
International Journal of Approximate Reasoning 55 (2014) 1252–1268
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

Bayesian network approach to multinomial parameter
learning using data and expert judgments

Yun Zhou a,b,∗, Norman Fenton a, Martin Neil a

a Risk and Information Management (RIM) Research Group, Queen Mary University of London, United Kingdom
b Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 May 2013
Received in revised form 17 February 2014
Accepted 26 February 2014
Available online 5 March 2014

Keywords:
Bayesian networks
Multinomial parameter learning
Expert judgments

One of the hardest challenges in building a realistic Bayesian Network (BN) model is to
construct the node probability tables (NPTs). Even with a fixed predefined model structure
and very large amounts of relevant data, machine learning methods do not consistently
achieve great accuracy compared to the ground truth when learning the NPT entries
(parameters). Hence, it is widely believed that incorporating expert judgments can improve
the learning process. We present a multinomial parameter learning method, which can
easily incorporate both expert judgments and data during the parameter learning process.
This method uses an auxiliary BN model to learn the parameters of a given BN. The
auxiliary BN contains continuous variables and the parameter estimation amounts to
updating these variables using an iterative discretization technique. The expert judgments
are provided in the form of constraints on parameters divided into two categories: linear
inequality constraints and approximate equality constraints. The method is evaluated with
experiments based on a number of well-known sample BN models (such as Asia, Alarm and
Hailfinder) as well as a real-world software defects prediction BN model. Empirically, the
new method achieves much greater learning accuracy (compared to both state-of-the-art
machine learning techniques and directly competing methods) with much less data. For
example, in the software defects BN for a sample size of 20 (which would be considered
difficult to collect in practice) when a small number of real expert constraints are provided,
our method achieves a level of accuracy in parameter estimation that can only be matched
by other methods with much larger sample sizes (320 samples required for the standard
machine learning method, and 105 for the directly competing method with constraints).

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian Networks (BNs) [1,2] are the result of a marriage between graph theory and probability theory, which enable
us to model probabilistic and causal relationships for many types of decision-support problems. A BN consists of a directed
acyclic graph (DAG) that represents the dependencies among related nodes (variables), together with a set of local proba-
bility distributions attached to each node (called a node probability table – NPT – in this paper) that quantify the strengths
of these dependencies. BNs have been successfully applied to many real-world problems [3]. However, building realistic and

* Corresponding author at: Risk and Information Management (RIM) Research Group, Queen Mary University of London, United Kingdom.
E-mail addresses: yun.zhou@qmul.ac.uk (Y. Zhou), n.fenton@qmul.ac.uk (N. Fenton), m.neil@qmul.ac.uk (M. Neil).
http://dx.doi.org/10.1016/j.ijar.2014.02.008
0888-613X/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ijar.2014.02.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:yun.zhou@qmul.ac.uk
mailto:n.fenton@qmul.ac.uk
mailto:m.neil@qmul.ac.uk
http://dx.doi.org/10.1016/j.ijar.2014.02.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2014.02.008&domain=pdf

Y. Zhou et al. / International Journal of Approximate Reasoning 55 (2014) 1252–1268 1253
Fig. 1. The overview of parameter learning with constraints and data. The constraints are: C1: P1 > P2, C2: P2 > P3 and C3: P3 ≈ P4. The gray color nodes
represent part of the MPL model.

accurate BNs (which means building both the DAG and all the NPTs) remains a major challenge. For the purpose of this
paper, we assume the DAG model is already determined, and we focus purely on the challenge of building accurate NPTs.

In the absence of any relevant data NPTs have to be constructed from expert judgment alone. Research on this method
focuses on the questions of design, bias elimination, judgments elicitation, judgments fusion, etc. (see [4,5] for more de-
tails). At the other extreme NPTs can be constructed from data alone, whereby a raw dataset is provided in advance, and
statistical based approaches are applied to automatically learn each NPT entry. In this paper we focus on learning NPTs for
nodes with a finite set of discrete states. For a node with ri states and no parents, its NPT is a single column whose ri cells
corresponding to the prior probabilities of the ri states. Hence, each NPT entry can be viewed as a parameter representing
a probability value of a discrete distribution. For a node with parents, the NPT will have qi columns corresponding to each
of the qi instantiations of the parent node states. Hence, such an NPT will have qi different ri -value parameter probability
distributions to define or learn. Given sufficient data, these parameters can be learnt, for example using the relative fre-
quencies of the observations [6]. However, many real-world applications have very limited relevant data samples, and in
these situations the performance of pure data-driven methods is poor [7]; indeed pure data-driven methods can result in
poor results even when there are large datasets [8]. In such situations incorporating expert judgment improves the learning
accuracy [9,10].

It is the combination of (limited) data and expert judgment that we focus on in this paper. A key problem is that it is
known to be difficult to get experts with domain knowledge to provide explicit (and accurate) probability values. Recent
research has shown that experts feel more comfortable providing qualitative judgments and that these are more robust
than their numerical assessments [11,12]. In particular, parameter constraints provided by experts can be integrated with
existing data samples to improve the learning accuracy. Niculescu [13] and de Campos [14] introduced a constrained convex
optimization formulation to tackle this problem. Liao [15] regarded the constraints as penalty functions, and applied the
gradient-descent algorithm to search the optimal solution. Chang [16,17] employed constraints and Monte Carlo sampling
technology to reconstruct the hyperparameters of Dirichlet priors. Corani [18] proposed the learning method for Credal
networks, which encodes range constraints of parameters. Khan [19] developed an augmented Bayesian network to refine a
bipartite diagnostic BN with constraints elicited from expert’s diagnostic sequence. However, Khan’s method is restricted to
special types of BNs (two-level diagnostic BNs). Most of these methods are based on seeking the global maximum estimation
over reduced search spaces.

A major difference between the approach we propose in this paper and previous work is in the way to integrate con-
straints. We incorporate constraints in a separate, auxiliary BN, which is based on the multinomial parameter learning (MPL)
model. Our method can easily make use of both the data samples and extended forms of expert judgment in any target
BN; unlike Khan’s method, our method is applicable to any BN. For demonstration and validation purposes, our experiments
(in Section 4) are based on a number of well-known and widely available BN models such as Asia, Alarm and Hailfinder,
together with a real-world software defects prediction model.

To illustrate the core idea of our method, consider the simple example of a BN node (without parents) VA (“Visit to
Asia?”) in Fig. 1. This node has four states, namely “Never”, “Once”, “Twice” and “More than twice”1 and hence its NPT can
be regarded as having four associated parameters P1, P2, P3 and P4, where each is a probability value of the probability
distribution of node VA. Whereas an expert may find it too difficult to provide exact prior probabilities for these parameters
(for a person entering a chest clinic) they may well be able to provide constraints such as: “P1 > P2”, “P2 > P3” and
“P3 ≈ P4”. These constraints look simple, but are very important for parameter learning with small data samples.

Fig. 1 gives an overview of how our method estimates the four parameters with data and constraints (technically we
only need to estimate 3 of the parameters since the 4 parameters sum to 1). Firstly, for the NPT column of the target node
(dashed callout in Fig. 1), our method generates its auxiliary BN, where each parameter is modeled as a separate continuous
node (on scale 0 to 1) and each constraint is modeled as a binary node. The other nodes correspond to data observations for
the parameters – the details, along with how to build the auxiliary BN model – are provided in Section 3. It turns out that

1 In the Asia BN the node “Visit to Asia” actually only has two states. We are using 4 states here simply to illustrate how the method works in general.

