
Bayesian Networks 2016–2017

Solutions to Tutorial III – Probabilistic inference

Note: To compute the probability distribution P (V ) you need to compute the probabilities
for all the values of the variable V . For example, if V is binary then P (v) and P (¬v) must
be computed. Of course, computing one of them is sufficient to derive the other as they sum
up to 1.

Answers to Exercise 1

a. P ∗(v2) = α · π(v2) · λ(v2) (data fusion lemma) (1)

λ(v2) = 1 (initialisation)

π(v2) = P (v2 | v1) · π
V1

V2
(v1) + P (v2 | ¬v1) · π

V1

V2
(¬v1). (2)

Since V1 does not have parents then πV1

V2
(v1) = P (v1) and πV1

V2
(¬v1) = P (¬v1). Hence,

substituting with the numbers in Equations 1 and 2, respectively gives P ∗(v2) = α ·0.66.
Analogous computation for P ∗(¬v2) is made and P ∗(¬v2) = α · 0.34. Hence, α = 1.

b. Since we have evidence that V1 = true then P ∗(v1) = 1 and P ∗(¬v1) = 0.

For V2, we have as in 1a that λ(v2) = 1 and:

P ∗(v2) = α · λ(v2) · π(v2)

= α · 1 ·
(

P (v2 | v1) · π
V1

V2
(v1) + P (v2 | ¬v1) · π

V1

V2
(¬v1)

)

= α · (P (v2 | v1) · P
∗(v1) + P (v2 | ¬v1) · P

∗(¬v1))
= α · P (v2 | v1) = α · 0.3.

Analogously, P ∗(¬v2) = α · P (¬v2 | v1) = α · 0.7 and α = 1.

Finally for V3, we have λ(v3) = 1 and

P ∗(v3) = α · λ(v3) · π(v3)

= α · 1 ·
(

P (v3 | v2) · π
V2

V3
(v2) + P (v3 | ¬v2) · π

V2

V3
(¬v2)

)

= α · (P (v3 | v2) · P
∗(v2) + P (v3 | ¬v2) · P

∗(¬v2))
= α · (0.7 · 0.3 + 0.1 · 0.7) = α · 0.28

Analogously, P ∗(¬v3) = α · 0.72
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c. Since we have that V1 = true and V3 = false then P ∗(v1) = 1 and P ∗(¬v1) = 0,
P ∗(v3) = 0 and P ∗(¬v3) = 1.

For V2 we compute

P ∗(v2) = α · λ(v2) · π(v2)

= α · λV2

V3
(v2) ·

∑

V1
P (v2 | V1)π

V1

V2
(V1)

Now, λV2

V3
(v2) = β

∑

V3
λ(V3)P (V3 | v2) · 1 = βP (¬v3 | v2) as λ(v3) = 0 and λ(¬v3) = 1

due to the evidence V3 = false ; in addition, we do not have other parents than V2. (So
in the formula pa(V3) = V2, whereas the summation Σ excludes V2 and becomes empty;
as we substitute the value true for V2 (a parameter of λV2

V3
(V2)), we get v2.) The β is

simply absorbed into α. Thus,

P ∗(v2) = α · P (¬v3 | v2) · P (v2 | v1) = α · 0.09

Analogously, P ∗(¬v2) = α · P (¬v3 | ¬v2) · P (¬v2 | v1) = α · 0.63

Answers to Exercise 2

a. For V4, we have that λ(v4) = 1 and:

P ∗(v4) = α · λ(v4) · π(v4)

= α · 1 ·
(

P (v4 | v3) · π
V3

V4
(v3) + P (v4 | ¬v3) · π

V3

V4
(¬v3)

) (3)

Then we compute:

πV3

V4
(v3) = π(v3) = P (v3 | v1, v2)π

V1

V3
(v1)π

V2

V3
(v2)

+ P (v3 | ¬v1, v2)π
V1

V3
(¬v1)π

V2

V3
(v2)

+ P (v3 | v1,¬v2)π
V1

V3
(v1)π

V2

V3
(¬v2)

+ P (v3 | ¬v1,¬v2)π
V1

V3
(¬v1)πV2

V3
(¬v2)

= P (v3 | v1, v2)P (v1)P (v2)
+ P (v3 | ¬v1, v2)P (¬v1)P (v2)
+ P (v3 | v1,¬v2)P (v1)P (¬v2)
+ P (v3 | ¬v1,¬v2)P (¬v1)P (¬v2)

= 0.244

Analogously we compute πV3

V4
(¬v3) = 0.76. Substituting in Equation 3 gives us:

P ∗(v4) = α · (0.3 · 0.244 + 0.5 · 0.76) = α · 0.4532

Following the same computational procedure you can compute P ∗(¬v4).

b. For P ∗(v4) and P ∗(¬v4), it now holds that πV3

V4
(v3) = 1 and πV3

V4
(¬v3) = 0. So P ∗(v4) =

P (v4 | v3).
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For V1 we have that π(V1) = P (V1) and λ(V1) = λV1

V 3
(V1). It holds that:

λV1

V3
(V1) =

∑

V3

λ(V3)
∑

V2

P (V3 | V2, V1)π
V2

V3
(V2)

Since λ(v3) = 1, λ(¬v3) = 0 and πV2

V3
(v2) = 1, πV2

V3
(¬v2) = 0, we get λV1

V3
(v1) = P (v3 |

v2, v1) and λV1

V3
(¬v1) = P (v3 | v2,¬v1). From this it follows: P ∗(v1) = α · P (v1) · P (v3 |

v2, v1) = 0.04α ≈ 0.18 and P ∗(¬v1) = α · P (¬v1) · P (v3 | v2,¬v1) = 0.18α ≈ 0.82.

