Reasoning with Uncertainty

Topics:

- Why is uncertainty important?
- How do we represent and reason with uncertain knowledge?
- Progress in research:
- 1980s: rule-based representation of uncertainty (MYCIN, Prospector)
- 1990s to present: graphical models, probabilistic expert systems (Munin, Promedas)
- latest developments: integration of probability theory and logic

Why important: biomedical

Have you got Mexican Flu?

- M : mexican flu; C : chills; S : sore throat
- Probability of mexican flu given sore throat?

Why important: embedded systems

Control of behaviour of large production printer

Speed v given available power P and required energy:

Why important: agents

- Agents (robots) perceive an incomplete image of the world using sensors that are inherently unreliable
- Partially observable worlds
- Noisy computer vision (Lenna: famous image)
- Uncertain, noisy action outcomes

Representation of uncertainty

- Representation of uncertainty is clearly important!
- How to do it? For example rule based:
- e : evidence
- h : hypothesis

$$
e_{1} \wedge \cdots \wedge e_{n} \rightarrow h_{x}
$$

If $e_{1}, e_{2}, \ldots, e_{n}$ are true (observed), then conclusion h is true with certainty x

- How to proceed when $e_{i}, i=1, \ldots, n$ are uncertain?
\Rightarrow uncertainty propagation/inference/reasoning

Theory

- We need a basic 'theory', e.g.
- Certainty-factor model (Mycin)
- Subjective Bayesian method (Prospector) - not discussed
- Dempster-Shafer theory - not discussed
- Probability theory
- This theory should tell us how to draw inferences with uncertainty statements
- Many systems (Fuzzy, Plausibility, Probability, Intervals, etc.)
- Much philosophical and technical debate on semantics and truthfulness of various representation theories.

Rule-based uncertain knowledge

Early, simple approach - certainty-factor calculus:

- fever \wedge myalgia $\rightarrow f / u_{\mathrm{CF}=0.8}$
- Example how its works:
- $\mathrm{CF}($ fever,$e)=0.6$; $\mathrm{CF}($ myalgia,$e)=1$ (e is evidence; background knowledge)
- Combination functions:

$$
\mathrm{CF}(f / u, e)
$$

$$
=0.8 \cdot \max \{0, \min \{\mathrm{CF}(\text { fever }, e), \mathrm{CF}(\text { myalgia }, e)\}\}
$$

$$
=0.8 \cdot \max \{0, \min \{0.6,1\}\}=0.48
$$

Fuzzy Logic

- Well-known AI rule-based: Fuzzy Logic
- Fuzzy technology: in cars, washing machines, etc.

Certainty factor calculus

- Developed by E.H. Shortliffe and B.G. Buchanan for rule-based expert systems
- Applied in MYCIN, the expert system for the diagnosis of infectious disease
- Probability theory was seen as unsatisfactory:
- Not enough data to obtain sufficient statistics
- Medical knowledge must be explicitly represented
- Line of reasoning should be explained by the system

Inference rules

- Define combination functions $f_{\wedge}, f_{\vee}, f_{\text {prop }}, f_{\text {co }}$, where:
- f_{\wedge} : combines uncertainty w.r.t. conjunctions of uncertain evidence
- f_{V} : combines uncertainty w.r.t. disjunctions of uncertain evidence
- $f_{\text {co }}$: combines uncertainty for two co-concluding rules:

$$
\begin{array}{lr}
e_{1} \rightarrow h_{x} & \text { contact_chicken } \rightarrow f u_{0.01} \\
e_{2} \rightarrow h_{y} & \text { train_contact_humans } \rightarrow f / u_{0.1}
\end{array}
$$

- $f_{\text {prop }}$: propagation of uncertain evidence e to a hypothesis h

Certainty factor calculus

- Weak relationship to probability theory
- Certainty factors (CFs): subjective estimates of uncertainty with $\mathrm{CF}(x, e) \in[-1,1](\mathrm{CF}(x, e)=-1$ false, $\mathrm{CF}(x, e)=0$ unknown, and $\mathrm{CF}(x, e)=1$ true)
- CF-calculus offers fill-in for combination functions: f_{\wedge}, $f_{\vee}, f_{\text {co }}, f_{\text {prop }}$

Combination functions

- f_{\wedge}
- rule: $e_{1} \wedge e_{2} \rightarrow h_{\mathrm{CF}(h, e)}$ with
- uncertain evidence $\operatorname{CF}\left(e_{1}, e^{\prime}\right)$ and $\mathrm{CF}\left(e_{2}, e^{\prime}\right)$ then:

$$
\mathrm{CF}\left(e_{1} \wedge e_{2}, e^{\prime}\right)=\min \left\{\mathrm{CF}\left(e_{1}, e^{\prime}\right), \mathrm{CF}\left(e_{2}, e^{\prime}\right)\right\}
$$

- f_{V}
- rule: $e_{1} \vee_{2} \rightarrow h_{\mathrm{CF}(h, e)}$ with
- uncertain evidence $\operatorname{CF}\left(e_{1}, e^{\prime}\right)$ and $\mathrm{CF}\left(e_{2}, e^{\prime}\right)$ then:

$$
\mathrm{CF}\left(e_{1} \vee e_{2}, e^{\prime}\right)=\max \left\{\mathrm{CF}\left(e_{1}, e^{\prime}\right), \mathrm{CF}\left(e_{2}, e^{\prime}\right)\right\}
$$