1254 Y. Zhou et al. / International Journal of Approximate Reasoning 55 (2014) 1252–1268
previous state-of-the-art BN techniques are unable to provide accurate inference for the type of BN model that the auxiliary
BN is. Hence, we describe a novel inference method and its implementation. With this method, after entering evidence,
the auxiliary BN can be updated to produce the posterior distributions for the parameters. Finally, the respective means of
these posterior distributions are assigned to entries in the NPT. A feature of our approach is that experts are free to provide
arbitrary constraints on as few or as many parameters as they feel confident of. Our results show that we get greatly
improved learning accuracy even with very few expert constraints provided. The rest of this paper is organized as follows:
Section 2 discusses the background of parameter learning for BNs, and introduces related work of learning with constraints;
Section 3 presents our model, judgment categories and inference algorithm; Sections 4 describes the experimental results
and analysis; Section 5 provides conclusions as well as identifying areas for improvement.

2. Preliminaries

In this section we provide the formal BN notation and background for parameter learning (Section 2.1) and summarize
the previous most relevant work – the constrained optimization approach (Section 2.2).

2.1. Learning parameters of Bayesian networks

A BN consists of a directed acyclic graph (DAG) G = (U , E) (whose nodes U = {X1, X2, X3, . . . , Xn} correspond to a set
of random variables, and whose arcs E represent the direct dependencies between these variables), together with a set of
probability distributions associated with each variable. For discrete variables2 the probability distribution is normally de-
scribed as a node probability table (NPT) that contains the probability of each value of the variable given each instantiation
of its parent values in G . We write this as P (Xi |pa(Xi)) where pa(Xi) denotes the set of parents of variable Xi in DAG G .
Thus, the BN defines a simplified joint probability distribution over U given by:

P (X1, X2, . . . , Xn) =
n∏

i=1

P
(

Xi|pa(Xi)
)

(1)

Given a fixed BN structure, the frequency estimation approach is a widely used generative learning [20] technique,
which determines parameters by computing the appropriate frequencies from data. This approach can be implemented
with the maximum likelihood estimation (MLE) method. MLE tries to estimate a best set of parameters given the data. Let
ri denotes the cardinality of Xi , and qi represent the cardinality of the parent set of Xi . The k-th probability value of
a conditional probability distribution P (Xi |pa(Xi) = j) can be represented as θi jk = P (Xi = k|pa(Xi) = j), where θi jk ∈ θ ,
1 � i � n, 1 � j � qi and 1 � k � ri . Assuming D = {D1, D2, . . . , D N} is a dataset of fully observable cases for a BN, then Dl
is the l-th complete case of D , which is a vector of values of each variable. The loglikelihood function of θ given data D is:

l(θ |D) = log P (D|θ) = log
∏

l

P (Dl|θ) =
∑

l

log P (Dl|θ) (2)

Let Nijk be the number of data records in sample D for which Xi takes its k-th value and its parent pa(Xi) takes its
j-th value. Then l(θ |D) can be rewritten as l(θ |D) = ∑

i jk Nijk log θi jk . The MLE seeks to estimate θ by maximizing l(θ |D). In
particular, we can get the estimation of each parameter as follows:

θ∗
i jk = Nijk

Nij
(3)

Here Nij denotes the number of data records in sample D for which pa(Xi) takes its j-th value. A major drawback of
the MLE approach is that we cannot estimate θ∗

i jk given Nij = 0. Unfortunately, when training data is limited, instances of
such zero observations are frequent (even for large datasets there are likely to be many zero observations when the model is
large). To address this problem, we can introduce another classical parameter learning approach named maximum a posteriori
(MAP) estimation. Before seeing any data from the dataset, the Dirichlet distribution can be applied to represent the prior
distribution for parameters θi j in the BN. Although intuitively one can think of a Dirichlet distribution as an expert’s guess
of the parameters θi j , in the absence of expert judgments, the hyperparameter αi jk of Dirichlet follows the uniform prior
setting by default. It has the following equation:

P (θi j) = 1

Zij

ri∏
k=1

θ
αi jk−1
i jk

(∑
k

θi jk = 1, θi jk � 0, ∀k

)
(4)

The Zij is a normalization constant to ensure that
∫ 1

0 P (θi j)dθi jk = 1. A hyperparameter αi jk can be thought of as how
many times the expert believes he/she will observe Xi = k in a sample of αi j examples drawn independently at random
from distribution θi j . Based on the above discussion, we can introduce the MAP estimation for θ given data:

2 For continuous nodes we normally refer to a conditional probability distribution.

Y. Zhou et al. / International Journal of Approximate Reasoning 55 (2014) 1252–1268 1255
P (θ |D) ∝ P (D|θ)P (θ) ∝
∏
i jk

θ
Nijk+αi jk−1
i jk (5)

As a result, the MAP for θi jk is:

θ∗
i jk = Nijk + αi jk − 1

Nij + αi j − 1
(6)

2.2. Constrained optimization approach

As discussed in the introduction, some related research solves the learning problem with the constrained optimization ap-
proach (CO). In this approach, the objective is to maximize the parameters’ loglikelihood giving data and convex constraints
elicited from expert judgments. Based on the previous definition, a convex constraint can be defined as f (θi jk) � μi jk , where
f : Ωθi jk → R is a convex function over θi jk , and μi jk is a real number between 0 and 1. Regarding parameter constraints,
the objective functions are computed by a constrained optimization algorithm, i.e., maximize the objective function subject
to simplex equality constraints and all parameter constraints defined by the user:

arg max
θ

l(θ |D)

s.t. ∀i, j,k g(θi jk) = 0

∀i, j,k f (θi jk) � μi jk (7)

The constraint g(θi jk) = −1 + ∑ri
k=1 θi jk ensures the sum of all the estimated parameters in a probability distribution

is equal to one. To allow constraint violations, a penalty term is introduced in the objective function. Following Eq. (7),
suppose f (θi jk) = θi jk , then the penalty term is defined as penalty(θi jk) = [μi jk − θi jk]− , where [x]− = max(0,−x). Therefore,
Eq. (7) can be rewritten as follows:

arg max
θ

l(θ |D) − w

2

∑
i jk

λi jkpenalty(θi jk)
2

s.t. ∀i, j,k g(θi jk) = 0 (8)

where w and λi jk are the global and local penalty weights. Then a gradient-based update algorithm can be applied to
make estimated parameters move towards the direction of increasing loglikelihood and reducing constraint violations. The
constrained optimization approach provides an efficient way to learn the parameters with constraints. However, the penalty
term does not take the data counts Nijk into consideration. Also, for the parameters without constraints, this approach
only returns the maximum loglikelihood estimation. This may cause unacceptably poor parameter estimation results when
learning with zero or limited data.

In what follows our approach uses the multinomial parameter learning model based on the initial work in [21]. This
approach involves an auxiliary BN, whose variables encode the data, constraints and parameters. As the model assigns
uniform priors for target parameters, it will prevent the problem of constrained optimization discussed above. It should also
be noted that in what follows we focus purely on learning the parameters on a single NPT column. In other words, we are
talking only about the different parameters which share the same node index i and parent configuration j. Hence, in order
to simplify the notation we will use Pk (k = 1 to r) to represent the r parameters of a single column instead of θi jk .

3. The new method

In this section we first describe (Section 3.1) the basic multinomial parameter learning model. This model itself is an
auxiliary BN, which is motivated by modeling the parameter learning process as a set of binomial distributions. Specifically,
the total number of trials and success probabilities are modeled as nodes in the auxiliary BN, which are the parents of
the nodes representing the number of successes. Therefore, the original parameter learning problem is converted to an
inference problem of determining the posterior distribution for success probabilities, given evidences in the auxiliary BN.
In Section 3.2 we describe the extended version of the auxiliary BN model to incorporate constraints provided from expert
judgments in order to supplement the basic multinomial parameter learning model. Because the auxiliary BN is a hybrid
model, meaning it contains a mixture of discrete and (non-Normally distributed) continuous nodes, previous state-of-the-art
BN inference algorithms and tools do not provide the necessary mechanism for accurate inference given data in the presence
of the constraints in the model. Hence, in Section 3.3 we describe a novel inference procedure (and implementation) which
exploits recent work on dynamic discretization algorithms for hybrid BNs.