Answer to Exercise 3

a. V1 and V2 (not V3 as this would create a dependence between V1 and V2).

b. P ∗(v2) = 0.2 and P ∗(¬v2) = 0.8. We could also remove V1 → V3; however, this is not
necessary for the algorithm.

c. After deleting arc V1 → V2, we obtain a probability distribution that factorises as:

P ′(V ) = P ′(V3 | V1, V2)P
′(V2)P

′(V1)

If V1 is assumed to be true for V2, it holds that P ′(V2) = P (V2 | v1). Suppose we
compute P ∗(v3) in this instantiated network:

P ∗(v3) =
∑

V1,V2

P ′(v3 | V1, V2)P
′(V2)P

′(V1)

=
∑

V1,V2

P (v3 | V1, V2)P (V2 | v1)P (V1)

Note that this sum contains inconsistent terms such as P (v3 | ¬v1, v2)P (v2 | v1)P (¬v1)
so it is certainly not equal to P (v3 | v1). However, if we compute P ′(v1, v3) we obtain:

P ′(v1, v3) =
∑

V2

P ′(v3 | v1, V2)P
′(V2)P

′(v1)

=
∑

V2

P (v3 | v1, V2)P (V2 | v1)P (v1)

= P (v1, v3)

In fact, it holds in general that P ′(Vi, Ve) = P (Vi, Ve) where Vi is some variable and Ve

is the node that is being instantiated in the network.

d. P (v3) = P ′(v1, v3) + P ′(¬v1, v3).
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Answer to Exercise 4

a. After moralisation, you obtain two cliques: {V1, V2, V3} and {V3, V4}.

b. Given these cliques, we have potentials for each clique (ϕ123 and ϕ34) and one for the
separator ϕ3. Before message passing it holds that:

ϕ123(V1, V2, V3) = P (V3 | V1, V2)P (V1)P (V2)

ϕ34(V3, V4) = P (V4 | V3)

ϕ3(V3) = 1

After message passing, we will obtain the marginals:

ϕ123(V1, V2, V3) = P (V1, V2, V3)

ϕ34(V3, V4) = P (V3, V4)

ϕ3(V3) = P (V3)

We leave it to the reader to verify that both factorisations correspond to the original
Bayesian network.

c. We first pass a message from ϕ123 to the separator ϕ3:

ϕ∗

3(v3) =
∑

1,2

P (v3 | V1, V2)P (V1)P (V2) = 0.244

(and the same for ¬v3). Then we can send a messages from ϕ3 to ϕ34, e.g.:

ϕ∗

34(v3, v4) = 0.244/1 · P (v4 | v3) = 0.07

Now we could propagate messages backward and, for example, obtain:

ϕ∗∗

3 (v3) =
∑

V4

ϕ∗

34(v3, V4) = 0.244

By now we know for sure that ϕ∗∗

3
(v3) = P (v3), so P (v3) = 0.244.

d. If V1 is true, then we restrict ϕ123 to ϕ23 so that:

ϕ23(V2, V3) = ϕ123(v1, V2, V3)

Now:

ϕ∗

3(v3) =
∑

V2

P (v3 | v1, V2)P (V2)P (v1) = 0.4 · 0.8 · 0.1 + 0.7 · 0.2 · 0.1 = 0.046

For ¬v3, we have:

ϕ∗

3(v3) =
∑

V2

P (¬v3 | v1, V2)P (V2)P (v1) = 0.6 · 0.8 · 0.1 + 0.3 · 0.2 · 0.1 = 0.054

So the normalisation constant is 10. So we obtain P (v3 | v1) = 10 · 0.046 = 0.46.
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Answer to Exercise 5

It suffices to show that for any X,Y,Z, if X ⊥⊥Gm Y | Z then X ⊥⊥G Y | Z. Take any of
such X,Y,Z and assume X ⊥⊥Gm Y | Z. Suppose X 6⊥⊥G Y | Z. Then G must contain some
path from X to Y that is not separated by Z. Since Gm contains the same path (as it has
at a line for each arc in G), and this path is apparently separated by Z, the only possibility
is that this path in G contains at least one v-structure V1 → V2 ← V3 with V2 ∈ Z and all
other nodes are not in Z. However, for each of these v-structures there is a line V1 − V3 in
Gm, so then there is a path from X to Y that is not blocked by Z in Gm, which contradicts
the assumption that X ⊥⊥Gm Y | Z.

Answer to Exercise 6

See the notes on the junction tree algorithm.
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