Bayesian Networks 2016-2017 Solutions to Tutorial III - Probabilistic inference

Note: To compute the probability distribution $P(V)$ you need to compute the probabilities for all the values of the variable V. For example, if V is binary then $P(v)$ and $P(\neg v)$ must be computed. Of course, computing one of them is sufficient to derive the other as they sum up to 1 .

Answers to Exercise 1

a. $\quad P^{*}\left(v_{2}\right)=\alpha \cdot \pi\left(v_{2}\right) \cdot \lambda\left(v_{2}\right)($ data fusion lemma)

$$
\begin{align*}
& \lambda\left(v_{2}\right)=1 \quad \text { (initialisation) } \tag{1}\\
& \pi\left(v_{2}\right)=P\left(v_{2} \mid v_{1}\right) \cdot \pi_{V_{2}}^{V_{1}}\left(v_{1}\right)+P\left(v_{2} \mid \neg v_{1}\right) \cdot \pi_{V_{2}}^{V_{1}}\left(\neg v_{1}\right) . \tag{2}
\end{align*}
$$

Since V_{1} does not have parents then $\pi_{V_{2}}^{V_{1}}\left(v_{1}\right)=P\left(v_{1}\right)$ and $\pi_{V_{2}}^{V_{1}}\left(\neg v_{1}\right)=P\left(\neg v_{1}\right)$. Hence, substituting with the numbers in Equations 1 and 2, respectively gives $P^{*}\left(v_{2}\right)=\alpha \cdot 0.66$. Analogous computation for $P^{*}\left(\neg v_{2}\right)$ is made and $P^{*}\left(\neg v_{2}\right)=\alpha \cdot 0.34$. Hence, $\alpha=1$.
b. Since we have evidence that $V_{1}=$ true then $P^{*}\left(v_{1}\right)=1$ and $P^{*}\left(\neg v_{1}\right)=0$.

For V_{2}, we have as in 1a that $\lambda\left(v_{2}\right)=1$ and:

$$
\begin{aligned}
P^{*}\left(v_{2}\right) & =\alpha \cdot \lambda\left(v_{2}\right) \cdot \pi\left(v_{2}\right) \\
& =\alpha \cdot 1 \cdot\left(P\left(v_{2} \mid v_{1}\right) \cdot \pi_{V_{2}}^{V_{1}}\left(v_{1}\right)+P\left(v_{2} \mid \neg v_{1}\right) \cdot \pi_{V_{2}}^{V_{1}}\left(\neg v_{1}\right)\right) \\
& =\alpha \cdot\left(P\left(v_{2} \mid v_{1}\right) \cdot P^{*}\left(v_{1}\right)+P\left(v_{2} \mid \neg v_{1}\right) \cdot P^{*}\left(\neg v_{1}\right)\right) \\
& =\alpha \cdot P\left(v_{2} \mid v_{1}\right)=\alpha \cdot 0.3 .
\end{aligned}
$$

Analogously, $P^{*}\left(\neg v_{2}\right)=\alpha \cdot P\left(\neg v_{2} \mid v_{1}\right)=\alpha \cdot 0.7$ and $\alpha=1$.
Finally for V_{3}, we have $\lambda\left(v_{3}\right)=1$ and

$$
\begin{aligned}
P^{*}\left(v_{3}\right) & =\alpha \cdot \lambda\left(v_{3}\right) \cdot \pi\left(v_{3}\right) \\
& =\alpha \cdot 1 \cdot\left(P\left(v_{3} \mid v_{2}\right) \cdot \pi_{V_{3}}^{V_{2}}\left(v_{2}\right)+P\left(v_{3} \mid \neg v_{2}\right) \cdot \pi_{V_{3}}^{V_{2}}\left(\neg v_{2}\right)\right) \\
& =\alpha \cdot\left(P\left(v_{3} \mid v_{2}\right) \cdot P^{*}\left(v_{2}\right)+P\left(v_{3} \mid \neg v_{2}\right) \cdot P^{*}\left(\neg v_{2}\right)\right) \\
& =\alpha \cdot(0.7 \cdot 0.3+0.1 \cdot 0.7)=\alpha \cdot 0.28
\end{aligned}
$$

Analogously, $P^{*}\left(\neg v_{3}\right)=\alpha \cdot 0.72$
c. Since we have that $V_{1}=$ true and $V_{3}=$ false then $P^{*}\left(v_{1}\right)=1$ and $P^{*}\left(\neg v_{1}\right)=0$, $P^{*}\left(v_{3}\right)=0$ and $P^{*}\left(\neg v_{3}\right)=1$.
For V_{2} we compute

$$
\begin{aligned}
P^{*}\left(v_{2}\right) & =\alpha \cdot \lambda\left(v_{2}\right) \cdot \pi\left(v_{2}\right) \\
& =\alpha \cdot \lambda_{V_{3}}^{V_{2}}\left(v_{2}\right) \cdot \sum_{V_{1}} P\left(v_{2} \mid V_{1}\right) \pi_{V_{2}}^{V_{1}}\left(V_{1}\right)
\end{aligned}
$$

