
Reasoning with Uncertainty

Topics:

Why is uncertainty important?

How do we represent and reason with uncertain
knowledge?

Progress in research:
1980s: rule-based representation of uncertainty
(MYCIN, Prospector)

1990s to present: graphical models, probabilistic
expert systems (Munin, Promedas)

latest developments: integration of probability
theory and logic
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Why important: biomedical
Have you got Mexican Flu?

M : mexican flu; C: chills; S: sore throat

Probability of mexican flu given sore throat?
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Why important: embedded systems
Control of behaviour of large production printer

Speed v given available power P and required energy:
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Why important: agents

Agents (robots) perceive an incomplete image of the
world using sensors that are inherently unreliable

Partially observable worlds

Noisy computer vision (Lenna: famous image)

Uncertain, noisy action outcomes
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Representation of uncertainty

Representation of uncertainty is clearly important!

How to do it? For example rule based:
e: evidence

h: hypothesis

e1 ∧ · · · ∧ en → hx

If e1, e2, . . . , en are true (observed), then conclusion
h is true with certainty x

How to proceed when ei, i = 1, . . . , n are uncertain?

⇒ uncertainty propagation/inference/reasoning
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Theory

We need a basic ‘theory’, e.g.
Certainty-factor model (Mycin)
Subjective Bayesian method (Prospector) – not
discussed
Dempster-Shafer theory – not discussed
Probability theory

This theory should tell us how to draw inferences with
uncertainty statements

Many systems (Fuzzy, Plausibility, Probability,
Intervals, etc.)

Much philosophical and technical debate on semantics
and truthfulness of various representation theories.
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Rule-based uncertain knowledge

Early, simple approach – certainty-factor calculus:

fever ∧ myalgia → fluCF=0.8

Example how its works:
CF(fever, e) = 0.6;
CF(myalgia, e) = 1
(e is evidence; background knowledge)

Combination functions:
CF(flu, e)

= 0.8 ·max{0,min{CF(fever, e),CF(myalgia, e)}}
= 0.8 ·max{0,min{0.6, 1}} = 0.48
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Fuzzy Logic

Well-known AI rule-based: Fuzzy Logic

Fuzzy technology: in cars, washing machines, etc.
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Certainty factor calculus

Developed by E.H. Shortliffe and B.G. Buchanan for
rule-based expert systems

Applied in MYCIN, the expert system for the diagnosis
of infectious disease

Probability theory was seen as unsatisfactory:
Not enough data to obtain sufficient statistics
Medical knowledge must be explicitly represented
Line of reasoning should be explained by the
system
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Inference rules

Define combination functions f∧, f∨, fprop, fco, where:
f∧: combines uncertainty w.r.t. conjunctions of
uncertain evidence
f∨: combines uncertainty w.r.t. disjunctions of
uncertain evidence
fco: combines uncertainty for two co-concluding
rules:

e1 → hx contact_chicken → flu0.01

e2 → hy train_contact_humans → flu0.1

fprop: propagation of uncertain evidence e to a
hypothesis h
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Certainty factor calculus

Weak relationship to probability theory

Certainty factors (CFs): subjective estimates of
uncertainty with CF(x, e) ∈ [−1, 1] (CF(x, e) = −1 false,
CF(x, e) = 0 unknown, and CF(x, e) = 1 true)

CF-calculus offers fill-in for combination functions: f∧,
f∨, fco, fprop
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Combination functions

f∧
rule: e1 ∧ e2 → hCF(h,e) with

uncertain evidence CF(e1, e
′) and CF(e2, e

′)

then:

CF(e1 ∧ e2, e
′) = min{CF(e1, e

′),CF(e2, e
′)}

f∨
rule: e1∨2 → hCF(h,e) with

uncertain evidence CF(e1, e
′) and CF(e2, e

′)

then:

CF(e1 ∨ e2, e
′) = max{CF(e1, e

′),CF(e2, e
′)}
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Combination functions

fprop

rule e → hCF(h,e)

uncertain evidence w.r.t. e, i.e. CF(e, e′) (e′ includes
all evidence so far)

then:
CF(h, e′) = CF(h, e) ·max{0,CF(e, e′)}

� p. 13/84



Combination functions

fco:
two rules:
e1 → hCF(h,e1)

e2 → hCF(h,e2)

uncertain evidence CF(e1, e
′) and CF(e2, e

′)

Let CF(h, e′1) = x via rule 1 and CF(h, e′2) = y via rule
2 (using fprop)
Then:

CF(h, e′) =











x+ y(1− x) if x, y ≥ 0

x+ y(1 + x) if x, y < 0
x+y

1−min{|x|,|y|} otherwise
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Example

R = {R1 : flu → feverCF(fever,flu)=0.8,

R2 : common-cold → feverCF(fever,common-cold)=0.3}

Evidence: CF(flu, e′) = 0.6 and CF(common-cold, e′) = 1

What is the certainty factor for fever?
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Solution

Application of fprop

Evidence: CF(flu, e′) = 0.6 and CF(common-cold, e′) = 1

For rule R1:

CF(fever, e′1) = CF(fever,flu) ·max{0,CF(flu, e′)}

= 0.8 · 0.6 = 0.48

for rule R2 this yields CF(fever, e′2) = 0.3

Application of fco:

CF(fever, e′) = CF(fever, e′1) + CF(fever, e′2)(1− CF(fever, e′1))

= 0.48 + 0.3(1− 0.48) = 0.636
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However . . .

fever ∧ myalgia → fluCF=0.8

How likely is the occurrence of fever or myalgia given
that the patient has flu?

How likely is the occurrence of fever or myalgia in the
absence of flu?

How likely is the presence of flu when just fever is
present?

How likely is the presence of no flu when just fever is
present?
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Problems with the CF model

CF model requires rules to be encoded in the direction
in which they are used.

CF reasoning becomes unsound if strong assumptions
fail to hold (consequence of combination functions)

Assumption of modularity: A rule if e then h conforms
to the following:

Detachment: given e we can conclude h no matter
how we established e

Locality: given e we can conclude h no matter what
else we know to be true

Holds for logic but not for probability theory!

Illogical results are obtained such as the dependence
of a diagnosis on the order in which findings are
entered
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The inevitability of probability theory

Probability theory is nothing but common sense
reduced to calculation.
Laplace, 1819

Basic postulates for any measure of belief (Cox, 1946;
Jaynes, 2003):
1. Representation of degrees of plausibility by real

numbers
2. Qualitative correspondence with common sense
3. Consistency

Axioms of probability theory follow as a logical
consequence from these postulates

If you do not reason according to Probability Theory,
you can be made to act irrationally (de Finetti)
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Probability space

A probability space represents our uncertainty
regarding an experiment (DB query) and consists of:

A sample space Ω consisting of a set of outcomes
A probability measure P which is a real function of
the subsets of Ω

A set of outcomes A ⊆ Ω is called an event

P (A) represents how likely it is that an experiment’s
outcome will be a member of A.
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Example

Suppose our experiment is to examine whether
someone has a cold and its related symptom fever.

The outcomes are defined by

Ω = {(cold, fever), (no cold, fever),

(cold,no fever), (no cold,no fever)}

and we may define probabilities

P ({(cold, fever), (cold,no fever)}) = 0.001

P ({(no cold, fever), (cold, fever)}) = 0.01

...

A probability measure P can be completely described
by assigning a probability to each event ω ∈ Ω

� p. 21/84



Axioms of probability theory

P should obey three axioms:
1. P (A) ≥ 0 for all events A

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) for disjoint events A and B

Some consequences:
P (A) = 1− P (Ω \ A)

P (∅) = 0

If A ⊆ B then P (A) ≤ P (B)

P (A ∪B) = P (A) + P (B)− P (A ∩B) ≤ P (A) + P (B)

Given these axioms and a completely defined
probability measure any quantity of interest can be
computed!
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Joint density

The joint density for two random variables X and Y is
given by

pXY (x, y) = P ({ω : X(ω) = x, Y (ω) = y})

Often written as P (X = x, Y = y), P (x, y), p(x, y), . . .