3.1. Multinomial parameter learning

The multinomial distribution is a generalization of the binomial distribution, which gives the probability of each combi-
nation of outcomes in N independent trials of an r-outcome process. For the probability distribution P (X |pa(X) = j), (i.e.,

1256 Y. Zhou et al. / International Journal of Approximate Reasoning 55 (2014) 1252–1268
Fig. 2. Graphical model representation of MPL. The associated prior probability distributions for each node are shown on their sides: P (N) = Normal(0,1),
P (Nk) = Binomial(N, Pk), P (Pk) = Uniform(0,1), and P (sum) = ∑r

k=1 Pk .

the j-th column of the NPT associated with the variable X) suppose there are r states (i.e., r cell values). Then we want
to learn the r probability parameters P1, . . . , Pr corresponding to these states. Assume for 1 � k � r that we have Nk data
observations of the k-th state, i.e., the total number of observations is N = ∑r

k=1 Nk . Then we can create a multinomial
parameter learning BN model (shown schematically in Fig. 2) for estimating parameters P1, . . . , Pr . Specifically:

1. For each k, we have an integer node named Nk (corresponding to Nk as defined above) and each of these has a single
continuous parent node Pk , (corresponding to parameter Pk defined above).

2. There is an integer node N corresponding to N as defined above (the total number of data observations). This node is
the shared parent of each node Nk .

3. There is an integer node sum, which is a shared child of each Pk . This node models the normalization constraint for the
all success probabilities, i.e., that they should sum to 1.

For each Nk , there is an associated binomial distribution with parameters N (total trials) and Pk (success probabilities).
Moreover, the N is associated with a Normal distribution, which can provide an infinite range for the total number of trials.
And each Pk is associated with a uniform prior between 0 and 1, which implies no prior knowledge.

Instead of explaining here how we perform inference in the MPL method, we next describe the MPL-C method which
enables us to incorporate expert judgments into the standard MPL method. Since MPL is a special case of MPL-C the
inference method described for MPL-C is the one that is also used for MPL. In particular, we will show in Section 3.3 that
MPL results are approximately equal to MAP results with uninformative prior assumptions.

3.2. Adding expert judgments to the model

With the exception of NPTs that involve logical certainty3 (i.e., where cell entries must be either 0 or 1 as would be
the case if the node represented “A or B” for parent nodes A, B) it is known that experts find it extremely difficult to
provide accurate and consistent exact values for NPTs [22]. They are more reliable when providing qualitative judgments
like constraints. In real-world applications, many expert judgments can be described with linear inequality constraints and
approximate equality constraints. Since in this paper we focus purely on constraints that can be made about the parameters
P1, . . . , Pr of a single NPT column, these constraints can be defined formally as follows:

Definition 1. A linear inequality constraint is an expression in the following format:

α0 +
r∑

k=1

αk Pk < 0 (9)

where the coefficients α0,αk (1 � k � r) are real numbers.

Linear constraints are simple and can easily be formalized from expert judgments. In real-world applications, such con-
straints are common, especially between two parameters, or between a parameter and a constant. Such constraints have
one of the following even simpler formats:

3 Where an NPT value genuinely is 0 or 1 because of logical certainty, no amount of data will ‘learn’ these values. If the expert can identify such entries
then it is assumed they are ‘facts’ and are not incorporated in the learning process.

Y. Zhou et al. / International Journal of Approximate Reasoning 55 (2014) 1252–1268 1257
Fig. 3. Graphical model representation of MPL-C with M constraints. For the node with constraints, their equations follow the representations in Eqs. (9)
and (10).

Pk > Pk′

Pk > αPk′

Pk > c

where (α ∈ R , k 	= k′ , c ∈ [0,1]).

Definition 2. An approximate equality constraint is an assertion that one parameter value is similar to another value, and
so corresponds to one of the following:

Pk ≈ Pk′

Pk ≈ αPk′

Pk ≈ c

Note that (with the exception of 0 and 1 probabilities in the case of logical certainty as discussed above) the approxima-
tion (as opposed to equality) is generally needed not just because it matches the way experts think, but it also avoids the
problem that exact continuous values have zero probability. Therefore, instead of specifying that Pk is exactly equal Pk′ , the
expert selects an appropriate (small) positive value ε such that Pk ≈ Pk′ is captured as:

∣∣Pk − Pk′
∣∣ < ε (0 < ε < 1) (10)

Given that an expert has identified a number of constraints as defined above within an NPT column, then these con-
straints can be integrated as additional nodes connected with the MPL model to generate a new model called MPL-C as
shown in Fig. 3.

Each constraint node is a binary (True/False) node with expressions that specify the constraint relationships between
its parents; all of our BNs are implemented using the BN software AgenaRisk4, which allows both mathematical ex-
pressions such as Pk > Pk′ (as needed for the inequality constraints) and logical expressions such as if (abs(Pk − Pk′) <

ε, “True”, “False”) as needed for the approximate equality constraints. When the constraint is between a single value and a
constant the new binary node will only have a single parent.

The following is a very simple example to demonstrate how to create the MPL-C model.

Example 1. Suppose we have a single node F having just two states a and b (r = 2). So there are two probability param-
eters P1 and P2 corresponding to P (F = a) and P (F = b) respectively. The expert judgment consists of a single inequality
constraint C1 namely P1 > P2. The MPL-C model for this simple example is shown in Fig. 4.

4 Available at http://www.agenarisk.com/.

http://www.agenarisk.com/

1258 Y. Zhou et al. / International Journal of Approximate Reasoning 55 (2014) 1252–1268
Fig. 4. (a) The MPL-C model for a simple 2-parameter learning problem. (b) The gray area represents the constraining parameter space.

Table 1
The types of BN nodes for domain experts to focus their attention when providing the judgments.

Type Feature

Logical connective or conditionally
deterministic nodes

Nodes that represent logical expressions (like OR, AND, and
NOR) or conditionally deterministic functions (arithmetical) of
the parents.

‘Confidence’ nodes Nodes for which experts are confident to provide constraints. For
example, nodes for which they know certain conditional
probability values are very low or very high.

‘Known empirical’ nodes Nodes for which extensive data is available. Usually root nodes.

As a rule of thumb, when experts are able to provide judgments about node parameters they should distinguish between
the three types of nodes as shown in Table 1.

Next, we will describe our new inference method for all such MPL-C (and MPL) models. So that we can determine the
correct posterior distributions of the parameters once we have observations for N1, . . . , Nr .

3.3. Inference with constraints

Although the MPL-C model is a conceptually simple BN, it has certain features that make accurate and efficient com-
putation very challenging. First note that it contains both discrete and continuous nodes, i.e., it is a hybrid BN [23]. There
are two well-known problems when dealing with continuous nodes in BNs. On the one hand if the underlying variable is
non-Normally distributed (and here we certainly cannot assume Normality) then there is no known way of performing exact
probabilistic inference. Consequently a set of discretized intervals have to be chosen for any continuous node (or numeric
discrete node on a large or infinite range) and this leads to inevitable inaccuracies in the resulting computations. Until very
recently those responsible for building the BN model had to decide in advance on how best to discretize each node in order
to strike a reasonable balance between accuracy and efficiency. This process, called static discretization, can be especially
inaccurate, inefficient and time-consuming. Fortunately, the recent breakthrough work in [24] demonstrates that it is possi-
ble to achieve accurate propagation in such models using a dynamic discretization junction tree (DDJT) algorithm, which has
been implemented in the AgenaRisk software [25].

