,¬b) = 0.4 P (¬a,¬b) = 0.1

a. Compute P (a) and P (b).

b. Compute P (a | b).

c. Using these last results, use Bayes’ rule to compute P (b | a).

Exercise 3

a. Prove that Bayes’ rule holds, based on the definition of conditional probabilities:

P (X | Y ) =
P (Y | X)P (X)

P (Y )

b. Why is this rule sometimes called the arc reversal rule?

c. Let P (B | A1, . . . , An) be a family of conditional probability distributions. Explain
why computing P (B | A1, . . . , An) may be computationally hard when the variables are
discrete (possibly binary), and discuss possible solutions.

Exercise 4

Consider joint probability distribution P (X1,X2,X3,X4):

P (x1, x2, x3, x4) = 0.1

P (x1,¬x2, x3, x4) = 0.04

P (x1, x2,¬x3, x4) = 0.03

P (x1, x2, x3,¬x4) = 0.1

P (¬x1, x2, x3, x4) = 0.0

P (¬x1,¬x2, x3, x4) = 0.2

P (¬x1, x2,¬x3, x4) = 0.08

P (¬x1, x2, x3,¬x4) = 0.1

P (x1,¬x2,¬x3, x4) = 0.015

P (x1,¬x2, x3,¬x4) = 0.1

P (x1, x2,¬x3,¬x4) = 0.004
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P (¬x1,¬x2,¬x3, x4) = 0.005

P (¬x1,¬x2, x3,¬x4) = 0.01

P (¬x1, x2,¬x3,¬x4) = 0.01

P (x1,¬x2,¬x3,¬x4) = 0.006

P (¬x1,¬x2,¬x3,¬x4) = 0.2

a. Compute P (x2 ∨ ¬x3 | x1 ∧ x4).

b. Split up P (X1,X2,X3,X4) into three factors, and compute the values of these factors
for Xj = ⊤, j = 1, . . . , 4.

Exercise 5

Let X, Y and Z three different stochastic variables. Assume that X is conditionally inde-
pendent of Y given Z.

a. Try to define a probability distribution P (X | Y,Z) (i.e. supply the numbers for that
distribution) for which the conditional independence property holds.

b. Prove that from P (X | Y,Z) = P (X | Z) it follows that P (Y | X,Z) = P (Y | Z).

Exercise 6

a. Prove that if the sets of variables X and Y are conditionally independent given the set
of variables Z, i.e.

P (X | Y,Z) = P (X | Z)

it follows that

P (X,Y | Z) = P (X | Z)P (Y | Z)

b. Explain why the use of marginalisation is often combined with conditioning.

Exercise 7

The probability distributions of Bayesian networks are often based on the special probability
distributions one finds described in textbooks of probability theory and statistics. Examples
are:

• the Bernoulli distribution: f(x; p) = px(1 − p)1−x, where p is the parameter of the
distribution (the probability of success of an experiment) and x is the outcome (0, i.e.
failure, or 1, i.e. success). So, f(0) = 1− p and f(1) = p.

• the binomial distribution: f(x; p, n) =
(

n
x

)

px(1−p)n−x, where p is again the probability
of success; n represents the number of experiments and x the number of successes out
of n (thus, there are n− x failures). Note the relationship of this distribution with the
Bernoulli distribution.
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The notation ‘f(·; ·)’ says that the elements after the semicolon are parameters. We also
have the notation ‘f(·, . . . , ·)’ for joint probability distributions, where the parameters are
uncertain.

Now, represent each of these distributions as two Bayesian networks, where for

• BN1: the parameters p and n are assumed to be fixed;

• BN2: the parameters p and n are assumed to be uncertain, assuming that f(x, p) =
P (x | p)g(p) for Bernoulli and f(x, p, n) = P (x | p, n)g(p)h(n) for the binomial distri-
bution (here g and h are probability density – the continuous case – or mass functions
– the discrete case).

Bayesian networks and naive probabilistic reasoning

Recall that a Bayesian network B is defined as a pair B = (G,P ), where G = (V (G), A(G))
is an acyclic directed graph with set of vertices (or nodes) V (G) = {X1, . . . ,Xn} and arcs
A(G) ⊆ V (G) × V (G), and a joint probability distribution P defined on the variables corre-
sponding to the vertices V (G), as follows:

P (X1, . . . ,Xn) =
n
∏

i=1

P (Xi | π(Xi))

where π(Xi) stands for the set of parents (direct ancestors) of Xi. Another, more precise
version of the definition of the joint probability distribution of a Bayesian network, is to
say that XV (G) is the set of random variables corresponding to the vertices of G, where
V (G) = {v1, . . . , vn} are the associated vertices. The joint probability distribution P is then
defined as follows:

P (XV (G)) =
∏

v∈V (G)

P (Xv | Xπ(v))

where Xπ(v) are the random variables that correspond to the parents of vertex v ∈ V (G).
However, although mathematically more beautiful, the latter definition is also slightly more
difficult to understand. It is often used in mathematically oriented book, but less often in
computer-science books.