Combination functions

- $f_{\text {prop }}$
- rule $e \rightarrow h_{\mathrm{CF}(h, e)}$
- uncertain evidence w.r.t. e, i.e. $\mathrm{CF}\left(e, e^{\prime}\right)\left(e^{\prime}\right.$ includes all evidence so far)
then:

$$
\mathrm{CF}\left(h, e^{\prime}\right)=\mathrm{CF}(h, e) \cdot \max \left\{0, \mathrm{CF}\left(e, e^{\prime}\right)\right\}
$$

Combination functions

- $f_{c o}$:
- two rules:

$$
\begin{aligned}
& e_{1} \rightarrow h_{\mathrm{CF}\left(h, e_{1}\right)} \\
& e_{2} \rightarrow h_{\mathrm{CF}\left(h, e_{2}\right)}
\end{aligned}
$$

- uncertain evidence $\operatorname{CF}\left(e_{1}, e^{\prime}\right)$ and $\mathrm{CF}\left(e_{2}, e^{\prime}\right)$
- Let $\mathrm{CF}\left(h, e_{1}^{\prime}\right)=x$ via rule 1 and $\mathrm{CF}\left(h, e_{2}^{\prime}\right)=y$ via rule 2 (using $f_{\text {prop }}$)
- Then:

$$
\mathrm{CF}\left(h, e^{\prime}\right)= \begin{cases}x+y(1-x) & \text { if } x, y \geq 0 \\ x+y(1+x) & \text { if } x, y<0 \\ \frac{x+y}{1-\min \{|x|,|y|\}} & \text { otherwise }\end{cases}
$$

Example

$$
\begin{aligned}
\mathcal{R}=\{ & R_{1}: \text { flu } \rightarrow \text { fever }_{\mathrm{CF}(\text { fever.flu })=0.8}, \\
& \left.R_{2}: \text { common-cold } \rightarrow \text { fever }_{\mathrm{CF}(\text { fever }, \text { common-cold })=0.3}\right\}
\end{aligned}
$$

- Evidence: $\mathrm{CF}\left(f l u, e^{\prime}\right)=0.6$ and CF (common-cold, $\left.e^{\prime}\right)=1$
- What is the certainty factor for fever?

Solution

Application of $f_{\text {prop }}$
Evidence: $\operatorname{CF}\left(f l u, e^{\prime}\right)=0.6$ and $\mathrm{CF}\left(\right.$ common-cold, $\left.e^{\prime}\right)=1$
For rule R_{1} :

$$
\begin{aligned}
\mathrm{CF}\left(\text { fever }, e_{1}^{\prime}\right) & =\mathrm{CF}(\text { fever }, \text { flu }) \cdot \max \left\{0, \mathrm{CF}\left(f l u, e^{\prime}\right)\right\} \\
& =0.8 \cdot 0.6=0.48
\end{aligned}
$$

for rule R_{2} this yields $\mathrm{CF}\left(f e v e r, e_{2}^{\prime}\right)=0.3$
Application of f_{co} :
$\mathrm{CF}\left(\right.$ fever,$\left.e^{\prime}\right)=\mathrm{CF}\left(\right.$ fever,$\left.e_{1}^{\prime}\right)+\mathrm{CF}\left(\right.$ fever,$\left.e_{2}^{\prime}\right)\left(1-\mathrm{CF}\left(\right.\right.$ fever,$\left.\left.e_{1}^{\prime}\right)\right)$

$$
=0.48+0.3(1-0.48)=0.636
$$

However . . .

fever \wedge myalgia \rightarrow flu $_{\mathrm{CF}=0.8}$

- How likely is the occurrence of fever or myalgia given that the patient has flu?
- How likely is the occurrence of fever or myalgia in the absence of flu?
- How likely is the presence of flu when just fever is present?
- How likely is the presence of no flu when just fever is present?

Problems with the CF model

- CF model requires rules to be encoded in the direction in which they are used.
- CF reasoning becomes unsound if strong assumptions fail to hold (consequence of combination functions)
- Assumption of modularity: A rule if e then h conforms to the following:
- Detachment: given e we can conclude h no matter how we established e
- Locality: given e we can conclude h no matter what else we know to be true
- Holds for logic but not for probability theory!
- Illogical results are obtained such as the dependence of a diagnosis on the order in which findings are entered

The inevitability of probability theory

Probability theory is nothing but common sense reduced to calculation.
Laplace, 1819

- Basic postulates for any measure of belief (Cox, 1946; Jaynes, 2003):

1. Representation of degrees of plausibility by real numbers
2. Qualitative correspondence with common sense
3. Consistency

- Axioms of probability theory follow as a logical consequence from these postulates
- If you do not reason according to Probability Theory, you can be made to act irrationally (de Finetti)

Probability space

- A probability space represents our uncertainty regarding an experiment (DB query) and consists of:
- A sample space Ω consisting of a set of outcomes
- A probability measure P which is a real function of the subsets of Ω
- A set of outcomes $A \subseteq \Omega$ is called an event
- $P(A)$ represents how likely it is that an experiment's outcome will be a member of A.