With this dynamic discretization implementation, there is no need for static discretization of numeric nodes. For any
numeric node it is sufficient to define the range, such as (0–1) or (0, infinity) etc. as its optimal discretization is calculated
dynamically by the algorithm (in AgenaRisk such nodes are referred to as “simulation” nodes). The user can choose the
number of iterations that the algorithm performs for the model (the more iterations the greater the accuracy) and also the
simulation convergence threshold. It is not possible to achieve results with the level of accuracy presented below using other
standard BN algorithms and tools [26]. The latest version of AgenaRisk (used in the experiments) also implements a binary
factorization algorithm [27] for the convolution of arithmetical expressions required for the sum node, which reduces the
computational complexity of inference (specifically the NPTs of such nodes are represented as a conditionally deterministic
function and the dynamic discretization algorithm naturally carries out the equivalent of a convolution operation).

In what follows we describe informally how we have adapted the AgenaRisk algorithm to perform inference in MPL-C
models to learn the parameters P1, . . . , Pr (we illustrate the algorithm using the simple model introduced in Example 1).
Appendix A contains an explicit pseudo-code version of the adapted algorithm which we have implemented using the
AgenaRisk API (Application Programmer Interface) in order to carry out the subsequent experiments.

Y. Zhou et al. / International Journal of Approximate Reasoning 55 (2014) 1252–1268 1259
Table 2
The evaluation of inference accuracy with different maximal number of iterations.

Maximal number of iterations 25 50 100 150

Probability values 0.5008 0.5003 0.5001 0.5000

After creating the MPL-C model, we perform moralization, triangulation and intersection checking steps of the DDJT
algorithm (we will use Example 3 to illustrate this process). Next, we set evidence into certain nodes as follows:

Cm = True (m = 1, . . . , M),

Nk = actual number of observations of the k-th state in the data set,

sum = 1.

Inference5 refers to the process of computing the discretized posterior marginals of each of the unknown nodes Pk (these
are the nodes without evidence). Each of these nodes is continuous. For any such node suppose the range is Ω , and
the probability density function (PDF) is f . The idea of discretization is to approximate f by, first, partitioning Ω into a
set of intervals ψ = {ωi} and, second, defining a locally constant function f � on the partitioning intervals. The dynamic
discretization approach involves searching Ω for the most accurate specification of the high-density regions, given the model
and the evidence, calculating a sequence of discretization intervals in Ω iteratively. At each stage in the iterative process a
candidate discretization, ψ , is tested to determine whether the resulting discretized probability density f � has converged
to the true probability density f within an acceptable degree of precision. At convergence or when the bound of maximal
number of iterations is reached (the default is 25), f is then approximated by f � . Finally, the mean value of Pk will be
assigned as the parameter estimation (i.e., the corresponding NPT cell value). Full details can be found in Appendix A.

Example 2. First consider the model in Example 1 but without the constraint. So there are just 2 parameters with no data
observations or constraints. The auxiliary BN will be a 5-node MPL model without constraints (i.e., in this case we are
using just MPL and not MPL-C). Because the priors of the nodes Pk are uniform, the perfect parameter estimation should be
(0.5,0.5); this estimation also can be achieved by MAP. The results of inference for node P1 via our method are listed in
Table 2 (the value of P2 is, of course just 1 − P1). Using the default maximal number of iterations (25) our algorithm has
0.0008 deviation from the ‘correct’ result. At 150 iterations there is no deviation.

Example 3. Here we use the same assumptions as in Example 1 to demonstrate how inference is performed in the MPL-C
model when there is a single inequality constraint C1: P1 > P2 and 10 data observations: 4 for state a and 6 for state b.
Note that the relative empirical-frequencies of the parameters (MLE results) with the sample do not satisfy the constraint,
so there is clear added value in being able to combine the expert judgment and data. Suppose that the “ground truth” of
the discrete probability distribution is given as (0.58,0.42), i.e., P1 = 0.58 and P2 = 0.42. Fig. 5 shows how the inference
procedure works. The figure also shows the evidence assumptions in this case. Therefore, the problem is treated as using
the junction tree algorithm to calculate the posterior probabilities of P1 and P2 given the evidence. In the DDJT algorithm,
the posteriors of query nodes can be calculated given the initialized discretizations and evidence. After that, this algorithm
continues to split those intervals with highest entropy error in each node until the model converges to an acceptable level
of accuracy or reach the maximal number of iterations. The shadow area in Fig. 4 represents the posterior ranges of P1
and P2. After inference, the mean values of these posteriors are finally used to fill the NPT column of target parameters.
For this example, the final probabilities learned by MPL-C are (0.55,0.45). So, in contrast to MLE, despite the observations
which suggest P2 is greater than P1, the expert constraint has ensured that the final learned parameters are still quite close
to the ground truth.

4. Experiments

The goal of the experiments is to evaluate the benefits of our method by using expert judgment in parameter learning.
We test the method against the pure machine learning techniques as well as against the competing method that incorporates
expert judgment (i.e., the constraint optimization method CO). Sections 4.1 and 4.2 describe experiments applied to models
in which we incorporate real expert judgment. The first (Section 4.1) uses the well-known Asia BN, while the second
(Section 4.2) uses a real software defects BN. In Section 4.3 we apply our method to five widely available BN models, but
in each case here we have to rely on synthetic expert judgments (we also apply an additional synthetic expert judgment
experiment to the Asia BN in Section 4.1).

In all cases, we assume that the structure of the model is known and that the ‘true’ NPTs that we are trying to learn are
those that are provided as standard with the models. In each experiment we are given a number of sample observations

5 The time complexity of inference in MPL-C is determined by the iterations of dynamic discretization I and the largest clique size S (S = r + 1) of the
junction tree, which is O (I · e|S|).

1260 Y. Zhou et al. / International Journal of Approximate Reasoning 55 (2014) 1252–1268
Fig. 5. The moralization, triangulation, and intersection checking steps of the DDJT algorithm in a 2-parameter MPL-C model. The constraint is considered
as evidence in this MPL-C model, as is the mutual consistency assumption (the sum of P1 and P2 is equal to one). Meanwhile, the observations of trials in
the binomial distributions are also regarded as evidence.

Fig. 6. The Asia BN [29].

which are randomly generated based on the true NPTs. The experiments consider a range of sample sizes. In all cases the
resulting learnt NPTs are evaluated against the true NPTs by using the K–L divergence measure [28], which is recommended
to measure the distance between distributions. The smaller the K–L divergence is, the closer the estimated NPT is to the true
NPT. If frequency estimated values are zero, they are replaced by a tiny real value to guarantee they can be computed by
the K–L measure. As NPTs from all the nodes in the BN are learnt from the same data sample size, there is a risk that some
parameters may have few or even zero related data observations. If there are no related observations for both parameters
in an NPT column,6 then probability values are estimated as zero by MLE for these parameters.

4.1. Asia model experiments

The Asia BN [29], which models the interaction between risk factors, diseases and symptoms for the purpose of diag-
nosing the most likely condition for a patient entering a chest clinic, is shown in Fig. 6. Each of the 8 nodes is Boolean so
each NPT column has just 2 parameters to learn; since the parameters sum to 1, each column has only one independent
parameter. Hence there are 18 independent parameters to learn in the model (1 each for nodes VA and S, 2 each for nodes
TB, LC, B, PX, and 4 each for nodes LCTB and D). Here the data samples are generated from the ‘true’ NPTs specified in [29].
For example, the ‘true’ probability of VA = True is 0.01, so its data will be randomly sampled based on this probability.