Exercise 8

Consider the Naive Bayes network given in Figure 1. Given the evidence: E = {temp > 37.5},
compute the probability of flu using Bayes’ rule, i. e., P (flu | temp > 37.5).

Exercise 9

Consider Figure 2, which displays a Bayesian network in which the three vertices A, B and
C interact to cause effect D through a noisy-AND. The intermediate variables IA, IB and
IC are note indicated in the figure, but it is assumed that for computational purposes these
intermediate variables are implicitly present. The following probabilities have been specified
by the designer of the Bayesian network:
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Disease

pneu/flu

Myalgia

y/n

Fever

y/n

TEMP
≤ 37.5/

> 37.5

P (myalgia | flu) = 0.96

P (myalgia | pneu) = 0.28

P (fever | flu) = 0.88

P (fever | pneu) = 0.82

P (TEMP ≤ 37.5 | flu) = 0.20

P (TEMP ≤ 37.5 | pneu) = 0.26

P (flu) = 0.67
P (pneu) = 0.33

Figure 1: Naive Bayesian network.

P (iA | a) = 0.7 P (iA | ¬a) = 0.9
P (iB | b) = 0.4 P (iB | ¬b) = 0.8
P (iC | c) = 0.3 P (iC | ¬c) = 0.3

P (a) = 0.4 P (b) = 0.7
P (c) = 0.8

P (e | d) = 0.2 P (e | ¬d) = 0.6

a. Compute P ∗(e) = P (e | a, b, c), i.e. the marginal probability of e given that A = B =
C = true.

b. Compute P ∗(e) = P (e | a, b).

BA C

D

E

Figure 2: Bayesian network: noisy-AND.

Exercise 10

Note: this exercise is similar to the exercise at the end of Lecture 2.

Consider Figure 3.

a. Define a probability distribution P for this Bayesian network B.

5



V1

V3

V2

V4

Figure 3: Bayesian network.

b. Compute the marginal probability distribution P (V4).

c. Next, assume that that we know that v2 (V2 = true. What is the value of P ∗(v2) and
P ∗(¬v2)? Compute P ∗(V4), i.e. P

∗(v4) and P ∗(¬v4), and also P ∗(V1).

d. Finally, assume that V4 = true (hence, V2 is again unknown). Compute the marginal
probability distribution P ∗(V2).

e. Based on the probability distribution P defined in 3a, for the network B = (G,P ) shown
in Figure 3, compute the joint probability distribution of V1, V2, V3 and V4 for a fixed
set of values; for example P (v1,¬v2, v3, v4).

Exercise 11

V3

V2 V4

V1 V5

Figure 4: Bayesian network of Exercise 11.

Consider the Bayesian network B = (G,P ) shown in Figure 4, where G = (V (G), A(G)) is
the directed acyclic graph shown in the figure, and P is a probability distribution defined on
the variables corresponding to the vertices V (G) = {V1, V2, V3, V4, V5}. The following (local)
probability distributions are defined for P :

P (v1) = 0.2
P (v5) = 0.8
P (v2 | v1) = 0.5 P (v2 | ¬v1) = 0.4
P (v3 | v2, v4) = 0.4 P (v3 | ¬v2, v4) = 0.7
P (v3 | v2,¬v4) = 0.3 P (v3 | ¬v2,¬v4) = 0.6
P (v4 | v1, v5) = 0.6 P (v4 | ¬v1, v5) = 0.2
P (v4 | v1,¬v5) = 0 P (v4 | ¬v1,¬v5) = 1

a. Compute the probability P (¬v5 | v3), i.e. for V5 equal to false given that V3 is equal to
true, if it is known that P (v3) ≈ 0.5.
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b. What are the consequences of the fact that this Bayesian network contains a cycle in
the underlying (undirected) graph?

Exercise 12

Consider the Bayesian network B = (G,P ) shown in Figure 3.

a. Enumerate all conditional independence assumptions U ⊥⊥ V | W for this Bayesian
network.

b. Enumerate all the unconditional independence assumptions.

c. Enumerate the dependencies U 6⊥⊥ V |W .
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