Generalizes to multiple random variables

From now on we work with random variables and (joint)
densities instead of events
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Example
Have you got Mexican Flu?

P (m, c, s) = 0.009215

P (m, c̄, s) = 0.000485

P (m, c, s̄) = 0.000285

P (m, c̄, s̄) = 1.5 · 10−5

P (m̄, c, s) = 9.9 · 10−6

P (m̄, c̄, s) = 0.0098901

P (m̄, c, s̄) = 0.0009801

P (m̄, c̄, s̄) = 0.97912

M : mexican flu; C: chills;
S: sore throat
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Marginalization

Joint probability distribution P (X) = P (X1, X2, . . . , Xn)

U and V are mutually exclusive and collectively
exhaustive subsets of X.

Marginalization:

P (u) =
∑

v∈dom(v)

P (u, v)
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Example
Have you got Mexican Flu?

P (m, c, s) = 0.009215

P (m, c̄, s) = 0.000485

P (m, c, s̄) = 0.000285

P (m, c̄, s̄) = 1.5 · 10−5

P (m̄, c, s) = 9.9 · 10−6

P (m̄, c̄, s) = 0.0098901

P (m̄, c, s̄) = 0.0009801

P (m̄, c̄, s̄) = 0.97912

M : mexican flu; C: chills;
S: sore throat

Probability of mexican flu
and sore throat?
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Example
Have you got Mexican Flu?

P (m, c, s) = 0.009215

P (m, c̄, s) = 0.000485

P (m, c, s̄) = 0.000285

P (m, c̄, s̄) = 1.5 · 10−5

P (m̄, c, s) = 9.9 · 10−6

P (m̄, c̄, s) = 0.0098901

P (m̄, c, s̄) = 0.0009801

P (m̄, c̄, s̄) = 0.97912

M : mexican flu; C: chills;
S: sore throat

Probability of mexican flu
and sore throat?

P (m, s) = P (m, c, s) + P (m, c̄, s)

= 0.009215 + 0.000485

= 0.0097
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Example
Have you got Mexican Flu?

P (m, c, s) = 0.009215

P (m, c̄, s) = 0.000485

P (m, c, s̄) = 0.000285

P (m, c̄, s̄) = 1.5 · 10−5

P (m̄, c, s) = 9.9 · 10−6

P (m̄, c̄, s) = 0.0098901

P (m̄, c, s̄) = 0.0009801

P (m̄, c̄, s̄) = 0.97912

M : mexican flu; C: chills;
S: sore throat

Probability of mexican flu
given sore throat?
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Conditioning

Conditioning specifies how to revise beliefs based on
new information.

The conditional probability of a A given B is

P (A|B) =
P (A,B)

P (B)

where P (B) =
∑

a P (a,B).

Information B rules out possible worlds incompatible
with B and induces a new measure over possible
worlds in which B holds

Often, B is available evidence and A is a hypothesis of
interest (e.g., disease given symptoms)

� p. 29/84



Example
Have you got Mexican Flu?

P (m, c, s) = 0.009215

P (m, c̄, s) = 0.000485

P (m, c, s̄) = 0.000285

P (m, c̄, s̄) = 1.5 · 10−5

P (m̄, c, s) = 9.9 · 10−6

P (m̄, c̄, s) = 0.0098901

P (m̄, c, s̄) = 0.0009801

P (m̄, c̄, s̄) = 0.97912

M : mexican flu; C: chills;
S: sore throat

Probability of mexican flu
given sore throat?
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Example
Have you got Mexican Flu?

P (m, c, s) = 0.009215

P (m, c̄, s) = 0.000485

P (m, c, s̄) = 0.000285

P (m, c̄, s̄) = 1.5 · 10−5

P (m̄, c, s) = 9.9 · 10−6

P (m̄, c̄, s) = 0.0098901

P (m̄, c, s̄) = 0.0009801

P (m̄, c̄, s̄) = 0.97912

M : mexican flu; C: chills;
S: sore throat

Probability of mexican flu
given sore throat?

