Bayesian Networks 2016-2017
Solutions to Tutorial 111 — Probabilistic inference

Note: To compute the probability distribution P(V') you need to compute the probabilities
for all the values of the variable V. For example, if V' is binary then P(v) and P(—v) must
be computed. Of course, computing one of them is sufficient to derive the other as they sum
up to 1.

Answers to Exercise 1

a. P*(vg) = a-m(va) - AM(v2) (data fusion lemma) (1)
A(v2) =1 (initialisation)
m(v2) = P(vy | v1) -yt (v1) + P(v | ~o1) - wyt (1), (2)

Since V) does not have parents then T“g (v1) = P(v1) and T“g (—v1) = P(—w1). Hence,
substituting with the numbers in Equations 1 and 2, respectively gives P*(v2) = a-0.66.
Analogous computation for P*(—ws) is made and P*(—w2) = « - 0.34. Hence, a = 1.

b. Since we have evidence that V; = true then P*(v;) =1 and P*(—w;) = 0.
For V5, we have as in la that A(ve) = 1 and:

P*(v9) - Mve) - w(v9)

A (Ploa | 01) - mE (01) + Plog | ~on) -y (o))
(P(vz [ v1) - P*(v1) + P(vg [ 1) - P* (1))
-P(vg | v1) =a-0.3.
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Analogously, P*(—vg) = a - P(—wy |v1) =a-0.7 and a = 1.
Finally for V3, we have A(v3) = 1 and

P*(v3) - A(v3) - 7 (v3)

1. (P(vg | v2) - M2 (v2) + Plvg | —w2) .wgg(w))
“(P(vs [ v2) - P*(v2) + P(vg | w2) - P*(-w2))
(0.7-0.340.1-0.7) = a-0.28
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Analogously, P*(—w3) = - 0.72



c. Since we have that V; = true and Vi3 = false then P*(v;) = 1 and P*(-w;) = 0,
P*(v3) =0 and P*(—w3) = 1.

For V5 we compute

P*(v3) = a-Auvg) - m(v2)
a- )\%(vg) Yoy, Pluz | Vl)ﬁ‘%(vl)

Now, )\%(Ug) B v, A(V3)P(Vs | v2) - 1 = BP(—w3 | v2) as A(vs) = 0 and A(—w3) =1
due to the evidence V3 = false; in addition, we do not have other parents than V5. (So
in the formula pa(V3) = V4, whereas the summation ¥ excludes V5 and becomes empty;
as we substitute the value true for V5 (a parameter of )\%(Vg)), we get va.) The S is
simply absorbed into a. Thus,

P*(vg) = - P(—ws3 | v2) - P(va | v1) = - 0.09

Analogously, P*(—v9) = a- P(—ws | =v9) - P(—wa | v1) = - 0.63

Answers to Exercise 2

a. For Vj, we have that A\(vs) = 1 and:

P*(vy) = a-Avg) 7(vg)
- a-1- <P(v4 | v3) - V8 (v3) + P(vg | ~w3) .ng(wg))

Then we compute:
w2 (vs) = m(vs) = Plus | vi,v9)myl (vi)my2 (v2)
+ P(’Ug ‘ —\Ul,’l)g)ﬂ'g (—Vl)l)ﬂ"‘;3 (Ug)
+ P(vs | U1,ﬁv2)7Tv3(Ul)7T\‘;3(ﬁU2)
+ P(v3 | —wy, _|U2)7T“; (—ml)wv (—v2)
= P(vg | v1,v2) P(01) P(v)
P(vz | =1, v2) P(—v1) P(v2)
P(vs | v1, 7v2) P(v1)P(—v2)
P(v3 | =1, —w2) P(—v1) P(—2)
= 0.244

Analogously we compute W“;Z(_\Ug) = (0.76. Substituting in Equation 3 gives us:
P*(vy) = a-(0.3-0.244 +0.5-0.76) = o - 0.4532

Following the same computational procedure you can compute P*(—wy).

b. For P*(vy) and P*(—wy), it now holds that 71"‘2’ (v3) =1 and 71"‘2’ (—w3) = 0. So P*(vy) =
P(U4 ’ 1)3).