For the model we carried out two types of experiments: one which supplemented sample data using real expert judg-
ment; and one which supplemented sample data with simulated expert judgment.

Real expert judgments experiment. As discussed in Table 1, it is not hard to see that, the logical connective node “Lung
cancer or tuberculosis” gets the first priority to be constrained by its logical output shown in Fig. 7. This kind of constraint
is absolutely certain, and the constraining NPTs are specified with point values. Therefore, the CO and MPL-C approach will
directly use these values without learning.

6 As in [29] we use the version in which each variable is Boolean.

Y. Zhou et al. / International Journal of Approximate Reasoning 55 (2014) 1252–1268 1261
Fig. 7. OR connective node and its output in Asia BN, which constrains the parameters P (LCTB|TB, LC).

Table 3
The details of elicited judgments.

Node
name

Elicited judgments Elicitation
precedence

Constraint
type

LCTB P (LCTB = True|TB = True, LC = True) = 1 1 Logical
P (LCTB = True|TB = True, LC = False) = 1
P (LCTB = True|TB = False, LC = True) = 1
P (LCTB = False|TB = False, LC = False) = 0

PX P (PX = True|LCTB = True) > 0.9 2 Inequality

D P (D = True|LCTB = True, B = True) > 0.8 2 Inequality

Next, based on discussions in [29] and with medical experts, we discovered widespread agreement and confidence in
experts’ ability to provide inequality constraints for some of the parameters relating to conditional probabilities of the signs
and symptoms given a specific disease. Specifically, this refers to parameters associated with node “PX: Positive X-ray?” and
node “D: Dyspnea?” (marked gray in Fig. 6).

For the parameter P (PX = True|LCTB = True) (i.e., the probability of a positive7 X-ray given lung cancer or tuberculo-
sis) experts were confident (based on experience) that this probability is “very likely” and were happy to provide the
inequality constraint P (PX = True|LCTB = True) > 0.9 (the ‘ground truth’ in [29] is actually 0.98). Similarly, for parameter
P (D = True|LCTB = True, B = True) (the probability of dyspnea given tuberculosis or cancer and also bronchitis) experts
were happy to assert the inequality constraint greater than 0.8 (the ground truth is 0.9). These very simple and basic expert
elicited judgments (which are summarized in Table 3) are all that were used.

After introducing these simple constraints, along with data samples of varying sizes (from 10 to 110) we get the esti-
mated parameters. The results for this are shown in Fig. 8, where we perform all learning approaches (i.e., MLE, MAP, CO
and MPL-C).

In Fig. 8, the x-coordinate denotes the data sample size from 10 to 110, and the y-coordinate denotes the average K–L
divergence. For each data sample size, the experiments are repeated 5 times, and the results are presented with their mean
and standard deviation. The results show the extent to which the MPL-C method outperforms the MLE and MAP approaches.
More importantly, note that MPL-C also outperforms the directly competing CO approach. Specifically, MPL-C achieves very
good learning performance with just 10 data samples, where the average K–L divergence is 0.1182±0.0153 (95% confidence
interval using the observed standard deviation), which is much smaller than the results of MLE (1.7563 ± 0.5209), MAP
(0.5986 ± 0.0481) and CO (0.9883 ± 0.3589). Of most interest is the observation that the competing methods require vastly
more data before they approach the accuracy that MPL-C achieves with very small data samples. In Section 4.2, we will
demonstrate this more formally in the case of the software defects BN.

Synthetic expert judgments experiment. This experiment investigates the learning performance of our algorithm with
synthetic expert judgments. Specifically, the number of constraints chosen varies in different experiment settings (we con-
sider the cases of 20%, 50%, and 80% parameters are constrained respectively). In each case the parameters are chosen
at random. For each chosen parameter we introduce an approximate equality constraint generated with ε = 0.1. In other
words, if the ‘true’ value for a parameter Pk is 0.8, then the constraint will be |Pk − 0.8| < 0.1 The results are illustrated in
Fig. 9.

As shown in Fig. 9, for all parameter learning methods, the average K–L divergence shows a decreasing trend with
increasing sample sizes, where the small variations are due to randomly select constrained parameters in each sample
size. For parameter learning with constraints (CO and MPL-C), the average K–L divergence decreases along with number
of constrained parameters’ increase. However, the CO fails to outperform the baseline MAP algorithm when small subsets
of parameters (i.e., 20% and 50%) are constrained, while the MPL-C method always outperforms the other three learning
methods in all three different constrained ratios of parameters.

7 A positive X-ray means that the X-ray shows an abnormality.

1262 Y. Zhou et al. / International Journal of Approximate Reasoning 55 (2014) 1252–1268
Fig. 8. Learning results of MLE, MAP, CO and MPL-C for Asia BN with different training data sizes. Four lines are presented in this chart, where the blue and
purple lines represent the learning results of baseline MLE and MAP approaches, green line denotes the results of the CO approach, and the red line shows
the learning results of the MPL-C method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Although it is very well known, the Asia BN is rather simple and (some would argue) unrealistic. Hence, we next consider
a very well documented BN model that has been used by numerous technology companies worldwide [30] to address a
real-world problem: the software defects prediction problem.

4.2. Software defects BN experiment

The idea of the software defects BN is to predict the quality of software in terms of defects found in operation based on
observations that may be possible during the software development (such as component complexity and defects found in
testing). The basic version of this BN contains 8 nodes and its structure is shown in Fig. 10. In the basic version we assume
each node has 3 states “Low”, “Medium”, and “High”. There are therefore 80 independent parameters in the model.

This basic model structure is considered valid for multiple types of organization. While some of the NPTs will always be
organization-specific others need to be ‘tailored’ to each particular organization. That makes this BN a particularly relevant
test case for our method, especially as in practice it is known to be extremely difficult to obtain any more than a small
number of relevant data samples.

We elicited ten constraints from real software project experts and these are summarized in Table 4. Here, in order to
simplify the notation we will use ‘l’, ‘m’ and ‘h’ to represent variable states ‘Low’, ‘Medium’ and ‘High’.

After introducing these real constraints, along with data samples of varying sizes (from 10 to 110) we have the parameter
learning results shown in Fig. 11. The results show again that the MPL-C method still achieves the best learning performance
in the whole data range. Specifically, at 10 data samples, the average K–L divergence for MPL-C is 0.5263 ± 0.0316, which
is much smaller than the results of MLE (3.1962 ± 0.2564), MAP (1.3865 ± 0.0286) and CO (0.8806 ± 0.1164).

To get a better idea of how the learning performance can be improved by MPL-C, we can examine the number of data
samples that MLE, MAP and CO require in order to achieve the same average K–L divergence as MPL-C at a specific small
sample size. The results for such a comparison are shown in Table 5. For example, MLE, MAP and CO need 250, 160 and
75 data samples respectively to achieve the same average K–L divergence as MPL-C at 10 data samples. Even for 20 data
samples, the additional number required for the other methods is large (320, 230 and 105 respectively). This is a very
important result because in a typical software development organization having 20 relevant data samples for this problem
is considered a large data set and difficult to collect.

4.3. Different standard BNs experiments

In the final set of experiments we use five standard models from the BN repository8 that have been widely used for
evaluating different learning algorithms. The details of these BNs are listed in Table 6. For each BN, the sample sizes are
fixed at 10 and 50 with 5 repetitions in each case to get the average learning performance. For the constraints we use

8 Available at http://www.bnlearn.com/bnrepository/.

http://www.bnlearn.com/bnrepository/

Y. Zhou et al. / International Journal of Approximate Reasoning 55 (2014) 1252–1268 1263
Fig. 9. Learning results vs. different number of constraints for Asia BN: (a) shows the comparisons for different learning algorithm under 20% constraints
ratio; (b) shows the same comparisons under 50% constraints ratio; (c) shows the experiments with 80% constraints ratio, i.e., where most of the parameters
are constrained. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

1264 Y. Zhou et al. / International Journal of Approximate Reasoning 55 (2014) 1252–1268
Fig. 10. The software defects prediction BN.