P (m | s) = P (m, s)/P (s)

= 0.0097/0.0196

= 0.495
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Product rule

Conditional probability: P (A|B) =
P (A,B)
P (B)

Therefore: P (A,B) = P (A|B)P (B)
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Chain rule

Extension of the product rule:

P (X1, X2, . . . , Xn)

= P (Xn | X1, X2, . . . , Xn−1)× P (X1, X2, . . . , Xn−1)

= P (Xn | X1, X2, . . . , Xn−1)×

P (Xn−1 | X1, X2, . . . , Xn−2)× P (X1, X2, . . . , Xn−2)

= P (Xn | X1, X2, . . . , Xn−1)× P (Xn−1 | X1, X2, . . . , Xn−2)×

· · · × P (X3 | X1, X2)× P (X2 | X1)× P (X1)

=

n
∏

i=1

P (Xi | X1, · · · , Xi−1)
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Bayes’ rule

The chain rule and commutativity of conjunction
(P (A,B) is equivalent to P (B,A)) gives us:

P (A,B) = P (A | B)× P (B) = P (B | A)× P (A).

If P (B) 6= 0, you can divide the right hand sides by
P (B):

P (A | B) =
P (B | A)P (A)

P (B)

This is Bayes’ rule.
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Bayes’ rule

Why is Bayes’ rule interesting?

Often you have causal knowledge:

P (symptom | disease), P (disease)

P (alarm | fire), P (fire)

P (image | a tree is in front of a car), P (a tree is in front of a car)

and want to do evidential reasoning:

P (disease | symptom)

P (fire | alarm)

P (a tree is in front of a car | image)

Reasoning ’against the direction of the arrows’ is not
possible using e.g. certainty factors.
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Bayes’ rule in practice

A drug test is 99% sensitive (the test returns a positive
result for a user 99% of the time)

A drug test is 99% specific (the test returns a negative
result for a non-user 99% of the time)

Suppose that 0.5% of people are users of the drug

If an individual tests positive, what is the probability
they are a user?
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Bayes’ rule in practice

d = drug user, p = positive test, P (p | d) = 0.99

P (¬p | ¬d) = 0.99, p(d) = 0.005.

P (d | p) =
P (p | d)P (d)

P (p)

=
P (p | d)P (d)

P (p | d)P (d) + P (p | ¬d)p(¬d)

=
0.99 · 0.005

0.99 · 0.005 + 0.01 · 0.995

= 33.2%
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Independence

Random variable X is independent of random variable
Y if for all x and y

P (x | y) = P (x)

This is written as X ⊥⊥ Y

Examples:
Flu ⊥⊥ Haircolor since P (Flu | Haircolor) = P (Flu).
Myalgia ✚✚⊥⊥ Fever since
P (Myalgia | Fever) 6= P (Myalgia).
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Independence

Independence is very powerful because it allows us to
reason about aspects of a system in isolation.

However, it does not often occur in complex systems.
For example, try and think of two medical symptoms
that are independent.

A generalization of independence is conditional
independence, where two aspects of a system become
independent once we observe a third aspect.

Conditional independence does often arise and can
lead to significant representational and computational
savings.
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Conditional independence

Random variable X is conditionally independent of
random variable Y given random variable Z if

P (x | y, z) = P (x | z)

whenever P (y, z) > 0. That is, knowledge of Y doesn’t
affect your belief in the value of X, given a value of Z.

This is written as X ⊥⊥ Y | Z

Example:
Symptoms are conditionally independent given the
disease:

Myalgia ⊥⊥ Fever | Flu

since P (Myalgia | Fever,Flu) = P (Myalgia | Flu)
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Conditional independence

An intuitive test of conditional independence (Paskin):

Imagine that you know the value of Z and you
are trying to guess the value of X. In your
pocket is an envelope containing the value of Y
. Would opening the envelope help you guess
X? If not, then X ⊥⊥ Y | Z.
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Example

Assume we have a joint density over the following five
variables:

Temperature: temp ∈ {high, low}

Fever: fe ∈ {y,n}

Myalgia: my ∈ {y,n}

Flu: fl ∈ {y,n}

Pneumonia: pn ∈ {y,n}

Probabilistic inference amounts to computing one or
more (conditional) densities given (possibly empty)
observations.
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Inference problem

P (pn | temp=high) =
1

Z

∑

fe

∑

my

∑

fl

P (temp=high, fe,my,fl,pn)

We don’t need to compute Z. We just compute

P (pn | temp=high)× P (temp=high)

and renormalize.