For Vi we have that (V1) = P(V}) and A\(V}) = )\513(‘/1). It holds that:

MEVL) = 3" AVa) Y P(Vs | Vo, Vi)mi2(Va)
V3 Vo

Since A(v3) = 1, A(—w3) = 0 and F“g(vg) = 1,7?“2(—|v2) =0, we get /\“g(vl) = P(vs |
v2,v1) and )\% (—v1) = P(vs | v2, w1). From this it follows: P*(v1) = a - P(v1) - P(vs |
v2,v1) = 0.04cr &~ 0.18 and P*(—w;) = ac- P(—v1) - P(v3 | v2, ;1) = 0.18 ~ 0.82.

Answer to Exercise 3

a. V4 and V5 (not V3 as this would create a dependence between V; and V5).

b. P*(vy) = 0.2 and P*(—wy) = 0.8. We could also remove V; — V3; however, this is not
necessary for the algorithm.

c. After deleting arc V3 — V5, we obtain a probability distribution that factorises as:
P'(V) = P'(V3 | V1, V2) P'(V2) P'(1)

If V; is assumed to be true for Vs, it holds that P'(Va) = P(V2 | v1). Suppose we
compute P*(v3) in this instantiated network:

P(uz) = Y Pl(vz | Vi,Va)P'(Vo)P'(W)
V1,Ve
= Y Plug| Vi, Vo) P(Va | v1) P(V1)
V1,Va

Note that this sum contains inconsistent terms such as P(v3 | =y, ve)P(ve | v1)P(—v1)
so it is certainly not equal to P(vs | v1). However, if we compute P’(vy,v3) we obtain:

P'(v,v3) = Y P'vg|v1, Vo) P' (Vo) P'(v1)
Va

= > P(vs | v1,V2)P(Va | v1)P(v1)
Va
— P(Ul,v3)

In fact, it holds in general that P'(V;,V.) = P(V;,V.) where V; is some variable and V,
is the node that is being instantiated in the network.

d. P(’Ug) = Pl(’Ul,’Ug) + P/(_"Ul,’l)g).



Answer to Exercise 4

a. After moralisation, you obtain two cliques: {Vi, Va2, V3} and {V3, Vy}.

b. Given these cliques, we have potentials for each clique (123 and 34) and one for the
separator 3. Before message passing it holds that:

0123(V1,V2,V3) = P(V3 | Vi, Va)P(Vi)P(Vs)
031(V3,Va) = P(Vy|V3)
p3(V3) = 1

After message passing, we will obtain the marginals:

w123(V1,Vo,V3) = P(V1, Vs, 13)
w34(V3, Vi) = P(V5,Vy)
p3(V3) = P(V3)

We leave it to the reader to verify that both factorisations correspond to the original
Bayesian network.

c. We first pass a message from (193 to the separator (s:

p3(v3) = Y P(vs | Vi, Va) P(V1)P(V3) = 0.244
1,2

(and the same for —w3). Then we can send a messages from 3 to 34, €.g.:
wh4(v3,v4) = 0.244/1 - P(vyg | v3) = 0.07

Now we could propagate messages backward and, for example, obtain:

03 (v3) = Y @halvs, Vi) = 0.244
Vy

By now we know for sure that ¢4*(vs) = P(v3), so P(vs) = 0.244.

d. If Vj is true, then we restrict 103 to @93 so that:
©23(Va, V3) = p123(v1, Vo, V3)
Now:

5(vs) = Plvs | v1,V2)P(V2)P(v1) = 0.4-0.8-0.140.7-0.2-0.1 = 0.046
Vo

For —w3, we have:

@5(vs) = > P(=vs | v1,Va)P(V2)P(v1) = 0.6 - 0.8 - 0.1+ 0.3-0.2- 0.1 = 0.054
Va

So the normalisation constant is 10. So we obtain P(v3 | v1) = 10-0.046 = 0.46.



Answer to Exercise 5

It suffices to show that for any X,Y,Z, if X Ugm Y | Z then X 1lg Y | Z. Take any of
such XY, Z and assume X 1llgm Y | Z. Suppose X /L5 Y | Z. Then G must contain some
path from X to Y that is not separated by Z. Since G™ contains the same path (as it has
at a line for each arc in ), and this path is apparently separated by Z, the only possibility
is that this path in G contains at least one v-structure V3 — V5 < V3 with V5 € Z and all
other nodes are not in Z. However, for each of these v-structures there is a line V43 — V3 in
G™, so then there is a path from X to Y that is not blocked by Z in G™, which contradicts
the assumption that X llgm Y | Z.

Answer to Exercise 6

See the notes on the junction tree algorithm.