Table 4
Details of 10 real expert judgments for the software defects prediction BN and their corresponding 19 constraints.

Index Description of real expert judgments Corresponding constraints

1 If design process quality is ‘High’ and component complexity is
‘Low’ then the probability that defects inserted is ‘Low’ is >80%.

P (D I = l|D Q = h, C = l) > 0.80

2 If design process quality is ‘Low’ and component complexity is
‘High’ then the probability that defects inserted is ‘Low’ is <5%.

P (D I = l|D Q = l, C = h) < 0.05

3 If defects inserted is ‘Low’ then the probability that defects found
is ‘Low’ is >99% (irrespective of testing quality).

P (DT = l|D I = l, T = h) > 0.99
P (DT = l|D I = l, T = m) > 0.99
P (DT = l|D I = l, T = l) > 0.99

4 When testing quality is ‘High’ and defects inserted is ‘High’ there
is a <10% probability defects found is ‘Low’.

P (DT = l|D I = h, T = h) < 0.10

5 When testing quality is ‘Low’ then the probability that defects
found is ‘High’ is <5% (irrespective of defects inserted).

P (DT = h|D I = h, T = l) < 0.05
P (DT = h|D I = m, T = l) < 0.05
P (DT = h|D I = l, T = l) < 0.05

6 If defects inserted is ‘Low’ then the probability that residual
defects is ‘Low’ is >99% (irrespective of defects found).

P (R = l|D I = l, DT = h) > 0.99
P (R = l|D I = l, DT = m) > 0.99
P (R = l|D I = l, DT = l) > 0.99

7 If defects inserted is ‘High’ and defects found is ‘Low’ then the
probability that residual defects is ‘Low’ is <1%.

P (R = l|D I = h, DT = l) < 0.01

8 If defects inserted is ‘Medium’ and defects found is ‘High’ then
the probability of residual defects is ‘Low’ is greater than the
probability of ‘Medium’, and the probability of ‘Medium’ is
greater than probability of ‘High’.

P (R = l|D I = m, DT = h)

> P (R = m|D I = m, DT = h)

P (R = m|D I = m, DT = h)

> P (R = h|D I = m, DT = h)

9 If operational usage is ‘High’ and residual defects is ‘High’ then
the probability that number of defects found in operation is
‘High’ is >99%.

P (D O = h|O = h, R = h) > 0.99

10 If operational usage is ‘Low’ then the probability that number of
defects found in operation is ‘High’ is <20%.

P (D O = h|O = l, R = h) < 0.20
P (D O = h|O = l, R = m) < 0.20
P (D O = h|O = l, R = l) < 0.20

the synthetic expert judgment approach (described above as part of the Asia BN experiment in Section 4.1). Since it is not
usually feasible to get large numbers of real constraints for large BNs with thousands parameters, the ratio of constrained
parameters is fixed at 20% for all BNs here.

Y. Zhou et al. / International Journal of Approximate Reasoning 55 (2014) 1252–1268 1265
Fig. 11. Learning results of MLE, MAP, CO and MPL-C for software defects BN with different training data sizes. Four lines are presented in this chart, where
the blue and purple lines represent the learning results of baseline MLE and MAP approaches, green line denotes the results of the CO approach, and the
red line shows the learning results of the MPL-C method. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 5
Equivalent data sample size so that MLE, MAP and CO achieve the same performance as MPL-C in the software defects BN. The values in column two are
the means with standard deviation in bracket.

Data
samples

K–L
divergence
(MPL-C)

Samples
needed by
MLE

Samples
needed by
MAP

Samples
needed by CO

10 0.5263(0.0316) 250 160 75
20 0.4341(0.0402) 320 230 105
30 0.3560(0.0371) 405 315 142
40 0.3261(0.0418) 410 370 150
50 0.3068(0.0402) 470 405 160

Table 6
Details of the 5 different experimental BNs.

Name Num of nodes Num of arcs Num of NPT columns Description

Weather 4 4 9 A simple model for weather prediction
Cancer 5 4 11 A model for cancer diagnosis
Alarm 37 46 243 Monitoring of emergency care patients
Insurance 27 52 411 Investigate the insurance fraud risk
Hailfinder 56 66 1085 Predicting hails in northern Colorado

Table 7 shows the average K–L divergence over NPT columns for different learning methods in each BN. The lowest
average K–L divergence in each setting are presented in bold text format. We can see (with one insignificant exception9)
that the MPL-C method returns the best learning results in all experimental settings. Again, the improved performance of
MPL-C against the other methods is especially pronounced when the number of samples is small (i.e., 10 in this case).

5. Conclusions and future work

Purely data driven techniques (such as MLE and MAP) for learning the NPTs in BNs often provide inaccurate results even
when the datasets are very large. That is why it is widely accepted that expert judgment should be used whenever it is
available in order to supplement and improve the learning accuracy. However, reliable expert judgment is not only difficult

9 In the Weather BN with 50 data samples, the CO algorithm achieves a slightly lower average K–L divergence 0.3121(0.2378) compared with
0.4159(0.1688) of MPL-C. However, due to the large standard deviations in these results (this is caused by the heavily unbalanced ‘true’ probabilities),
it is not statistically significant to claim that CO outperforms MPL-C even in this case. In all the other cases in the table, the MPL-C result is statistically
significant.

1266 Y. Zhou et al. / International Journal of Approximate Reasoning 55 (2014) 1252–1268
Table 7
Results for MLE, MAP, CO and MPL-C in 5 standard BN parameter learning problems.

Name Data
samples

MLE MAP CO MPL-C

Weather 10 0.8147(0.5659) 0.2839(0.0312) 0.6046(0.6729) 0.2273(0.0537)
50 0.3194(0.2639) 0.7005(0.1784) 0.3121(0.2378) 0.4159(0.1688)

Cancer 10 1.7038(0.4878) 0.0968(0.0337) 1.5099(0.5013) 0.0651(0.0249)
50 0.2431(0.0540) 0.0204(0.0077) 0.2057(0.0092) 0.0159(0.0061)

Alarm 10 3.9472(0.1617) 0.9223(0.0138) 3.2021(0.1295) 0.7794(0.0187)
50 2.8017(0.1788) 0.7278(0.0278) 2.2759(0.2225) 0.5967(0.0317)

Insurance 10 4.0967(0.0561) 1.7981(0.0130) 3.4375(0.0907) 1.5434(0.0289)
50 2.3919(0.2086) 1.3822(0.0262) 2.0268(0.1413) 1.1416(0.0232)

Hailfinder 10 4.5377(0.0401) 0.7678(0.0056) 3.7324(0.0658) 0.6583(0.0094)
50 3.3786(0.0442) 0.5703(0.0079) 2.8078(0.0862) 0.4610(0.0090)

to elicit, but also difficult to incorporate with existing data. We have described an automated method that addresses both
of these concerns. It focuses on constraints that are easily described by experts and are incorporated into an extended
version of a multinomial parameter learning model. This model is an auxiliary BN associated with each node whose NPT
we wish to learn. Because the auxiliary BN is a hybrid model, meaning it contains a mixture of discrete and (non-Normally
distributed) continuous nodes, previous state-of-the-art BN inference algorithms and tools do not provide the necessary
mechanism for accurate inference given data in the presence of the constraints in the model. Hence, we have developed a
novel inference procedure (and implementation) which exploits recent work on dynamic discretization algorithms for hybrid
BNs. The resulting method, which we called MPL-C (multinomial parameter learning with constraints) was implemented
(using the API of the BN software tool AgenaRisk) and evaluated experimentally against both pure data learning methods
(namely MLE and MAP) as well as against the only relevant competing method that incorporates expert judgments with
data (namely CO).