Example

- Suppose our experiment is to examine whether someone has a cold and its related symptom fever.
- The outcomes are defined by

$$
\begin{aligned}
\Omega= & \{(\text { cold, fever }),(\text { no cold, fever }), \\
& (\text { cold, no fever }),(\text { no cold, no fever })\}
\end{aligned}
$$

- and we may define probabilities

$$
\begin{aligned}
& P(\{(\text { cold, fever }),(\text { cold, no fever })\})=0.001 \\
& P(\{\text { no cold, fever }),(\text { cold, fever })\})=0.01
\end{aligned}
$$

- A probability measure P can be completely described by assigning a probability to each event $\omega \in \Omega$

Axioms of probability theory

- P should obey three axioms:

1. $P(A) \geq 0$ for all events A
2. $P(\Omega)=1$
3. $P(A \cup B)=P(A)+P(B)$ for disjoint events A and B

- Some consequences:
- $P(A)=1-P(\Omega \backslash A)$
- $P(\emptyset)=0$
- If $A \subseteq B$ then $P(A) \leq P(B)$
- $P(A \cup B)=P(A)+P(B)-P(A \cap B) \leq P(A)+P(B)$
- Given these axioms and a completely defined probability measure any quantity of interest can be computed!

Joint density

- The joint density for two random variables X and Y is given by

$$
p_{X Y}(x, y)=P(\{\omega: X(\omega)=x, Y(\omega)=y\})
$$

- Often written as $P(X=x, Y=y), P(x, y), p(x, y), \ldots$
- Generalizes to multiple random variables
- From now on we work with random variables and (joint) densities instead of events

Example

Have you got Mexican Flu?

$$
\begin{aligned}
P(m, c, s) & =0.009215 \\
P(m, \bar{c}, s) & =0.000485 \\
P(m, c, \bar{s}) & =0.000285 \\
P(m, \bar{c}, \bar{s}) & =1.5 \cdot 10^{-5} \\
P(\bar{m}, c, s) & =9.9 \cdot 10^{-6} \quad \text { o } M: \text { mexican flu; } C: \text { chills; } \\
P(\bar{m}, \bar{c}, s) & =0.0098901 \quad S: \text { sore throat } \\
P(\bar{m}, c, \bar{s}) & =0.0009801 \\
P(\bar{m}, \bar{c}, \bar{s}) & =0.97912
\end{aligned}
$$

Marginalization

- Joint probability distribution $P(X)=P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
- U and V are mutually exclusive and collectively exhaustive subsets of X.
- Marginalization:

$$
P(u)=\sum_{v \in \operatorname{dom}(v)} P(u, v)
$$

Example

Have you got Mexican Flu?

$$
\begin{aligned}
P(m, c, s) & =0.009215 \\
P(m, \bar{c} s) & =0.000485 \\
P(m, c, \bar{s}) & =0.000285 \quad \text { Q } \quad \text { M: mexican flu; } C \text { : chills; } \\
P(m, \bar{c}, \bar{s}) & =1.5 \cdot 10^{-5} \quad S: \text { sore throat } \\
P(\bar{m}, c, s) & =9.9 \cdot 10^{-6} \quad \text { - } \quad \text { Probability of mexican flu } \\
P(\bar{m}, \bar{c}, s) & =0.0098901 \quad \text { and sore throat? } \\
P(\bar{m}, c, \bar{s}) & =0.0009801 \\
P(\bar{m}, \bar{c}, \bar{s}) & =0.97912
\end{aligned}
$$

Example

Have you got Mexican Flu?

- M : mexican flu; C : chills; S : sore throat
- Probability of mexican flu and sore throat?

$$
\begin{aligned}
P(m, s) & =P(m, c, s)+P(m, \bar{c}, s) \\
& =0.009215+0.000485 \\
& =0.0097
\end{aligned}
$$

$P(\bar{m}, c, \bar{s})=0.0009801$
$P(\bar{m}, \bar{c}, \bar{s})=0.97912$

Example

Have you got Mexican Flu?

$$
\begin{aligned}
P(m, c, s) & =0.009215 \\
P(m, \bar{c}, s) & =0.000485 \\
P(m, c, \bar{s}) & =0.000285 \quad \text { Q } \quad \text { M: mexican flu; } C \text { : chills; } \\
P(m, \bar{c}, \bar{s}) & =1.5 \cdot 10^{-5} \quad S: \text { sore throat } \\
P(\bar{m}, c, s) & =9.9 \cdot 10^{-6} \quad \text { - } \quad \text { Probability of mexican flu } \\
P(\bar{m}, \bar{c}, s) & =0.0098901 \quad \text { given sore throat? } \\
P(\bar{m}, c, \bar{s}) & =0.0009801 \\
P(\bar{m}, \bar{c}, \bar{s}) & =0.97912
\end{aligned}
$$

Conditioning

- Conditioning specifies how to revise beliefs based on new information.
- The conditional probability of a A given B is

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

where $P(B)=\sum_{a} P(a, B)$.

- Information B rules out possible worlds incompatible with B and induces a new measure over possible worlds in which B holds
- Often, B is available evidence and A is a hypothesis of interest (e.g., disease given symptoms)

Example

Have you got Mexican Flu?

$$
\begin{aligned}
P(m, c, s) & =0.009215 \\
P(m, \bar{c}, s) & =0.000485 \\
P(m, c, \bar{s}) & =0.000285 \quad \text { Q } \quad \text { M: mexican flu; } C \text { : chills; } \\
P(m, \bar{c}, \bar{s}) & =1.5 \cdot 10^{-5} \quad S: \text { sore throat } \\
P(\bar{m}, c, s) & =9.9 \cdot 10^{-6} \quad \text { - } \quad \text { Probability of mexican flu } \\
P(\bar{m}, \bar{c}, s) & =0.0098901 \quad \text { given sore throat? } \\
P(\bar{m}, c, \bar{s}) & =0.0009801 \\
P(\bar{m}, \bar{c}, \bar{s}) & =0.97912
\end{aligned}
$$

Example

Have you got Mexican Flu?