Now, $\lambda_{V_{3}}^{V_{2}}\left(v_{2}\right)=\beta \sum_{V_{3}} \lambda\left(V_{3}\right) P\left(V_{3} \mid v_{2}\right) \cdot 1=\beta P\left(\neg v_{3} \mid v_{2}\right)$ as $\lambda\left(v_{3}\right)=0$ and $\lambda\left(\neg v_{3}\right)=1$ due to the evidence $V_{3}=$ false; in addition, we do not have other parents than V_{2}. (So in the formula pa $\left(V_{3}\right)=V_{2}$, whereas the summation Σ excludes V_{2} and becomes empty; as we substitute the value true for V_{2} (a parameter of $\lambda_{V_{3}}^{V_{2}}\left(V_{2}\right)$), we get v_{2}.) The β is simply absorbed into α. Thus,

$$
P^{*}\left(v_{2}\right)=\alpha \cdot P\left(\neg v_{3} \mid v_{2}\right) \cdot P\left(v_{2} \mid v_{1}\right)=\alpha \cdot 0.09
$$

Analogously, $P^{*}\left(\neg v_{2}\right)=\alpha \cdot P\left(\neg v_{3} \mid \neg v_{2}\right) \cdot P\left(\neg v_{2} \mid v_{1}\right)=\alpha \cdot 0.63$

Answers to Exercise 2

a. For V_{4}, we have that $\lambda\left(v_{4}\right)=1$ and:

$$
\begin{align*}
P^{*}\left(v_{4}\right) & =\alpha \cdot \lambda\left(v_{4}\right) \cdot \pi\left(v_{4}\right) \\
& =\alpha \cdot 1 \cdot\left(P\left(v_{4} \mid v_{3}\right) \cdot \pi_{V_{4}}^{V_{3}}\left(v_{3}\right)+P\left(v_{4} \mid \neg v_{3}\right) \cdot \pi_{V_{4}}^{V_{3}}\left(\neg v_{3}\right)\right) \tag{3}
\end{align*}
$$

Then we compute:

$$
\begin{aligned}
\pi_{V_{4}}^{V_{3}}\left(v_{3}\right)=\pi\left(v_{3}\right)= & P\left(v_{3} \mid v_{1}, v_{2}\right) \pi_{V_{3}}^{V_{1}}\left(v_{1}\right) \pi_{V_{3}}^{V_{2}}\left(v_{2}\right) \\
& +P\left(v_{3} \mid \neg v_{1}, v_{2}\right) \pi_{V_{3}}^{V_{1}}\left(\neg v_{1}\right) \pi_{V_{3}}^{V_{2}}\left(v_{2}\right) \\
& \left.+P\left(v_{3} \mid v_{1}, \neg v_{2}\right) \pi_{V_{3}}^{V_{1}}\left(v_{1}\right) \pi_{V_{3}}^{V_{3}} \neg v_{2}\right) \\
& +P\left(v_{3} \mid \neg v_{1}, \neg v_{2}\right) \pi_{V_{3}}^{V_{1}}(\neg v 1) \pi_{V_{3}}^{V_{2}}\left(\neg v_{2}\right) \\
= & P\left(v_{3} \mid v_{1}, v_{2}\right) P\left(v_{1}\right) P\left(v_{2}\right) \\
& +P\left(v_{3} \mid \neg v_{1}, v_{2}\right) P\left(\neg v_{1}\right) P\left(v_{2}\right) \\
& +P\left(v_{3} \mid v_{1}, \neg v_{2}\right) P\left(v_{1}\right) P\left(\neg v_{2}\right) \\
& +P\left(v_{3} \mid \neg v_{1}, \neg v_{2}\right) P\left(\neg v_{1}\right) P\left(\neg v_{2}\right) \\
= & 0.244
\end{aligned}
$$

Analogously we compute $\pi_{V_{4}}^{V_{3}}\left(\neg v_{3}\right)=0.76$. Substituting in Equation 3 gives us:

$$
P^{*}\left(v_{4}\right)=\alpha \cdot(0.3 \cdot 0.244+0.5 \cdot 0.76)=\alpha \cdot 0.4532
$$

Following the same computational procedure you can compute $P^{*}\left(\neg v_{4}\right)$.
b. For $P^{*}\left(v_{4}\right)$ and $P^{*}\left(\neg v_{4}\right)$, it now holds that $\pi_{V_{4}}^{V_{3}}\left(v_{3}\right)=1$ and $\pi_{V_{4}}^{V_{3}}\left(\neg v_{3}\right)=0$. So $P^{*}\left(v_{4}\right)=$ $P\left(v_{4} \mid v_{3}\right)$.

