Bayesian Networks 2016–2017 Solutions to Tutorial III – Probabilistic inference

Note: To compute the probability distribution P(V) you need to compute the probabilities for all the values of the variable V. For example, if V is binary then P(v) and $P(\neg v)$ must be computed. Of course, computing one of them is sufficient to derive the other as they sum up to 1.

Answers to Exercise 1

a.
$$P^*(v_2) = \alpha \cdot \pi(v_2) \cdot \lambda(v_2)$$
 (data fusion lemma) (1)
 $\lambda(v_2) = 1$ (initialisation)
 $\pi(v_2) = P(v_2 \mid v_1) \cdot \pi_{V_2}^{V_1}(v_1) + P(v_2 \mid \neg v_1) \cdot \pi_{V_2}^{V_1}(\neg v_1).$ (2)

Since V_1 does not have parents then $\pi_{V_2}^{V_1}(v_1) = P(v_1)$ and $\pi_{V_2}^{V_1}(\neg v_1) = P(\neg v_1)$. Hence, substituting with the numbers in Equations 1 and 2, respectively gives $P^*(v_2) = \alpha \cdot 0.66$. Analogous computation for $P^*(\neg v_2)$ is made and $P^*(\neg v_2) = \alpha \cdot 0.34$. Hence, $\alpha = 1$.

b. Since we have evidence that $V_1 = true$ then $P^*(v_1) = 1$ and $P^*(\neg v_1) = 0$. For V_2 , we have as in 1a that $\lambda(v_2) = 1$ and:

$$P^{*}(v_{2}) = \alpha \cdot \lambda(v_{2}) \cdot \pi(v_{2})$$

= $\alpha \cdot 1 \cdot \left(P(v_{2} \mid v_{1}) \cdot \pi_{V_{2}}^{V_{1}}(v_{1}) + P(v_{2} \mid \neg v_{1}) \cdot \pi_{V_{2}}^{V_{1}}(\neg v_{1}) \right)$
= $\alpha \cdot \left(P(v_{2} \mid v_{1}) \cdot P^{*}(v_{1}) + P(v_{2} \mid \neg v_{1}) \cdot P^{*}(\neg v_{1}) \right)$
= $\alpha \cdot P(v_{2} \mid v_{1}) = \alpha \cdot 0.3.$

Analogously, $P^*(\neg v_2) = \alpha \cdot P(\neg v_2 \mid v_1) = \alpha \cdot 0.7$ and $\alpha = 1$. Finally for V_3 , we have $\lambda(v_3) = 1$ and

$$P^{*}(v_{3}) = \alpha \cdot \lambda(v_{3}) \cdot \pi(v_{3})$$

= $\alpha \cdot 1 \cdot \left(P(v_{3} \mid v_{2}) \cdot \pi_{V_{3}}^{V_{2}}(v_{2}) + P(v_{3} \mid \neg v_{2}) \cdot \pi_{V_{3}}^{V_{2}}(\neg v_{2}) \right)$
= $\alpha \cdot \left(P(v_{3} \mid v_{2}) \cdot P^{*}(v_{2}) + P(v_{3} \mid \neg v_{2}) \cdot P^{*}(\neg v_{2}) \right)$
= $\alpha \cdot (0.7 \cdot 0.3 + 0.1 \cdot 0.7) = \alpha \cdot 0.28$

Analogously, $P^*(\neg v_3) = \alpha \cdot 0.72$

c. Since we have that $V_1 = true$ and $V_3 = false$ then $P^*(v_1) = 1$ and $P^*(\neg v_1) = 0$, $P^*(v_3) = 0$ and $P^*(\neg v_3) = 1$.

For V_2 we compute

$$P^{*}(v_{2}) = \alpha \cdot \lambda(v_{2}) \cdot \pi(v_{2}) = \alpha \cdot \lambda_{V_{3}}^{V_{2}}(v_{2}) \cdot \sum_{V_{1}} P(v_{2} \mid V_{1}) \pi_{V_{2}}^{V_{1}}(V_{1})$$

Now, $\lambda_{V_3}^{V_2}(v_2) = \beta \sum_{V_3} \lambda(V_3) P(V_3 | v_2) \cdot 1 = \beta P(\neg v_3 | v_2)$ as $\lambda(v_3) = 0$ and $\lambda(\neg v_3) = 1$ due to the evidence $V_3 = false$; in addition, we do not have other parents than V_2 . (So in the formula pa $(V_3) = V_2$, whereas the summation Σ excludes V_2 and becomes empty; as we substitute the value true for V_2 (a parameter of $\lambda_{V_3}^{V_2}(V_2)$), we get v_2 .) The β is simply absorbed into α . Thus,

$$P^*(v_2) = \alpha \cdot P(\neg v_3 \mid v_2) \cdot P(v_2 \mid v_1) = \alpha \cdot 0.09$$