- M : mexican flu; C : chills; S : sore throat
- Probability of mexican flu given sore throat?

$$
\begin{aligned}
P(m \mid s) & =P(m, s) / P(s) \\
& =0.0097 / 0.0196 \\
& =0.495
\end{aligned}
$$

$$
P(\bar{m}, c, \bar{s})=0.0009801
$$

$$
P(\bar{m}, \bar{c}, \bar{s})=0.97912
$$

Product rule

- Conditional probability: $P(A \mid B)=\frac{P(A, B)}{P(B)}$
- Therefore: $P(A, B)=P(A \mid B) P(B)$

Chain rule

- Extension of the product rule:

$$
\begin{aligned}
& P\left(X_{1}, X_{2}, \ldots, X_{n}\right) \\
& =P\left(X_{n} \mid X_{1}, X_{2}, \ldots, X_{n-1}\right) \times P\left(X_{1}, X_{2}, \ldots, X_{n-1}\right) \\
& =P\left(X_{n} \mid X_{1}, X_{2}, \ldots, X_{n-1}\right) \times \\
& \quad P\left(X_{n-1} \mid X_{1}, X_{2}, \ldots, X_{n-2}\right) \times P\left(X_{1}, X_{2}, \ldots, X_{n-2}\right) \\
& =P\left(X_{n} \mid X_{1}, X_{2}, \ldots, X_{n-1}\right) \times P\left(X_{n-1} \mid X_{1}, X_{2}, \ldots, X_{n-2}\right) \times \\
& \quad \quad \cdots \times P\left(X_{3} \mid X_{1}, X_{2}\right) \times P\left(X_{2} \mid X_{1}\right) \times P\left(X_{1}\right) \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \cdots, X_{i-1}\right)
\end{aligned}
$$

Bayes' rule

- The chain rule and commutativity of conjunction ($P(A, B)$ is equivalent to $P(B, A)$) gives us:

$$
P(A, B)=P(A \mid B) \times P(B)=P(B \mid A) \times P(A)
$$

- If $P(B) \neq 0$, you can divide the right hand sides by $P(B)$:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- This is Bayes' rule.

Bayes' rule

- Why is Bayes' rule interesting?
- Often you have causal knowledge:

```
P(symptom | disease), P(disease)
P(alarm | fire), P(fire)
P(image | a tree is in front of a car), P(a tree is in front of a car)
```

and want to do evidential reasoning:

$$
\begin{aligned}
& P(\text { disease | symptom }) \\
& P(\text { fire | alarm }) \\
& P(\text { a tree is in front of a car } \mid \text { image })
\end{aligned}
$$

- Reasoning 'against the direction of the arrows' is not possible using e.g. certainty factors.

Bayes’ rule in practice

- A drug test is 99% sensitive (the test returns a positive result for a user 99% of the time)
- A drug test is 99% specific (the test returns a negative result for a non-user 99% of the time)
- Suppose that 0.5% of people are users of the drug
- If an individual tests positive, what is the probability they are a user?

Bayes’ rule in practice

- $d=$ drug user, $p=$ positive test, $P(p \mid d)=0.99$
- $P(\neg p \mid \neg d)=0.99, p(d)=0.005$.

$$
\begin{aligned}
P(d \mid p) & =\frac{P(p \mid d) P(d)}{P(p)} \\
& =\frac{P(p \mid d) P(d)}{P(p \mid d) P(d)+P(p \mid \neg d) p(\neg d)} \\
& =\frac{0.99 \cdot 0.005}{0.99 \cdot 0.005+0.01 \cdot 0.995} \\
& =33.2 \%
\end{aligned}
$$

Independence

- Random variable X is independent of random variable Y if for all x and y

$$
P(x \mid y)=P(x)
$$

- This is written as $X \Perp Y$
- Examples:
- Flu \Perp Haircolor since $P($ Flu \mid Haircolor $)=P($ Flu $)$.
- Myalgia \nVdash Fever since P (Myalgia | Fever) $\neq P$ (Myalgia).

Independence

- Independence is very powerful because it allows us to reason about aspects of a system in isolation.
- However, it does not often occur in complex systems. For example, try and think of two medical symptoms that are independent.
- A generalization of independence is conditional independence, where two aspects of a system become independent once we observe a third aspect.
- Conditional independence does often arise and can lead to significant representational and computational savings.

Conditional independence

- Random variable X is conditionally independent of random variable Y given random variable Z if

$$
P(x \mid y, z)=P(x \mid z)
$$

whenever $P(y, z)>0$. That is, knowledge of Y doesn't affect your belief in the value of X, given a value of Z.

