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Pearl’s algorithm

Pearl’s algorithm is an object-oriented algorithm for probabilistic reasoning, assuming that
the question of how to compute the marginal probability distribution P (Vi) for any vertex Vi

in a Bayesian network can be answered in terms of the information which should be sent by
other vertices in the graph to Vi in order to make it possible for Vi to compute this probability
distribution locally. This information is described in terms of two types ofmessages: messages
sent to the vertex in the same direction as the arcs in the graph, called causal parameters, and
messages in the reverse direction, called diagnostic parameters. As there may be more than
one incoming/outgoing arc for any vertex Vi, those messages must actually be combined by
Vi, to obtain what are called a compound causal π(Vi) and a compound diagnostic parameter

λ(Vi). Those compound parameters are again combined in order to compute the marginal
probability P ∗(Vi) (known as the data fusion lemma):

P ∗(Vi) = α · π(Vi) · λ(Vi)

where α is a normalisation constant to ensure that P ∗(vi) + P ∗(¬vi) = 1.

A node Vi can compute its compound causal parameter from its own probability function
(expressed in terms of conditional probability values) and the causal parameter it receives
from its parents:

π(Vi) =
∑

ρ(Vi)

P (Vi | ρ(Vi)) ·
m∏

j=1

π
Vj

Vi
(Vj)

with parents ρ(Vi) = V1 ∧ · · · ∧ Vj ∧ · · · ∧ Vm The compound causal parameter for a vertex
describes the combined influence on this vertex probabilities of all evidence entered for all its
non-descendants.

Further, the compound diagnostic parameter of Vi is computed from the separate diag-
nostic parameter that it receives from its children (unless it has been observed):

λ(Vi) =

m∏

j=1

λVi

Vj
(Vi)

The compound diagnostic parameter for a vertex describes the combined influence of all
evidence that has been entered for its descendants.
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A vertex Vi can calculate the causal parameter that it needs to send to a successor Vij

from its compound causal parameter and the diagnostic parameters it receives from its other
successors (unless it has been observed):

πVi

Vij
(Vi) = α · πVi

(Vi) ·
∏

k=1,...,m,k 6=j

λVi

Vik

(Vi)

Finally, a vertex Vi can calculate the diagnostic parameter that it needs to send to a
predecessor Vjk from its own probability function and the diagnostic parameter it receives
from its successors:

λ
Vjk

Vi
(Vjk) = α ·

∑

Vi

λVi
(Vi) · [

∑

ρ(Vi)\{Vjk
}

P (Vi | (ρ(Vi) \ {Vjk}) ∧ Vjk) ·
∏

l=1,...,n,l 6=k

π
Vjl

Vi
(Vji)]

The causal parameter is a parameter that a node sends to a descendant to provide this de-
scendant with information regarding its non-descendants, while a diagnostic parameter that
a node sends to its predecessor in order to provide the information concerning the vertices in
the subtree whose root is the vertex at hand.

Note. The answers below are given only for one probability of the distribution; the complementary

probability is computed analogously. At the end, make sure to compute α as well.

Exercise 1

Let B = (G,P ) be a Bayesian network with directed acyclic graph G = (V (G), A(G)) and
joint probability distribution P , as shown in Figure 1.

V1

V2

V3

P (v1) = 0.4, P (¬v1) = 0.6

P (v2|v1) = 0.3, P (¬v2|v1) = 0.7
P (v2|¬v1) = 0.9, P (¬v2|¬v1) = 0.1

P (v3|v2) = 0.7, P (¬v3|v2) = 0.3
P (v3|¬v2) = 0.1, P (¬v3|¬v2) = 0.9

Figure 1: Bayesian network.

a. Which probabilistic information is needed by vertex V2 in order to locally compute
P (V2). Give your answer in terms of causal parameters and diagnostic parameters. Use
the data fusion lemma to compute P (V2).

[Answer: P
∗(v2) = α · 0.66]

b. Assume that V1 = true has been entered into the network. Now, compute the causal
and diagnostic parameters for V2. Also compute the compound causal and diagnostic
parameters for V3. Finally, apply the data fusion lemma to determine P ∗(V3).

[Answer: P
∗(v2) = α · 0.3, P ∗(v3) = α · 0.28]
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c. Now assume that in addition to V1 = true the value false has been entered for V3.
Compute P ∗(Vi), for i = 1, 2, 3.

[Answer: P
∗(v2) = α · 0.09]

Exercise 2

Consider Figure 2 and the following probability distribution:

V1

V3

V2

V4

Figure 2: Bayesian network.