Analogously, $P^*(\neg v_2) = \alpha \cdot P(\neg v_3 \mid \neg v_2) \cdot P(\neg v_2 \mid v_1) = \alpha \cdot 0.63$

Answers to Exercise 2

a. For V_4 , we have that $\lambda(v_4) = 1$ and:

$$P^{*}(v_{4}) = \alpha \cdot \lambda(v_{4}) \cdot \pi(v_{4}) = \alpha \cdot 1 \cdot \left(P(v_{4} \mid v_{3}) \cdot \pi_{V_{4}}^{V_{3}}(v_{3}) + P(v_{4} \mid \neg v_{3}) \cdot \pi_{V_{4}}^{V_{3}}(\neg v_{3}) \right)$$
(3)

Then we compute:

$$\begin{aligned} \pi_{V_4}^{V_3}(v_3) &= \pi(v_3) &= P(v_3 \mid v_1, v_2) \pi_{V_3}^{V_1}(v_1) \pi_{V_3}^{V_2}(v_2) \\ &+ P(v_3 \mid \neg v_1, v_2) \pi_{V_3}^{V_1}(\neg v_1) \pi_{V_3}^{V_2}(v_2) \\ &+ P(v_3 \mid v_1, \neg v_2) \pi_{V_3}^{V_1}(v_1) \pi_{V_3}^{V_2}(\neg v_2) \\ &+ P(v_3 \mid \neg v_1, \neg v_2) \pi_{V_3}^{V_1}(\neg v_1) \pi_{V_3}^{V_2}(\neg v_2) \end{aligned}$$

$$= P(v_3 \mid v_1, v_2) P(v_1) P(v_2) \\ &+ P(v_3 \mid \neg v_1, v_2) P(\neg v_1) P(v_2) \\ &+ P(v_3 \mid v_1, \neg v_2) P(\neg v_1) P(\neg v_2) \\ &+ P(v_3 \mid \neg v_1, \neg v_2) P(\neg v_1) P(\neg v_2) \\ &= 0.244 \end{aligned}$$

Analogously we compute $\pi_{V_4}^{V_3}(\neg v_3) = 0.76$. Substituting in Equation 3 gives us:

$$P^*(v_4) = \alpha \cdot (0.3 \cdot 0.244 + 0.5 \cdot 0.76) = \alpha \cdot 0.4532$$

Following the same computational procedure you can compute $P^*(\neg v_4)$.

b. For $P^*(v_4)$ and $P^*(\neg v_4)$, it now holds that $\pi_{V_4}^{V_3}(v_3) = 1$ and $\pi_{V_4}^{V_3}(\neg v_3) = 0$. So $P^*(v_4) = P(v_4 \mid v_3)$.

For V_1 we have that $\pi(V_1) = P(V_1)$ and $\lambda(V_1) = \lambda_{V_3}^{V_1}(V_1)$. It holds that:

$$\lambda_{V_3}^{V_1}(V_1) = \sum_{V_3} \lambda(V_3) \sum_{V_2} P(V_3 \mid V_2, V_1) \pi_{V_3}^{V_2}(V_2)$$

Since $\lambda(v_3) = 1, \lambda(\neg v_3) = 0$ and $\pi_{V_3}^{V_2}(v_2) = 1, \pi_{V_3}^{V_2}(\neg v_2) = 0$, we get $\lambda_{V_3}^{V_1}(v_1) = P(v_3 \mid v_2, v_1)$ and $\lambda_{V_3}^{V_1}(\neg v_1) = P(v_3 \mid v_2, \neg v_1)$. From this it follows: $P^*(v_1) = \alpha \cdot P(v_1) \cdot P(v_3 \mid v_2, v_1) = 0.04\alpha \approx 0.18$ and $P^*(\neg v_1) = \alpha \cdot P(\neg v_1) \cdot P(v_3 \mid v_2, \neg v_1) = 0.18\alpha \approx 0.82$.

Answer to Exercise 3

- a. V_1 and V_2 (not V_3 as this would create a dependence between V_1 and V_2).
- b. $P^*(v_2) = 0.2$ and $P^*(\neg v_2) = 0.8$. We could also remove $V_1 \rightarrow V_3$; however, this is not necessary for the algorithm.
- c. After deleting arc $V_1 \rightarrow V_2$, we obtain a probability distribution that factorises as:

$$P'(V) = P'(V_3 \mid V_1, V_2)P'(V_2)P'(V_1)$$

If V_1 is assumed to be true for V_2 , it holds that $P'(V_2) = P(V_2 | v_1)$. Suppose we compute $P^*(v_3)$ in this instantiated network:

$$P^{*}(v_{3}) = \sum_{V_{1},V_{2}} P'(v_{3} \mid V_{1},V_{2})P'(V_{2})P'(V_{1})$$
$$= \sum_{V_{1},V_{2}} P(v_{3} \mid V_{1},V_{2})P(V_{2} \mid v_{1})P(V_{1})$$