- This is written as $X \Perp Y \mid Z$
- Example:
- Symptoms are conditionally independent given the disease:

$$
\begin{gathered}
\text { Myalgia } \Perp \text { Fever } \mid \text { Flu } \\
\text { since } P(\text { Myalgia } \mid \text { Fever, } \mathrm{Flu})=P(\text { Myalgia } \mid \text { Flu })
\end{gathered}
$$

Conditional independence

- An intuitive test of conditional independence (Paskin):

Imagine that you know the value of Z and you are trying to guess the value of X. In your pocket is an envelope containing the value of Y . Would opening the envelope help you guess X ? If not, then $X \Perp Y \mid Z$.

Example

- Assume we have a joint density over the following five variables:
- Temperature: temp $\in\{$ high, low $\}$
- Fever: $\mathrm{fe} \in\{\mathrm{y}, \mathrm{n}\}$
- Myalgia: my $\in\{y, n\}$
- Flu: $\mathrm{fl} \in\{\mathrm{y}, \mathrm{n}\}$
- Pneumonia: $\mathrm{pn} \in\{\mathrm{y}, \mathrm{n}\}$
- Probabilistic inference amounts to computing one or more (conditional) densities given (possibly empty) observations.

Inference problem

$P(\mathrm{pn} \mid$ temp $=$ high $)=\frac{1}{Z} \sum_{\text {fe }} \sum_{\text {my }} \sum_{\mathrm{fl}} P($ temp $=$ high, fe, my, fl, pn $)$

- We don't need to compute Z. We just compute

$$
P(\mathrm{pn} \mid \text { temp }=\text { high }) \times P(\text { temp }=\text { high })
$$

and renormalize.

- We do need to compute the sums, which becomes expensive very fast (nested for loops)!

Representation problem

- In order to specify the joint density $P($ temp, fe $, \mathrm{my}, \mathrm{fl}, \mathrm{pn})$ we need to estimate $31\left(2^{n}-1\right)$ probabilities
- Probabilities can be estimated by means of knowledge engineering or by parameter learning
- This doesn't solve the problem
- How does an expert estimate $P($ temp $=$ low, $\mathrm{fe}=\mathrm{y}, \mathrm{my}=\mathrm{n}, \mathrm{fl}=\mathrm{y}, \mathrm{pn}=\mathrm{y})$?
- Parameter learning requires huge databases containing multiple instances of each configuration
- Solution: conditional independence!

Chain rule revisited

The chain rule allows us to write:
$P($ temp $, \mathrm{fe}, \mathrm{my}, \mathrm{fl}, \mathrm{pn})$
$=P($ temp $\mid \mathrm{fe}, \mathrm{my}, \mathrm{fl}, \mathrm{pn}) P(\mathrm{fe} \mid \mathrm{my}, \mathrm{fl}, \mathrm{pn}) P(\mathrm{my} \mid \mathrm{fl}, \mathrm{pn}) P(\mathrm{fl} \mid \mathrm{pn}) P(\mathrm{pn})$
This requires $16+8+4+2+1=31$ probabilities
We now make the following (conditional) independence assumptions:

- $\mathrm{fl} \Perp \mathrm{pn}$
- my \Perp \{temp, fe, pn\} $\mid \mathrm{fl}$
- temp \Perp \{my, fl, pn\}|fe
- fe $\Perp\{\mathrm{my}\} \mid\{\mathrm{fl}, \mathrm{pn}\}$

Chain rule revisited

- By definition of conditional independence:

$$
\begin{aligned}
& P(\text { temp }, \mathrm{fe}, \mathrm{my}, \mathrm{fl}, \mathrm{pn}) \\
& =P(\text { temp } \mid \mathrm{fe}) P(\mathrm{fe} \mid \mathrm{fl}, \mathrm{pn}) P(\mathrm{my} \mid \mathrm{fl}) P(\mathrm{fl}) P(\mathrm{pn})
\end{aligned}
$$

- This requires just $2+4+2+1+1=10$ instead of 31 probabilities
- Conditional independence assumptions reduce the number of required probabilities and makes the specification of the remaining probabilities easier:
- $P(\mathrm{my} \mid \mathrm{fl})$: the probability of myalgia given that someone has flu
- $P(\mathrm{pn})$: the prior probability that a random person suffers from pneumonia

Bayesian networks

A Bayesian (belief) network is a convenient graphical representation of the independence structure of a joint density

Bayesian networks

- A Bayesian network consists of:
- a directed acyclic graph with nodes labeled with random variables
- a domain for each random variable
- a set of (conditional) densities for each variable given its parents
- Bayesian networks may consist of discrete or continuous random variables, or both
- We focus on the discrete case
- A Bayesian network is a particular kind of probabilistic graphical model
- Many statistical methods can be represented as graphical models

Specification of probabilities

$P($ temp, fe, my, fl, pn)

Algorithm: Belief propagation

- Breakthrough algorithm due to Pearl (1988)

Algorithm: Variable Elimination

- Based on the notion that a belief network specifies a factorization of the joint probability distribution
- See also Daphne Koller's online lectures at Youtube (http://www.youtube.com/watch?v=jz02X3hByac)
- Poole and Mackworth - AI book - Section 6.4.
- Computes factors: functions of variables
- For small networks matches informal procedure for calculating probabilities and utilities

Adding Utility

- Preferences, utility, decisions (see: AIPSML + end slides)
- Bayesian networks represent joint distributions
- decision networks add
- decision nodes
- utility nodes
- Inference: variable elimination, etc.
- Models: single-decision, MDP, POMDP, etc.

Probabilistic interpretation CF calculus?