We have conducted experiments on six standard BN models of varying size and complexity that come from a BN
repository whose models are widely used for evaluating learning techniques. In addition, we conducted experiments on
a real-world BN model that has been used by many technology companies worldwide (for predicting software defects). In
all cases our objective was to compare the learnt NPTs and their predictions against the ‘ground truth’ model (so we were
assuming the NPTs as defined in the repository and in relevant papers constituted the ground truth) using the K–L measure.
In all of the experiments we generated sample datasets – of different sizes – based on the ‘ground truth’ model NPTs, and
in all of the experiments we considered the impact of adding expert constraints. In one of the standard models (Asia) and
in the software defects model we elicited a small number of constraints from real experts. In the other standard models we
generated random synthetic constraints.

The experiments demonstrate that, whereas the CO method clearly improves performance compared with conventional
MLE and MAP algorithms when enough constraints are added, our MPL-C method achieves the best learning results in
almost all experiment settings. MPL-C is especially accurate in comparison to the other methods in situations where the
datasets are relatively small. Indeed, MPL-C needs much smaller datasets to achieve accurate learning results. Moreover,
even a very small number of expert constraints dramatically improves accuracy under MPL-C.

The practical implications of these results are very important: in most real-world situations (such as that in which the
software defects prediction BN is used) the availability of relevant data is extremely limited; even when it is possible to get
relevant data it may be too expensive or time consuming to do so. Our results show that in these very common situations a
small dataset, together with even a small number of expert judgment constraints, can result in accurate models using MPL-C.
Indeed the accuracy can be much greater than what is achievable with a very large dataset and no expert constraints. Hence,
the experimental results suggest that our MPL-C method may represent a significant step forward in parameter learning of
BNs in the very common situation where there is sparse data but a small amount of expert judgment.

While the experimental results are extremely promising, there are obvious areas for improvement and future work. We
highlight four of these:

Making better use of the learnt distributions. The MPL-C model actually learns the full posterior distribution for each
parameter of interest. However, because the parameter corresponds to a probability value in a discrete NPT of the original
BN, we currently simply take the mean of the posterior distribution as the NPT parameter value. Hence, we are ‘throwing
away’ all the other information in the learnt distributions (such as the variance and percentiles). To avoid this loss of
information we could, in principle, add an associated continuous node to the discrete node in the original BN. However,
there are major practical and computational challenges involved in doing this.

Supporting broader types of constraints. In this paper we have considered only constraints that affect a single column
of NPT values. However, experts may be able to provide constraints between parameters in different columns (for example:
in the Asia BN, an expert could assert that the probability a patient has lung cancer given they smoke is greater than
the probability given they do not smoke). They may even be able to provide constraints between parameters in different
NPTs (for example, an expert may assert the probability a person is a smoker is much greater than the probability they

Y. Zhou et al. / International Journal of Approximate Reasoning 55 (2014) 1252–1268 1267
visited Asia). Given the remarkable boost in accuracy achieved by incorporating the limited types of constraints considered
in the paper, it is reasonable to conclude that incorporating these other types would also lead to greatly improved learning
accuracy.

Incorporating notion of trustworthiness about data and expert judgments. All of the NPT learning methods we have
discussed assume that both the data and the expert judgments are reliable. In practice there will be ‘second level’ judgments
about the trustworthiness of both. For example, some datasets will be known to be less representative than others, while
some expert constraints will (even on the admission of the experts who provided them) be less trustworthy than others.
Ideally, therefore, we need a “trustworthiness” mechanism to handle knowledge and data from different sources to increase
the robustness of the method.

Fully automating the method in BN toolsets. Ideally, the MPL-C method should be available as part of a standard BN tool.
In other words, it should be possible within a single BN tool GUI to build a BN model, import both a dataset and a set of
experts constraints relevant to the BN, and then have the NPTs in the BN automatically updated according to the MPL-C
method calculations. Although we have implemented the MPL-C method using the API of a standard BN tool, its integration
into that tool’s GUI would be a major challenge.

Acknowledgements

We would like thanks the anonymous referees and the editor for their insightful comments and helpful suggestions.
Also, the first author wishes to thank colleagues for useful discussions on this paper, especially William Marsh, Timothy
Hospedales and Yongxin Yang. The BN software was provided by Agena Ltd. The first author was supported by China
Scholarship Council (CSC)/Queen Mary Joint PhD scholarships and National Natural Science Foundation of China (Grant
Nos. 61273322 and 71001105).

Appendix A

Algorithm 1 DDJT(U , θ, E, Q)
Input:
U : A set of random variables in MPL-C.
θ : Priors of parameters.
E: Observed variables of the MPL-C, which are Cm = True, Nk = actual number of observations, and sum = 1.
Q : Query variables of the MPL-C, which are Pk .
Output:
P (∗)(Q |E): Posteriors of parameters.

Main:
1. Initialize the discretization θ to get ψ

(0)
m for each continuous variable Xm ∈ U .

2. Build a junction tree structure for the MPL-C model to determine the cliques, Φ , and sepsets.
3. For l = 1 to max_num_iterations
4. Compute the NPTs for parameters, P (l)(Xm|pa(Xm)), on ψ

(l−1)
m for all nodes Xm ∈ Q (query variables) that have new discretization or that are

children of parent nodes that have a new discretization.
5. Initialize the junction tree by multiplying the NPTs for all nodes into the relevant members of Φ .
6. Enter evidence, Xn = en , Xn ∈ E (observed variables), into the junction tree.
7. Perform global propagation on the junction tree.
8. For all nodes Xm ∈ Q
9. Marginalize/normalize to get the discretized posterior marginals P (l)(Xm|Xn = en).

10. Compute the approximate relative entropy error S(l)
Xm

= ∑
ωmn

Errmn , for P (l)(Xm|Xn = en) over all intervals ωmn in ψ
(l−1)
m .

11. If (1 − α � S(l−c)
Xm

/S(l−c+1)
Xm

� 1 + α for c = 1,2,3) or (S(l)
Xm

< β) //Stable-entropy-error or low-entropy-error stopping rule

12. Then stop discretization for node Xm , P (∗)(Xm|E) = P (l)(Xm|Xn = en).
13. Else create a new discretization ψ

(l)
m for node Xm: Split into two halves the interval ωmn in ψ

(l−1)
m with the highest entropy error, Errmn . Merge

those consecutive intervals in ψ
(l−1)
m with the lowest entropy error or that have zero mass and zero entropy error.

14. End If
15. End for
16. End for
17. P (∗)(Q |E) = ∏

Xm∈Q P (∗)(Xm|E)

18. Return P (∗)(Q |E)

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.ijar.2014.02.008.

References

[1] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, 1988.
[2] N. Fenton, M. Neil, Risk Assessment and Decision Analysis with Bayesian Networks, CRC Press, New York, 2012.
[3] O. Pourret, P. Naïm, B. Marcot, Bayesian Networks: A Practical Guide to Applications, vol. 73, Wiley, 2008.

http://dx.doi.org/10.1016/j.ijar.2014.02.008
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib706561726Cs1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib4E6F726D616Es1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib706F757272657432303038626179657369616Es1

1268 Y. Zhou et al. / International Journal of Approximate Reasoning 55 (2014) 1252–1268
[4] A. O’Hagan, C.E. Buck, A. Daneshkhah, J.R. Eiser, P.H. Garthwaite, D.J. Jenkinson, J.E. Oakley, T. Rakow, Uncertain Judgements: Eliciting Experts’ Probabil-
ities, Wiley, 2006.