We do need to compute the sums, which becomes
expensive very fast (nested for loops)!
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Representation problem

In order to specify the joint density
P (temp, fe,my,fl,pn) we need to estimate 31(2n − 1)
probabilities

Probabilities can be estimated by means of knowledge
engineering or by parameter learning

This doesn’t solve the problem
How does an expert estimate
P (temp=low, fe=y,my=n,fl=y,pn=y)?
Parameter learning requires huge databases
containing multiple instances of each configuration

Solution: conditional independence!
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Chain rule revisited

The chain rule allows us to write:

P (temp, fe,my,fl,pn)

= P (temp | fe,my,fl,pn)P (fe | my,fl,pn)P (my | fl,pn)P (fl | pn)P (pn)

This requires 16 + 8 + 4 + 2 + 1 = 31 probabilities

We now make the following (conditional) independence
assumptions:

fl ⊥⊥ pn

my ⊥⊥ {temp, fe,pn} | fl

temp ⊥⊥ {my,fl,pn} | fe

fe ⊥⊥ {my} | {fl,pn}
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Chain rule revisited

By definition of conditional independence:

P (temp, fe,my,fl,pn)

= P (temp | fe)P (fe | fl,pn)P (my | fl)P (fl)P (pn)

This requires just 2 + 4 + 2 + 1 + 1 = 10 instead of 31
probabilities

Conditional independence assumptions reduce the
number of required probabilities and makes the
specification of the remaining probabilities easier:

P (my | fl): the probability of myalgia given that
someone has flu
P (pn): the prior probability that a random person
suffers from pneumonia
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Bayesian networks

A Bayesian (belief) network is a convenient graphical
representation of the independence structure of a joint
density

flu (fl)
(yes/no)

pneumonia (pn)
(yes/no)

fever (fe)
(yes/no)

myalgia (my)
(yes/no)

temp
(≤ 37.5/> 37.5)
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Bayesian networks

A Bayesian network consists of:
a directed acyclic graph with nodes labeled with
random variables
a domain for each random variable
a set of (conditional) densities for each variable
given its parents

Bayesian networks may consist of discrete or
continuous random variables, or both

We focus on the discrete case

A Bayesian network is a particular kind of probabilistic
graphical model

Many statistical methods can be represented as
graphical models
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Specification of probabilities

flu (fl)
(yes/no)

pneumonia (pn)
(yes/no)

fever (fe)
(yes/no)

myalgia (my)
(yes/no)

temp
(≤ 37.5/> 37.5)

P (temp, fe,my, fl, pn)

P (fl = y) = 0.1

P (pn = y) = 0.05

P (fe = y|fl = y, pn = y) = 0.95

P (fe = y|fl = n, pn = y) = 0.80

P (fe = y|fl = y, pn = n) = 0.88

P (fe = y|fl = n, pn = n) = 0.001

P (my = y|fl = y) = 0.96

P (my = y|fl = n) = 0.20

P (temp ≤ 37.5|fe = y) = 0.1

P (temp ≤ 37.5|fe = n) = 0.99
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Algorithm: Belief propagation

Breakthrough algorithm due to Pearl (1988)

V1G1
π(V1)

V3G3

λ(V0)

V2 G2
π(V2)

V4 G4

λ(V0)

V0π(V0) π(V0)
λ(V1) λ(V2)

� p. 50/84



Algorithm: Variable Elimination

Based on the notion that a belief network specifies a
factorization of the joint probability distribution

See also Daphne Koller’s online lectures at Youtube
(http://www.youtube.com/watch?v=jz02X3hByac)

Poole and Mackworth - AI book - Section 6.4.

