= Backtracking:
- does normally exactly what one expects in

terms of logic programming
- control primitives offer extra control over

Enforcing Backtracking: Fail

» ?- fail.
no (no match)

= Program:
p(a).
p(b).
Query:
?- p(X). (match)
X=a
yes

Fail - no Recursion

= Program:
p(a).
p(b).
p(X) :- a(X).
q(c).
= Query:
?- p(X), write(X), nl, fail.

B 4

c backtracking
no

Fail - with Recursion

= Program:
/*¥1*/ member(X, [X|_]).
/*¥2*/ member(X, [_|Y]) :- ﬁ

member(X,Y).
= Query/call:
?- member(Z,[a,b]), write(Z), nl, fail.
Z=X,X=a match 1
?- write(a), nl, fail.
a backtracking

?- member(Z,[a,b]), write(Z), nl, fail.

Z=X,Y =[b] match 2

7]

E Finger Cut by Grass
\
|

Controlling Backtracking: !

= Procedural meaning of the cut !:

A :- B1, B2, !, B3, B4.
W—l

Search for
alternatives

W—I
Search for
alternatives

-~

Stop seérching

Cut

Program: Execution:
p(a). ?- q(2).
p(b). Z=X
a(X) :- p(X), r(X). ?- p(X), r(X).
r(Y) :- 1, t(Y). X=a
r(a). ?- r(a).
t(c). Y=a
?- t(a).
fail, no
| < backtracking
to r(a).
Try X =b

Search Space and !

- b, c
-f, g

QO

Various Applications of !

= Cut as commitment operator:

ifX<3thenY=0
ifX=3and X< 6thenY =2
ifX>6thenY =4

= Prolog:
t(X, 0) :- X < 3.
t(X,2) :-X>=3,X<6.
t(X, 4) :- X >=6.

Commitment Operator

= Cut as commitment operator:
[¥1*[t(X, 0) :- X < 3.
[¥2*%] (X, 2) :-X>=3,X < 6.
[¥3*% t(X, 4) :-X >=6.

= Execution trace:

l -t1,Y),Y> 2. match 1
‘ f’?-1<3,0>2.
?-0> 2. fail 1
-1>=3,1<6,1>2. match2
?- fail 2

? 1 >= 6,4>2. match3,fail3 ®

Commitment Operator

» Cut as commitment operator:

[¥1*/ t(X, 0) :--X < 3, L.
[¥2%) t(X, 2) :-X>=3,X<6, L
[*¥3*%/ t(X, 4) :-X >=6.

= Execution trace:

2-11,Y),Y> 2. match 1
-1<3,1,0>2.

?-1,0> 2. fail 1
no ©

| Various Applications of !

= Cut used for removal of conditions:
min(X, Y)is Xif X<Y
min(X, Y)isYif X > Y
= Prolog:
min(X, Y, X) :-X =<Y.
min(X, Y, Y) :- X >Y.

= Execution:
?- min(3, 5, Z).

|

|

|

\ ?-3 =<5, match 1
Z=3 yes

| Removal of Conditions

= Cut used for removal of conditions:
min(X, Y, Z O X) :-
X=<Y,L
Z=X.
| min(X, Y, Y).
= Execution:
?- min(3, 5, 5).

why included?

Removal of Conditions

= Cut used for removal of conditions:
min(X, Y, Z) :-
X=<Y,]1,
Z=X.
min(X, Y, Y).

= Execution:
?- min(3, 5, W).
?-3=<5,1,W=3, match 1
W=3 yes

| fail 1, match 2
\ yes
| Cut-fail Combination
' = When a certain condition is satisfied,
failure must be returned
b :- |, fail
| = Example:
different(X, X) :- !, fail.
| different(X, Y).
—_

?- different(3, 3).
no

7]

Change in Meaning?
= Cut used for removal of conditions:
min(X, Y, Z) :-
X =<Y,
Z=X
min(X, Y, Y).
= Execution:
?- min(3, 5, W), W = 5.
?-3=<5,5=3,W=05,

(! omitted)

match 1

?-5=3, W=5. fail

?-W =5, match 2 (withY=5=W)
W=5

yes

N e

Negation by Failure

= Simulation of negation: not(p) is true if
p is false (fails):
not(X) :- call(X), !, fail.
not(X).
= Example:

p(a).

q(X) :- p(X), not(r(X)).
r(c).

?- q(Y).

yes

| Single Solution

= Circumvention of double search:
/¥1*/ member(X, [X|_]) :- !
/*¥2*/ member(X,[_|Y]) :-
member(X,Y).
= Example:
?- member(a, [a, b, a]).
yes

?- member(X, [a, b]).
X=a;

|

|

|
-

Green and Red Cuts

= Green cut:
—commitment operator

= Red cut:
—removal of conditions
—cut-fail combination
—single solution

N

Green and Red Cuts

= Green cut:

—when omitted, does not change
declarative (logical) meaning of
program

—used to increase efficiency
= Red cut:

—when omitted, declarative meaning of
program is changed

—used for efficiency
—used to enforce termination