[5] E. Santos Jr., J.T. Wilkinson, E.E. Santos, Fusing multiple Bayesian knowledge sources, Int. J. Approx. Reason. 52 (7) (2011) 935–947.
[6] R.E. Neapolitan, Learning Bayesian Networks, Pearson Prentice Hall, Upper Saddle River, 2004.
[7] A. Cano, A.R. Masegosa, S. Moral, A method for integrating expert knowledge when learning Bayesian networks from data, IEEE Trans. Syst. Man

Cybern., Part B, Cybern. 41 (5) (2011) 1382–1394.
[8] N. Fenton, A simple story illustrating why pure machine learning (without expert input) may be doomed to fail and totally unnecessary, http://www.

eecs.qmul.ac.uk/~norman/, November 2012.
[9] M.R. Mattr, P. Domingos, Learning with knowledge from multiple experts, in: ICML 20, AAAI Press, 2003, pp. 624–631.

[10] E.E. Altendorf, Learning from sparse data by exploiting monotonicity constraints, in: Proceedings of the 21st Conference on Uncertainty in Artificial
Intelligence, 2005, pp. 18–26.

[11] E.M. Helsper, L.C. van der Gaag, F. Groenendaal, Designing a procedure for the acquisition of probability constraints for Bayesian networks, in: Engi-
neering Knowledge in the Age of the Semantic Web, Springer, 2004, pp. 280–292.

[12] A. Feelders, L. van der Gaag, Learning Bayesian network parameters under order constraints, Int. J. Approx. Reason. 42 (1) (2006) 37–53.
[13] R.S. Niculescu, T. Mitchell, B. Rao, Bayesian network learning with parameter constraints, J. Mach. Learn. Res. 7 (2006) 1357–1383.
[14] D. Campos, Q. Ji, Improving Bayesian network parameter learning using constraints, in: Proceedings of the 19th International Conference on Pattern

Recognition, 2008, pp. 1–4.
[15] W. Liao, Q. Ji, Learning Bayesian network parameters under incomplete data with domain knowledge, Pattern Recognit. 42 (11) (2009) 3046–3056.
[16] R. Chang, M. Stetter, W. Brauer, Quantitative inference by qualitative semantic knowledge mining with Bayesian model averaging, IEEE Trans. Knowl.

Data Eng. 20 (12) (2008) 1587–1600.
[17] R. Chang, W. Wang, Novel algorithm for Bayesian network parameter learning with informative prior constraints, in: The 2010 International Joint

Conference on Neural Networks (IJCNN), IEEE, 2010, pp. 1–8.
[18] G. Corani, A. Antonucci, M. Zaffalon, Bayesian networks with imprecise probabilities: Theory and application to classification, in: Data Mining: Foun-

dations and Intelligent Paradigms, Springer, 2012, pp. 49–93.
[19] O.Z. Khan, P. Poupart, J.M. Agosta, Automated refinement of Bayes networks’ parameters based on test ordering constraints, in: Advances in Neural

Information Processing Systems, 2011, pp. 2591–2599.
[20] J. Su, H. Zhang, C.X. Ling, S. Matwin, Discriminative parameter learning for Bayesian networks, in: Proceedings of the 25th International Conference on

Machine Learning, ACM, 2008, pp. 1016–1023.
[21] O.V. Ogunsanya, Decision support using Bayesian networks for clinical decision making, PhD thesis, Queen Mary, University of London, 2012.
[22] N. Fenton, M. Neil, J.G. Caballero, Using ranked nodes to model qualitative judgments in Bayesian networks, IEEE Trans. Knowl. Data Eng. 19 (10)

(2007) 1420–1432.
[23] K. Murphy, Inference and Learning in Hybrid Bayesian Networks, University of California, Berkeley, Computer Science Division, 1998.
[24] M. Neil, M. Tailor, D. Marquez, Inference in hybrid Bayesian networks using dynamic discretization, Stat. Comput. 17 (3) (2007) 219–233.
[25] AgenaRisk, Bayesian network and simulation software for risk analysis and decision support, http://www.agenarisk.com/, 2013.
[26] H. Langseth, D. Marquez, M. Neil, Fast approximate inference in hybrid Bayesian networks using dynamic discretisation, in: Natural and Artificial

Models in Computation and Biology, Springer, 2013, pp. 225–234.
[27] M. Neil, X. Chen, N. Fenton, Optimizing the calculation of conditional probability tables in hybrid Bayesian networks using binary factorization, IEEE

Trans. Knowl. Data Eng. 24 (7) (2012) 1306–1312.
[28] T.M. Cover, J.A. Thomas, Entropy, relative entropy and mutual information, Elements Inf. Theory (1991) 12–49.
[29] S. Lauritzen, D. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems, J. R. Stat. Soc. B

(1988) 157–224.
[30] N. Fenton, M. Neil, W. Marsh, P. Hearty, Ł. Radliński, P. Krause, On the effectiveness of early life cycle defect prediction with Bayesian nets, Empir.

Softw. Eng. 13 (5) (2008) 499–537.

http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6F32303036756E6365727461696Es1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6F32303036756E6365727461696Es1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib73616E746F7332303131667573696E67s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6E6561706F6C6974616E323030346C6561726E696E67s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib63616E6F323031316D6574686F64s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib63616E6F323031316D6574686F64s1
http://www.eecs.qmul.ac.uk/~norman/
http://www.eecs.qmul.ac.uk/~norman/
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib4D6174747230336C6561726E696E6777697468s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib416C74656E646F726630356C6561726E696E6766726F6Ds1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib416C74656E646F726630356C6561726E696E6766726F6Ds1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib68656C737065723230303464657369676E696E67s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib68656C737065723230303464657369676E696E67s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6665656C64657273323030366C6561726E696E67s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6E6963756C6573637532303036s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib646563616D706F7332303038s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib646563616D706F7332303038s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6C69616F32303039s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6368616E67323030387175616E7469746174697665s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6368616E67323030387175616E7469746174697665s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib4368616E6732303130s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib4368616E6732303130s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib636F72616E6932303132626179657369616Es1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib636F72616E6932303132626179657369616Es1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6B68616E323031316175746F6D61746564s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6B68616E323031316175746F6D61746564s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib7375323030386469736372696D696E6174697665s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib7375323030386469736372696D696E6174697665s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6F67756E73616E7961323031326465636973696F6Es1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib66656E746F6E32303037s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib66656E746F6E32303037s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6D7572706879s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6E65696C32303037s1
http://www.agenarisk.com/
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6C616E67736574683230313366617374s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6C616E67736574683230313366617374s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6E65696C32303132s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6E65696C32303132s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib636F76657231393931656E74726F7079s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6C61757269747A656E31393838s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib6C61757269747A656E31393838s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib66656E746F6E323030386566666563746976656E657373s1
http://refhub.elsevier.com/S0888-613X(14)00037-1/bib66656E746F6E323030386566666563746976656E657373s1

	Bayesian network approach to multinomial parameter learning using data and expert judgments
	1 Introduction
	2 Preliminaries
	2.1 Learning parameters of Bayesian networks
	2.2 Constrained optimization approach

	3 The new method
	3.1 Multinomial parameter learning
	3.2 Adding expert judgments to the model
	3.3 Inference with constraints

	4 Experiments
	4.1 Asia model experiments
	4.2 Software defects BN experiment
	4.3 Different standard BNs experiments

	5 Conclusions and future work
	Acknowledgements
	Appendix B Supplementary material
	References