Computes factors: functions of variables

For small networks matches informal procedure for
calculating probabilities and utilities

� p. 51/84



Adding Utility

Preferences, utility, decisions (see: AIPSML + end
slides)

Bayesian networks represent joint distributions

decision networks add
decision nodes
utility nodes

Inference: variable elimination, etc.

Models: single-decision, MDP, POMDP, etc.
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Probabilistic interpretation CF calculus?

Rule-based uncertainty: e → hx
propagation from antecedent e to conclusion h
(fprop)
combination of ∧ and ∨ evidence in e (f∧ and f∨)
co-concluding rules (fco):

e1 → hx

e2 → hy

Bayesian networks: joint probability distribution
P (X1, . . . , Xn) with marginalisation

∑

Y P (Y, Z) and
conditioning P (Y | Z)

(Based on Lucas, KB Systems 14 (2001) pp 327–335)

� p. 53/84



Propagation

fprop (propagation):

e′ e h
CF(e, e′) CF(h, e)

CF(h, e′) = CF(h, e) ·max{0,CF(e, e′)}

corresponding Bayesian network (with P (e′) extra):

E′ E H
P (E | E′) P (H | E)

P (h | e′) = P (h | e)P (e | e′) + P (h | ¬e)P (¬e | e′)

⇒ P (h | ¬e) = 0 (assumption of CF-model)
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Co-concluding

fco (co-concluding):

e′1

e′2

h

CF(h, e′1)

CF(h, e′2)

idea: see this as uncertain deterministic interaction ⇒
causal independence model

I1

I2

E′
1

E′
2

H
function

f
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Causal Independence

C1 C2 . . . Cn

I1 I2 . . . In

Ef

conditional
independence

interaction function

P (e | C1, . . . , Cn) =
∑

I1,...,In

P (e | I1, . . . , In)

n
∏

k=1

P (Ik | Ck)

=
∑

f(I1,...,In)=e

n
∏

k=1

P (Ik | Ck)

Boolean functions: P (E | I1, . . . , In) ∈ {0, 1} with
f(I1, . . . , In) = 1 if P (e | I1, . . . , In) = 1
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Causal Independence

C1 C2 . . . Cn

I1 I2 . . . In

Ef

conditional
independence

interaction function

P (e | C1, . . . , Cn) =
∑

f(I1,...,In)=e

n
∏

k=1

P (Ik | Ck)

Requires specification of one Boolean function and just
n probabilities (assuming P (ik | ¬ck) = 0)

Compare with 2n probabilities for arbitrary
P (e | C1, . . . , Cn)

Simplifies BN construction/facilitates inference
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Example: noisy OR

C1 C2

I1 I2

EOR

Interactions between ‘causes’: logical OR

Meaning: presence of the intermediate causes Ik
produces effect e (i.e. E = true)

P (e|C1, C2) =
∑

I1∨I2=e

P (e|I1, I2)
∏

k=1,2

P (Ik | Ck)

= P (i1|C1)P (i2|C2) + P (¬i1|C1)P (i2|C2)

+P (i1|C1)P (¬i2|C2)
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Noisy OR andfco

fco:

CF(h, e′1 co e′) = CF(h, e′1) + CF(h, e′2)(1− CF(h, e′1))

for CF(h, e′1) ∈ [0, 1] and CF(h, e′2) ∈ [0, 1]

causal independence with logical OR (noisy OR):

P (e|C1, C2) =
∑

I1∨I2=e

P (e|I1, I2)
∏

k=1,2

P (Ik | Ck)

= P (i1|C1)P (i2|C2) + P (¬i1|C1)P (i2|C2)

+P (i1|C1)P (¬i2|C2)

= P (i1|C1) + P (i2|C2)(1− P (i1|C1))
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Example

The consequences of ‘flu’ and ‘common cold’ on ‘fever’
are modelled by the variables I1 and I2:

P (i1 | flu) = 0.8, and
P (i2 | common-cold) = 0.3

Furthermore, P (ik | w) = 0, k = 1, 2, if
w ∈ {¬flu,¬common-cold}

Interaction between FLU and COMMON-COLD as
noisy-OR:

P (fever | I1, I2) =

{

0 if I1 = false and I2 = false
1 otherwise
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Result

Bayesian network:

FEVER
FALSE 0.364
TRUE 0.636

I2
FALSE 0.700
TRUE 0.300

I1
FALSE 0.520
TRUE 0.480

FLU
FALSE 0.400
TRUE 0.600

COMMON-COLD
FALSE 0.000
TRUE 1.000

Fragment CF model:
CF(fever, e′1co e′2) = CF(fever, e′1) + CF(fever, e′2)(1−CF(fever, e′1))

= 0.48 + 0.3(1− 0.48) = 0.636
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Conclusions

Early rule-based (logical) approach to reasoning with
uncertainty was attractive

However, naive rules + probability can lead to problems

Bayesian networks and other probabilistic graphical
models (Markov networks, chain graphs) are the state
of the art for reasoning with uncertainty

Therefore exploitation of probability theory (also for
decisions)

Although still various rule-based systems are useful for
various purposes

Many rule-based uncertainty reasoning can be mapped
(partially) to specific Bayesian network structures

Next week: probability + logic
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Blanc Slide

empty...
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Decision making
(The next 20-ish slides are mainly a recap from
AIPSML)

We know how to reason about the state of the world

Is that enough to implement an intelligent agent?

No:
reasoning without action is void
reasoning may require action to gain information
action selection requires preferences
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Preferences
Actions result in outcomes

Agents have preferences over outcomes

A rational agent will take the action that has the best
outcome for them

Sometimes agents don’t know the outcomes of the
actions, but they still need to compare actions

Agents have to act (doing nothing is often an action).

If o1 and o2 are outcomes

o1 � o2 means o1 is at least as desirable as o2

o1 ∼ o2 means o1 � o2 and o2 � o1

o1 ≻ o2 means o1 � o2 but not o2 � o1
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Lotteries
An agent may not know the outcomes of their actions
but only have a probability distribution of the outcomes.

A lottery is a probability distribution over outcomes. It is
written

p1 : o1; p2 : o2; . . . ; pk : ok

where the oi are outcomes and pi > 0 such that
∑

i

pi = 1

The lottery specifies that outcome oi occurs with
probability pi.

E.g. 0.1 : cured; 0.9 : uncured when receiving treatment

(+Neumann-Morgenstern axioms for utility)
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Rational agents

If an agent respects the von Neumann-Morgenstern
axioms then it is said to be rational

If an agent is rational, then the preference of an
outcome can be quantified using a utility function:

U : outcomes → [0, 1]

such that:
o1 � o2 if and only if U(o1) ≥ U(o2).

U([p1 : o1, p2 : o2, . . . , pk : ok]) =
∑k

i=1 pi · U(oi)
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Utilities

U : outcomes → [0, 1]

Utility is a measure of desirability of outcomes to an
agent.

Let u(o) be the utility of outcome o to the agent.

Simple goals can be specified by: outcomes that satisfy
the goal have utility 1; other outcomes have utility 0.

Often utilities are more complicated: for example some
function of the amount of damage to a robot, how much
energy is left, what goals are achieved, and how much
time it has taken.
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Decision-making under uncertainty
What an agent should do depends on:

The agent’s beliefs: the ways the world could be, given
the agent’s knowledge.

The agent’s preferences: what the agent wants and
tradeoffs when there are risks.

The agent’s ability: what actions are available to it.

Decision theory specifies how to trade off the desirability
and probabilities of the possible outcomes for competing
actions.
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Single decisions
Decision variables are like random variables that an
agent gets to choose a value for.

For a single decision variable, the agent can choose
D = d for any d ∈ dom(D).