- Rule-based uncertainty: $e \rightarrow h_{x}$
- propagation from antecedent e to conclusion h ($f_{\text {prop }}$)
- combination of \wedge and \vee evidence in $e\left(f_{\wedge}\right.$ and $\left.f_{\vee}\right)$
- co-concluding rules (f_{co}):

$$
\begin{aligned}
& e_{1} \rightarrow h_{x} \\
& e_{2} \rightarrow h_{y}
\end{aligned}
$$

- Bayesian networks: joint probability distribution $P\left(X_{1}, \ldots, X_{n}\right)$ with marginalisation $\sum_{Y} P(Y, Z)$ and conditioning $P(Y \mid Z)$
- (Based on Lucas, KB Systems 14 (2001) pp 327-335)

Propagation

- $f_{\text {prop }}$ (propagation):

$$
\begin{gathered}
e^{\prime} \xrightarrow{\mathrm{CF}\left(e, e^{\prime}\right)} e \stackrel{\mathrm{CF}(h, e)}{ } h \\
\mathrm{CF}\left(h, e^{\prime}\right)=\mathrm{CF}(h, e) \cdot \max \left\{0, \mathrm{CF}\left(e, e^{\prime}\right)\right\}
\end{gathered}
$$

- corresponding Bayesian network (with $P\left(e^{\prime}\right)$ extra):

$$
\begin{gathered}
E^{\prime} \xrightarrow{P\left(E \mid E^{\prime}\right)} E \xrightarrow{P(H \mid E)} H \\
P\left(h \mid e^{\prime}\right)=P(h \mid e) P\left(e \mid e^{\prime}\right)+P(h \mid \neg e) P\left(\neg e \mid e^{\prime}\right) \\
\Rightarrow P(h \mid \neg e)=0 \text { (assumption of CF-model) }
\end{gathered}
$$

Co-concluding

- f_{co} (co-concluding):

- idea: see this as uncertain deterministic interaction \Rightarrow causal independence model

Causal Independence

$$
\begin{aligned}
P\left(e \mid C_{1}, \ldots, C_{n}\right) & =\sum_{I_{1}, \ldots, I_{n}} P\left(e \mid I_{1}, \ldots, I_{n}\right) \prod_{k=1}^{n} P\left(I_{k} \mid C_{k}\right) \\
& =\sum_{f\left(I_{1}, \ldots, I_{n}\right)=e} \prod_{k=1}^{n} P\left(I_{k} \mid C_{k}\right)
\end{aligned}
$$

Boolean functions: $P\left(E \mid I_{1}, \ldots, I_{n}\right) \in\{0,1\}$ with $f\left(I_{1}, \ldots, I_{n}\right)=1$ if $P\left(e \mid I_{1}, \ldots, I_{n}\right)=1$

Causal Independence

$$
P\left(e \mid C_{1}, \ldots, C_{n}\right)=\sum_{f\left(I_{1}, \ldots, I_{n}\right)=e} \prod_{k=1}^{n} P\left(I_{k} \mid C_{k}\right)
$$

- Requires specification of one Boolean function and just n probabilities (assuming $P\left(i_{k} \mid \neg c_{k}\right)=0$)
- Compare with 2^{n} probabilities for arbitrary $P\left(e \mid C_{1}, \ldots, C_{n}\right)$
- Simplifies BN construction/facilitates inference

Example: noisy OR

- Interactions between 'causes': logical OR
- Meaning: presence of the intermediate causes I_{k} produces effect e (i.e. $E=$ true)

$$
\begin{aligned}
P\left(e \mid C_{1}, C_{2}\right)= & \sum_{I_{1} \vee I_{2}=e} P\left(e \mid I_{1}, I_{2}\right) \prod_{k=1,2} P\left(I_{k} \mid C_{k}\right) \\
= & P\left(i_{1} \mid C_{1}\right) P\left(i_{2} \mid C_{2}\right)+P\left(\neg i_{1} \mid C_{1}\right) P\left(i_{2} \mid C_{2}\right) \\
& +P\left(i_{1} \mid C_{1}\right) P\left(\neg i_{2} \mid C_{2}\right)
\end{aligned}
$$

Noisy OR and $f_{\text {co }}$

- $f_{c o}$:

$$
\mathrm{CF}\left(h, e_{1}^{\prime} \mathbf{c o} e^{\prime}\right)=\mathrm{CF}\left(h, e_{1}^{\prime}\right)+\mathrm{CF}\left(h, e_{2}^{\prime}\right)\left(1-\mathrm{CF}\left(h, e_{1}^{\prime}\right)\right)
$$

for $\operatorname{CF}\left(h, e_{1}^{\prime}\right) \in[0,1]$ and $\operatorname{CF}\left(h, e_{2}^{\prime}\right) \in[0,1]$

- causal independence with logical OR (noisy OR):

$$
\begin{aligned}
P\left(e \mid C_{1}, C_{2}\right)= & \sum_{I_{1} \vee I_{2}=e} P\left(e \mid I_{1}, I_{2}\right) \prod_{k=1,2} P\left(I_{k} \mid C_{k}\right) \\
= & P\left(i_{1} \mid C_{1}\right) P\left(i_{2} \mid C_{2}\right)+P\left(\neg i_{1} \mid C_{1}\right) P\left(i_{2} \mid C_{2}\right) \\
= & +P\left(i_{1} \mid C_{1}\right) P\left(\neg i_{2} \mid C_{2}\right) \\
= & P\left(i_{1} \mid C_{1}\right)+P\left(i_{2} \mid C_{2}\right)\left(1-P\left(i_{1} \mid C_{1}\right)\right)
\end{aligned}
$$