For V_{1} we have that $\pi\left(V_{1}\right)=P\left(V_{1}\right)$ and $\lambda\left(V_{1}\right)=\lambda_{V 3}^{V_{1}}\left(V_{1}\right)$. It holds that:

$$
\lambda_{V_{3}}^{V_{1}}\left(V_{1}\right)=\sum_{V_{3}} \lambda\left(V_{3}\right) \sum_{V_{2}} P\left(V_{3} \mid V_{2}, V_{1}\right) \pi_{V_{3}}^{V_{2}}\left(V_{2}\right)
$$

Since $\lambda\left(v_{3}\right)=1, \lambda\left(\neg v_{3}\right)=0$ and $\pi_{V_{3}}^{V_{2}}\left(v_{2}\right)=1, \pi_{V_{3}}^{V_{2}}\left(\neg v_{2}\right)=0$, we get $\lambda_{V_{3}}^{V_{1}}\left(v_{1}\right)=P\left(v_{3} \mid\right.$ $\left.v_{2}, v_{1}\right)$ and $\lambda_{V_{3}}^{V_{1}}\left(\neg v_{1}\right)=P\left(v_{3} \mid v_{2}, \neg v_{1}\right)$. From this it follows: $P^{*}\left(v_{1}\right)=\alpha \cdot P\left(v_{1}\right) \cdot P\left(v_{3} \mid\right.$ $\left.v_{2}, v_{1}\right)=0.04 \alpha \approx 0.18$ and $P^{*}\left(\neg v_{1}\right)=\alpha \cdot P\left(\neg v_{1}\right) \cdot P\left(v_{3} \mid v_{2}, \neg v_{1}\right)=0.18 \alpha \approx 0.82$.

Answer to Exercise 3

a. V_{1} and V_{2} (not V_{3} as this would create a dependence between V_{1} and V_{2}).
b. $P^{*}\left(v_{2}\right)=0.2$ and $P^{*}\left(\neg v_{2}\right)=0.8$. We could also remove $V_{1} \rightarrow V_{3}$; however, this is not necessary for the algorithm.
c. After deleting arc $V_{1} \rightarrow V_{2}$, we obtain a probability distribution that factorises as:

$$
P^{\prime}(V)=P^{\prime}\left(V_{3} \mid V_{1}, V_{2}\right) P^{\prime}\left(V_{2}\right) P^{\prime}\left(V_{1}\right)
$$

If V_{1} is assumed to be true for V_{2}, it holds that $P^{\prime}\left(V_{2}\right)=P\left(V_{2} \mid v_{1}\right)$. Suppose we compute $P^{*}\left(v_{3}\right)$ in this instantiated network:

$$
\begin{aligned}
P^{*}\left(v_{3}\right) & =\sum_{V_{1}, V_{2}} P^{\prime}\left(v_{3} \mid V_{1}, V_{2}\right) P^{\prime}\left(V_{2}\right) P^{\prime}\left(V_{1}\right) \\
& =\sum_{V_{1}, V_{2}} P\left(v_{3} \mid V_{1}, V_{2}\right) P\left(V_{2} \mid v_{1}\right) P\left(V_{1}\right)
\end{aligned}
$$

Note that this sum contains inconsistent terms such as $P\left(v_{3} \mid \neg v_{1}, v_{2}\right) P\left(v_{2} \mid v_{1}\right) P\left(\neg v_{1}\right)$ so it is certainly not equal to $P\left(v_{3} \mid v_{1}\right)$. However, if we compute $P^{\prime}\left(v_{1}, v_{3}\right)$ we obtain:

$$
\begin{aligned}
P^{\prime}\left(v_{1}, v_{3}\right) & =\sum_{V_{2}} P^{\prime}\left(v_{3} \mid v_{1}, V_{2}\right) P^{\prime}\left(V_{2}\right) P^{\prime}\left(v_{1}\right) \\
& =\sum_{V_{2}} P\left(v_{3} \mid v_{1}, V_{2}\right) P\left(V_{2} \mid v_{1}\right) P\left(v_{1}\right) \\
& =P\left(v_{1}, v_{3}\right)
\end{aligned}
$$

In fact, it holds in general that $P^{\prime}\left(V_{i}, V_{e}\right)=P\left(V_{i}, V_{e}\right)$ where V_{i} is some variable and V_{e} is the node that is being instantiated in the network.
d. $P\left(v_{3}\right)=P^{\prime}\left(v_{1}, v_{3}\right)+P^{\prime}\left(\neg v_{1}, v_{3}\right)$.