Note that this sum contains inconsistent terms such as $P(v_3 | \neg v_1, v_2)P(v_2 | v_1)P(\neg v_1)$ so it is certainly not equal to $P(v_3 | v_1)$. However, if we compute $P'(v_1, v_3)$ we obtain:

$$P'(v_1, v_3) = \sum_{V_2} P'(v_3 \mid v_1, V_2) P'(V_2) P'(v_1)$$

=
$$\sum_{V_2} P(v_3 \mid v_1, V_2) P(V_2 \mid v_1) P(v_1)$$

=
$$P(v_1, v_3)$$

In fact, it holds in general that $P'(V_i, V_e) = P(V_i, V_e)$ where V_i is some variable and V_e is the node that is being instantiated in the network.

d.
$$P(v_3) = P'(v_1, v_3) + P'(\neg v_1, v_3).$$

Answer to Exercise 4

- a. After moralisation, you obtain two cliques: $\{V_1, V_2, V_3\}$ and $\{V_3, V_4\}$.
- b. Given these cliques, we have potentials for each clique (φ_{123} and φ_{34}) and one for the separator φ_3 . Before message passing it holds that:

$$\begin{aligned} \varphi_{123}(V_1, V_2, V_3) &= P(V_3 \mid V_1, V_2) P(V_1) P(V_2) \\ \varphi_{34}(V_3, V_4) &= P(V_4 \mid V_3) \\ \varphi_3(V_3) &= 1 \end{aligned}$$

After message passing, we will obtain the marginals:

$$\begin{aligned} \varphi_{123}(V_1, V_2, V_3) &= P(V_1, V_2, V_3) \\ \varphi_{34}(V_3, V_4) &= P(V_3, V_4) \\ \varphi_3(V_3) &= P(V_3) \end{aligned}$$

We leave it to the reader to verify that both factorisations correspond to the original Bayesian network.

c. We first pass a message from φ_{123} to the separator φ_3 :

$$\varphi_3^*(v_3) = \sum_{1,2} P(v_3 \mid V_1, V_2) P(V_1) P(V_2) = 0.244$$

(and the same for $\neg v_3$). Then we can send a messages from φ_3 to φ_{34} , e.g.:

$$\varphi_{34}^*(v_3, v_4) = 0.244/1 \cdot P(v_4 \mid v_3) = 0.07$$

Now we could propagate messages backward and, for example, obtain:

$$\varphi_3^{**}(v_3) = \sum_{V_4} \varphi_{34}^*(v_3, V_4) = 0.244$$

By now we know for sure that $\varphi_3^{**}(v_3) = P(v_3)$, so $P(v_3) = 0.244$.

d. If V_1 is true, then we restrict φ_{123} to φ_{23} so that:

$$\varphi_{23}(V_2, V_3) = \varphi_{123}(v_1, V_2, V_3)$$

Now:

$$\varphi_3^*(v_3) = \sum_{V_2} P(v_3 \mid v_1, V_2) P(V_2) P(v_1) = 0.4 \cdot 0.8 \cdot 0.1 + 0.7 \cdot 0.2 \cdot 0.1 = 0.046$$

For $\neg v_3$, we have:

$$\varphi_3^*(v_3) = \sum_{V_2} P(\neg v_3 \mid v_1, V_2) P(V_2) P(v_1) = 0.6 \cdot 0.8 \cdot 0.1 + 0.3 \cdot 0.2 \cdot 0.1 = 0.054$$

So the normalisation constant is 10. So we obtain $P(v_3 | v_1) = 10 \cdot 0.046 = 0.46$.

Answer to Exercise 5

It suffices to show that for any X, Y, Z, if $X \perp _{G^m} Y \mid Z$ then $X \perp _G Y \mid Z$. Take any of such X, Y, Z and assume $X \perp _{G^m} Y \mid Z$. Suppose $X \not\perp_G Y \mid Z$. Then G must contain some path from X to Y that is not separated by Z. Since G^m contains the same path (as it has at a line for each arc in G), and this path is apparently separated by Z, the only possibility is that this path in G contains at least one v-structure $V_1 \rightarrow V_2 \leftarrow V_3$ with $V_2 \in Z$ and all other nodes are not in Z. However, for each of these v-structures there is a line $V_1 - V_3$ in G^m , so then there is a path from X to Y that is not blocked by Z in G^m , which contradicts the assumption that $X \perp_{G^m} Y \mid Z$.

Answer to Exercise 6

See the notes on the junction tree algorithm.