Example

- The consequences of 'flu' and 'common cold' on 'fever' are modelled by the variables I_{1} and I_{2} :
- $P\left(i_{1} \mid f l u\right)=0.8$, and
- $P\left(i_{2} \mid\right.$ common-cold $)=0.3$
- Furthermore, $P\left(i_{k} \mid w\right)=0, k=1,2$, if $w \in\{\neg$ flu,\neg common-cold $\}$
- Interaction between FLU and COMMON-COLD as noisy-OR:

$$
P\left(\text { fever } \mid I_{1}, I_{2}\right)= \begin{cases}0 & \text { if } I_{1}=\text { false and } I_{2}=\text { false } \\ 1 & \text { otherwise }\end{cases}
$$

Result

- Bayesian network:

- Fragment CF model:
$\mathrm{CF}\left(\right.$ fever,$\left.e_{1}^{\prime} \mathbf{c o} e_{2}^{\prime}\right)=\mathrm{CF}\left(\right.$ fever,$\left.e_{1}^{\prime}\right)+\mathrm{CF}\left(\right.$ fever,$\left.e_{2}^{\prime}\right)\left(1-\mathrm{CF}\left(\right.\right.$ fever,$\left.\left.e_{1}^{\prime}\right)\right)$

$$
=0.48+0.3(1-0.48)=0.636
$$

Conclusions

- Early rule-based (logical) approach to reasoning with uncertainty was attractive
- However, naive rules + probability can lead to problems
- Bayesian networks and other probabilistic graphical models (Markov networks, chain graphs) are the state of the art for reasoning with uncertainty
- Therefore exploitation of probability theory (also for decisions)
- Although still various rule-based systems are useful for various purposes
- Many rule-based uncertainty reasoning can be mapped (partially) to specific Bayesian network structures
- Next week: probability + logic

Blanc Slide

Decision making

- (The next 20-ish slides are mainly a recap from AIPSML)
- We know how to reason about the state of the world
- Is that enough to implement an intelligent agent?
- No:
- reasoning without action is void
- reasoning may require action to gain information
- action selection requires preferences

Preferences

- Actions result in outcomes
- Agents have preferences over outcomes
- A rational agent will take the action that has the best outcome for them
- Sometimes agents don't know the outcomes of the actions, but they still need to compare actions
- Agents have to act (doing nothing is often an action).

If o_{1} and o_{2} are outcomes

- $o_{1} \succeq o_{2}$ means o_{1} is at least as desirable as o_{2}
- $o_{1} \sim o 2$ means $o_{1} \succeq o_{2}$ and $o_{2} \succeq o_{1}$
- $o_{1} \succ o_{2}$ means $o_{1} \succeq o_{2}$ but not $o_{2} \succeq o_{1}$

Lotteries

- An agent may not know the outcomes of their actions but only have a probability distribution of the outcomes.
- A lottery is a probability distribution over outcomes. It is written

$$
p_{1}: o_{1} ; p_{2}: o_{2} ; \ldots ; p_{k}: o_{k}
$$

where the o_{i} are outcomes and $p_{i}>0$ such that

$$
\sum_{i} p_{i}=1
$$

The lottery specifies that outcome o_{i} occurs with probability p_{i}.

- E.g. 0.1 : cured; 0.9 : uncured when receiving treatment
(+Neumann-Morgenstern axioms for utility)

Rational agents

- If an agent respects the von Neumann-Morgenstern axioms then it is said to be rational
- If an agent is rational, then the preference of an outcome can be quantified using a utility function:

$$
U: \text { outcomes } \rightarrow[0,1]
$$

such that:

- $o_{1} \succeq o_{2}$ if and only if $U\left(o_{1}\right) \geq U\left(o_{2}\right)$.
- $U\left(\left[p_{1}: o_{1}, p_{2}: o_{2}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} \cdot U\left(o_{i}\right)$

Utilities

$$
U: \text { outcomes } \rightarrow[0,1]
$$

- Utility is a measure of desirability of outcomes to an agent.
- Let $u(o)$ be the utility of outcome o to the agent.
- Simple goals can be specified by: outcomes that satisfy the goal have utility 1 ; other outcomes have utility 0 .
- Often utilities are more complicated: for example some function of the amount of damage to a robot, how much energy is left, what goals are achieved, and how much time it has taken.

Decision-making under uncertainty

What an agent should do depends on:

- The agent's beliefs: the ways the world could be, given the agent's knowledge.
- The agent's preferences: what the agent wants and tradeoffs when there are risks.
- The agent's ability: what actions are available to it.

Decision theory specifies how to trade off the desirability and probabilities of the possible outcomes for competing actions.