P (v4 | v3) = 0.3 P (¬v4 | v3) = 0.7
P (v4 | ¬v3) = 0.5 P (¬v4 | ¬v3) = 0.5
P (v3 | v1, v2) = 0.4 P (¬v3 | v1, v2) = 0.6
P (v3 | ¬v1, v2) = 0.2 P (¬v3 | ¬v1, v2) = 0.8
P (v3 | v1,¬v2) = 0.7 P (¬v3 | v1,¬v2) = 0.3
P (v3 | ¬v1,¬v2) = 0.3 P (¬v3 | ¬v1,¬v2) = 0.7

P (v1) = 0.1 P (¬v1) = 0.9
P (v2) = 0.8 P (¬v2) = 0.2

a. Compute the marginal probability distributions P (V4) and P (V1) using data fusion.
[Answer: P

∗(v1) = α · 0.1, P ∗(v4) = α · 0.4532]

b. Next, assume V2 = true and V3 = true have been entered into the network. Again
compute P ∗(V4) and P ∗(V1) using data fusion.

[Answer: P
∗(v1) = α · 0.04, P ∗(v4) = α · 0.3]

Compare your results with those obtained when using standard probability theory.

Loop cutset conditioning

Exercise 3

Consider Figure 3 with associated probability distribution:

P (v3 | v1, v2) = 0.4 P (¬v3 | v1, v2) = 0.6
P (v3 | ¬v1, v2) = 0.2 P (¬v3 | ¬v1, v2) = 0.8
P (v3 | v1,¬v2) = 0.7 P (¬v3 | v1,¬v2) = 0.3
P (v3 | ¬v1,¬v2) = 0.3 P (¬v3 | ¬v1,¬v2) = 0.7
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V1

V3

V2

Figure 3: Bayesian network with ‘loop’ in the underlying undirected graph.

P (v2 | v1) = 0.8 P (¬v2 | v1) = 0.2
P (v2 | ¬v1) = 0.2 P (¬v2 | ¬v1) = 0.8

P (v1) = 0.1 P (¬v1) = 0.9

Suppose we are interested in computing P (v3).

a. What are the possible loop cutsets for this graph?

b. Suppose you take {V1} as a loop cutset. The idea of loop cutset conditioning is to
remove an arc from the loop cutset to a child by ‘instantiating’ the CPT of that child
to possible values of the parent. Call the resulting probability distribution P ∗. For
example, if V1 = true, then we could remove the edge from V1 to V2 so that the CPT
of V2 becomes:

P ∗(v2) = 0.8 P ∗(¬v2) = 0.2

What is the CPT of V2 if we assume that V1 is false? Which other edges could you
remove, given this loop cutset? And is this necessary for applying Pearl’s algorithm?

c. Suppose we assume that v1 (V1 = true) in the CPT of V2 so that we can delete the arc
from V1 to V2. Show that P ∗(v3) 6= P (v3 | v1). Also show that P ∗(v1, v3) = P (v1, v3).
What do you now think of the name ‘loop cutset conditioning ’?

d. Compute P (v3) using loop cutset conditioning.

Junction tree algorithm

The junction tree algorithm is an algorithm for computing probabilistic queries on general
graphs. It uses a message passing algorithm on a modified graph called a junction tree, which
can be obtained from the Bayesian network using moralisation and triangulation (see slides
for more detail).

Computation proceeds in the junction tree via the following update equations:

ϕ∗
S =

∑

V \S

ϕV

ϕ∗
W =

ϕ∗
S

ϕS
ϕW

The message-passing protocol ensures that a clique can only send a message to a neighbouring
clique when it has received messages from all of its neighbours. This can be done in different
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orders, e.g., the ‘Hugin algorithm’ designates an arbitrary node as root node and propagates
messages inward to the root and outward to the leaves.

After message passing, the potentials in the cliques are equal to the marginal probability
of the nodes in the clique (given the evidence).

Exercise 4

Again, consider Figure 2 and its corresponding probability distribution.

a. Moralise and triangulate (if necessary) to obtain the junction tree.

b. Give two factorisations of the given Bayesian network in the form:

P (V ) =

∏
C ϕC∏
S ϕS

where C are cliques and S separators in the junction tree. The first factorisation should
correspond to the situation before message passing (i.e.,

∏
S ϕS = 1). The second

factorisation should correspond to the situation after message passing (i.e., ϕC = P (C)).

c. Compute P (V3) by assigning values to the parameters of the junction tree and perform
message passing.

d. Suppose v1 (V1 = true). Again compute P (V3) using the junction tree algorithm.

Exercise 5

Let Gm be a graph resulting from the moralisation of G. Prove that if G is an I-map, then
Gm is an I-map.

Exercise 6

The junction tree algorithm uses a forward and backward pass going from and to an arbitrary
root of the tree. Proof that after both passes it holds that (local consistency):

∑

V \S

ϕ∗∗
V =

∑

W\S

ϕ∗∗
W

where V and W are neighbouring cliques with separator S.
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