Answer to Exercise 4

a. After moralisation, you obtain two cliques: $\left\{V_{1}, V_{2}, V_{3}\right\}$ and $\left\{V_{3}, V_{4}\right\}$.
b. Given these cliques, we have potentials for each clique (φ_{123} and φ_{34}) and one for the separator φ_{3}. Before message passing it holds that:

$$
\begin{aligned}
\varphi_{123}\left(V_{1}, V_{2}, V_{3}\right) & =P\left(V_{3} \mid V_{1}, V_{2}\right) P\left(V_{1}\right) P\left(V_{2}\right) \\
\varphi_{34}\left(V_{3}, V_{4}\right) & =P\left(V_{4} \mid V_{3}\right) \\
\varphi_{3}\left(V_{3}\right) & =1
\end{aligned}
$$

After message passing, we will obtain the marginals:

$$
\begin{aligned}
\varphi_{123}\left(V_{1}, V_{2}, V_{3}\right) & =P\left(V_{1}, V_{2}, V_{3}\right) \\
\varphi_{34}\left(V_{3}, V_{4}\right) & =P\left(V_{3}, V_{4}\right) \\
\varphi_{3}\left(V_{3}\right) & =P\left(V_{3}\right)
\end{aligned}
$$

We leave it to the reader to verify that both factorisations correspond to the original Bayesian network.
c. We first pass a message from φ_{123} to the separator φ_{3} :

$$
\varphi_{3}^{*}\left(v_{3}\right)=\sum_{1,2} P\left(v_{3} \mid V_{1}, V_{2}\right) P\left(V_{1}\right) P\left(V_{2}\right)=0.244
$$

(and the same for $\neg v_{3}$). Then we can send a messages from φ_{3} to φ_{34}, e.g.:

$$
\varphi_{34}^{*}\left(v_{3}, v_{4}\right)=0.244 / 1 \cdot P\left(v_{4} \mid v_{3}\right)=0.07
$$

Now we could propagate messages backward and, for example, obtain:

$$
\varphi_{3}^{* *}\left(v_{3}\right)=\sum_{V_{4}} \varphi_{34}^{*}\left(v_{3}, V_{4}\right)=0.244
$$

By now we know for sure that $\varphi_{3}^{* *}\left(v_{3}\right)=P\left(v_{3}\right)$, so $P\left(v_{3}\right)=0.244$.
d. If V_{1} is true, then we restrict φ_{123} to φ_{23} so that:

$$
\varphi_{23}\left(V_{2}, V_{3}\right)=\varphi_{123}\left(v_{1}, V_{2}, V_{3}\right)
$$

Now:

$$
\varphi_{3}^{*}\left(v_{3}\right)=\sum_{V_{2}} P\left(v_{3} \mid v_{1}, V_{2}\right) P\left(V_{2}\right) P\left(v_{1}\right)=0.4 \cdot 0.8 \cdot 0.1+0.7 \cdot 0.2 \cdot 0.1=0.046
$$

For $\neg v_{3}$, we have:

$$
\varphi_{3}^{*}\left(v_{3}\right)=\sum_{V_{2}} P\left(\neg v_{3} \mid v_{1}, V_{2}\right) P\left(V_{2}\right) P\left(v_{1}\right)=0.6 \cdot 0.8 \cdot 0.1+0.3 \cdot 0.2 \cdot 0.1=0.054
$$

So the normalisation constant is 10 . So we obtain $P\left(v_{3} \mid v_{1}\right)=10 \cdot 0.046=0.46$.

Answer to Exercise 5

It suffices to show that for any X, Y, Z, if $X \Perp_{G^{m}} Y \mid Z$ then $X \Perp_{G} Y \mid Z$. Take any of such X, Y, Z and assume $X \Perp_{G^{m}} Y \mid Z$. Suppose $X \not \Perp_{G} Y \mid Z$. Then G must contain some path from X to Y that is not separated by Z. Since G^{m} contains the same path (as it has at a line for each arc in G), and this path is apparently separated by Z, the only possibility is that this path in G contains at least one v-structure $V_{1} \rightarrow V_{2} \leftarrow V_{3}$ with $V_{2} \in Z$ and all other nodes are not in Z. However, for each of these v-structures there is a line $V_{1}-V_{3}$ in G^{m}, so then there is a path from X to Y that is not blocked by Z in G^{m}, which contradicts the assumption that $X \Perp_{G^{m}} Y \mid Z$.

Answer to Exercise 6

See the notes on the junction tree algorithm.