Single decisions

- Decision variables are like random variables that an agent gets to choose a value for.
- For a single decision variable, the agent can choose $D=d$ for any $d \in \operatorname{dom}(D)$.
- The expected utility of decision $D=d$ is

$$
E(U \mid d)=\sum_{x_{1}, \ldots, x_{n}} P\left(x_{1}, \ldots, x_{n} \mid d\right) U\left(x_{1}, \ldots, x_{n}, d\right)
$$

- An optimal single decision is the decision $D=d_{\text {max }}$ whose expected utility is maximal:

$$
d_{\max }=\arg \max _{d \in \operatorname{dom}(D)} E(U \mid d)
$$

Example

Suppose:

- $P=$ throw party
- $R=$ rain
- $U(p, \neg r)=500, U(p, r)=-100, U(\neg p, r)=0$, $U(\neg p, \neg r)=50$
- $P(r \mid P)=P(r)=0.6$

Then:

$$
\begin{aligned}
E(U \mid p) & =0.6 \cdot-100+0.4 \cdot 500=140 \\
E(U \mid \neg p) & =0.6 \cdot 0+0.4 \cdot 50=20
\end{aligned}
$$

Conclusion: Party!

Sequential decisions

- Multiple decisions made in parallel can be regarded as one big single decision.
- An intelligent agent doesn't carry out just one action or ignore intermediate information
- A more typical scenario is where the agent: observes, acts, observes, acts, . . .
- Subsequent actions can depend on what is observed.
- What is observed depends on previous actions.
- Some actions purely intended to gather information (e.g. diagnostic tests, sensing)
- Sequential decision making (AIPSML): value iteration, reinforcement learning, etc.

Influence diagram

Extend belief networks with:

- Decision nodes, that the agent chooses the value for. Domain is the set of possible actions.Drawn as rectangle.
- Utility node, the parents are the variables on which the utility depends. Drawn as a diamond.

- Shows explicitly which nodes affect whether there is an accident.

Umbrella network

- You don't get to observe the weather when you have to decide whether to take your umbrella. You do get to observe the forecast.

Finding the optimal policy

- Partial order: $\mathcal{X}_{1} \prec D_{2}, \ldots, \mathcal{X}_{n-1} \prec D_{n} \prec \mathcal{X}_{n}$
- Recall:

$$
E(U \mid d)=\sum_{x_{1}, \ldots, x_{n}} P\left(x_{1}, \ldots, x_{n} \mid d\right) U\left(x_{1}, \ldots, x_{n}, d\right)
$$

- The maximal expected utility U^{*} is given by

$$
U^{*}=\sum_{\mathcal{X}_{1}} \max _{D_{2}} \cdots \sum_{\mathcal{X}_{n-1}} \max _{D_{n}} \sum_{\mathcal{X}_{n}} \prod_{i \in \mathcal{I}} P\left(x_{i} \mid \pi\left(x_{i}\right)\right) \sum_{j \in \mathcal{J}} U_{j}\left(\pi\left(u_{j}\right)\right)
$$

- The optimal policy can be found by variable elimination while maximizing over decisions:
- first consider the last decision
- find an optimal decision for each value of its parents and produce a factor of these maximum values.
- recursively solve for the remaining decisions

Umbrella network

- You don't get to observe the weather when you have to decide whether to take your umbrella. You do get to observe the forecast. Rain will cause wet grass.

Finding the optimal policy

- Remove all variables not ancestors of the utility node

Finding the optimal policy

| | | Weather Fcast | Value |
| :--- | :--- | :--- | :--- | :--- |
| Weather | Value | | |
| norain | 0.7 | | |
| rain | 0.3 | | |

Weather	Umb	Value
norain	take	20
norain	leave	100
rain	take	70
rain	leave	0

- Create a factor for each conditional probability table and a factor for the utility.

Finding the optimal policy

$$
U^{*}=\sum_{F, W} \max _{U} f_{1}(W) f_{2}(W, F) f_{3}(W, U)
$$

Finding the optimal policy

- Sum out variables not (parents of) a decision node D

$$
\begin{aligned}
& U^{*}=\sum_{F} \max _{U} \sum_{W} f_{1}(W) f_{2}(W, F) f_{3}(W, U) \\
& =\sum_{F} \max _{U} f_{4}(F, U)
\end{aligned}
$$

Finding the optimal policy

$$
U^{*}=\sum_{F} \max _{U} f_{4}(F, U)
$$

- Select D that is in a factor f with (some of) its parents
- Eliminate D by maximizing. This returns:
- the optimal decision function for $D, \arg \max _{D} f$
- a new factor to use in VE, $\max _{D} f$

Forecast	Umbrella	Forecast	Value
sunny	leavelt	sunny	49.0
cloudy	leavelt	cloudy	14.0
rainy	takelt	rainy	14.0

- the final sum returns the maximized expected utility:

$$
U^{*}=\sum_{F} f_{5}(F)=77
$$

Other properties

- Value of information:
- The amount someone would be willing to pay for information on X prior to making a decision D
- The value of information on X for decision D is the expected utility of the network with an arc from X to D minus exp. util. of the network without the arc.
- Value of control:
- The amount someone would be willing to pay in order to be able to control a random variable X
- The value of control of a variable X is the expected utility of the network when you make X a decision variable minus the expected utility of the network when X is a random variable.

MDP

- S, a set of states of the world.
- A, a set of actions.
- $P: S \times S \times A \rightarrow[0,1]$, written as $P\left(s^{\prime} \mid s, a\right)$
- $R: S \times A \times S \rightarrow R$, written as $R\left(s, a, s^{\prime}\right)$

POMDP

As an MDP but additionally:

- O, a set of possible observations;
- $P\left(s_{0}\right)$, which gives the probability distribution of the starting state
- $P(o \mid s, a)$, which gives the probability of observing o given the state is s and the previous action a.