The expected utility of decision D = d is

E(U | d) =
∑

x1,...,xn

P (x1, . . . , xn | d)U(x1, . . . , xn, d)

An optimal single decision is the decision D = dmax

whose expected utility is maximal:

dmax = arg max
d∈dom(D)

E(U | d)
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Example

Suppose:

P = throw party

R = rain

U(p,¬r) = 500, U(p, r) = −100, U(¬p, r) = 0,
U(¬p,¬r) = 50

P (r | P ) = P (r) = 0.6

Then:

E(U | p) = 0.6 · −100 + 0.4 · 500 = 140

E(U | ¬p) = 0.6 · 0 + 0.4 · 50 = 20

Conclusion: Party!
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Sequential decisions
Multiple decisions made in parallel can be regarded as
one big single decision.

An intelligent agent doesn’t carry out just one action or
ignore intermediate information

A more typical scenario is where the agent: observes,
acts, observes, acts, . . .

Subsequent actions can depend on what is observed.

What is observed depends on previous actions.

Some actions purely intended to gather information
(e.g. diagnostic tests, sensing)

Sequential decision making (AIPSML): value iteration,
reinforcement learning, etc.
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Influence diagram
Extend belief networks with:

Decision nodes, that the agent chooses the value for.
Domain is the set of possible actions.Drawn as
rectangle.

Utility node, the parents are the variables on which the
utility depends. Drawn as a diamond.

Shows explicitly which nodes affect whether there is an
accident.
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Umbrella network

You don’t get to observe the weather when you have to
decide whether to take your umbrella. You do get to
observe the forecast.

� p. 74/84



Finding the optimal policy

Partial order: X1 ≺ D2, . . . ,Xn−1 ≺ Dn ≺ Xn

Recall:
E(U | d) =

∑

x1,...,xn

P (x1, . . . , xn | d)U(x1, . . . , xn, d)

The maximal expected utility U∗ is given by

U∗ =
∑

X1

max
D2

· · ·
∑

Xn−1

max
Dn

∑

Xn

∏

i∈I

P (xi | π(xi))
∑

j∈J

Uj(π(uj))

The optimal policy can be found by variable elimination
while maximizing over decisions:

first consider the last decision
find an optimal decision for each value of its parents
and produce a factor of these maximum values.
recursively solve for the remaining decisions
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Umbrella network

Wet Grass

You don’t get to observe the weather when you have to
decide whether to take your umbrella. You do get to
observe the forecast. Rain will cause wet grass.
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Finding the optimal policy

Remove all variables not ancestors of the utility node
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Finding the optimal policy

Create a factor for each conditional probability table
and a factor for the utility.
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Finding the optimal policy

U∗ =
∑

F,W

max
U

f1(W )f2(W,F )f3(W,U)
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Finding the optimal policy
Sum out variables not (parents of) a decision node D

U∗ =
∑

F

max
U

∑

W

f1(W )f2(W,F )f3(W,U)

=
∑

F

max
U

f4(F,U)
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Finding the optimal policy

U∗ =
∑

F

max
U

f4(F,U)

Select D that is in a factor f with (some of) its parents

Eliminate D by maximizing. This returns:
the optimal decision function for D, argmaxD f

a new factor to use in VE, maxD f

the final sum returns the maximized expected utility:

U∗ =
∑

F

f5(F ) = 77
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Other properties

Value of information:
The amount someone would be willing to pay for
information on X prior to making a decision D

The value of information on X for decision D is the
expected utility of the network with an arc from X to
D minus exp. util. of the network without the arc.

Value of control:
The amount someone would be willing to pay in
order to be able to control a random variable X

The value of control of a variable X is the expected
utility of the network when you make X a decision
variable minus the expected utility of the network
when X is a random variable.
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MDP

A

S

A

R R

S

S, a set of states of the world.

A, a set of actions.

P : S × S ×A → [0, 1], written as P (s′|s, a)

R : S ×A× S → R, written as R(s, a, s′)
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POMDP

A

S

A

O

R R

S

O

As an MDP but additionally:

O, a set of possible observations;

P (s0), which gives the probability distribution of the
starting state

P (o | s, a), which gives the probability of observing o
given the state is s and the previous action a.
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