
Actions and Change

– p. 1/45



Outline

So far we’ve dealt with static KB

Why have a dynamic KB?

Action and change

Frame problems

Simple state-changes

STRIPS: add, delete and CWA

Action logic: situation calculus

The gamut of action logics

– p. 2/45



Relations and Time

Agents reason in time and about time

Time often implicit (ordered snapshots)

When modeling relations, two types exist:

Static relations are those relations whose values does
not depend on time

Dynamic relations are relations whose truth values
depends on time:

derived relations whose definition can be derived
from other relations for each time
primitive relations whose truth value can be
determined by considering previous times

(Related to the distinction between Bayesian networks
and dynamic Bayesian networks)

– p. 3/45



Dynamics: what and how
Two types of changing beliefs:

In case the beliefs themselves are dynamic, then the general area is
called belief revision which generally deals with: let ϕ be new
information, and B a belief state, what is B ∪ ϕ? (we will not pursue
this direction in this course)

In case the world itself can change, and we want to model how it
changes (and thus how we should change our beliefs) then we need
an action formalism (topic of this lecture)

Generally fluents are predicates (or functions) whose values may vary
from situation to situation. Many ways to model this in logic:

assert (believe) and retract (forget) logical facts (Prolog: assert and retract)

use a datastructure (term) to keep the current state or model

enrich each logical fact with a time stamp (e.g. lightOn(lamp1, timen))

consider multiple models (seen in e.g. nonmonotonic logic, fixed points)

fully axiomatize and use situations (just a sequence of actions performed)

. . .

– p. 4/45



Cold Turkey?

Let there be a turkey and a gun. The turkey is named Fred
and with a loaded gun Fred can be killed. At the start of the
situation, Fred is alive and the gun is not loaded. Consider
three possible actions one can take:

load: load the gun

wait: just some action without effects (e.g. for steady
aim)

shoot: use the loaded gun to shoot at Fred

Original formulation by Hanks and McDermott (1987) to
show problems with logical formulations of reasoning about
action and change.
McCarthy (1986) proposed circumscription (for solving the
frame problem):

Holds(p,s) ∧ ¬abormal(p,a,s) → Holds(p,do(a,s)
– p. 5/45



Logical Turkey = Dead Turkey

A policy for diner is: load → wait → shoot

The simplest logical formulation of this problem is (only
formalizing the changes):

alive(0)
¬loaded(0)
true → loaded(1) (action: load)
loaded(2) → ¬alive(3) (action: shoot)

Minimization of the changes gives a plausible model:

alive(0) alive(1) alive(2) ¬alive(3)
¬loaded(0) loaded(1) loaded(2) loaded(3)

A consistent model with only two changes.

– p. 6/45



Warm Turkey?

Minimization of the changes gives another model:

alive(0) alive(1) alive(2) ¬alive(3)
¬loaded(0) loaded(1) ¬loaded(2) ¬loaded(3)

This model too has only two changes. Fred’s alive now!?

Apparently, the wait action has mysteriously unloaded the
gun.

Compare to diagnostic reasoning (minimal diagnoses,
hitting sets, conflict sets) and nonmonotic reasoning.

– p. 7/45



The General Frame Problem

The YSP (Yale Shooting Problem) became a big motivation
for much research on the so-called Frame Problem

How to specify what does not change in a logical
system when actions are applied

Modern solutions: separate the specification of the effects
of actions from the task of reasoning about these actions.

We will review three classes of solutions in the remainder of
this lecture:

Explicit state change operators

STRIPS planning and the closed world assumption

Action logics: situation calculus

– p. 8/45



More big problems
The frame problem (FP) is about things that do not change.

representational FP : how to represent the frame axioms?

inferential FP : how to compute the outcome of sequences of
actions?

Two related problems:

ramification problem : if an action changes a fluent indirectly, how to
represent that and reason about it? For example,
Bring(briefcase, here) changes the briefcase’s locaton to here, but if
In(pen, briefcase) then the truth value of At(pen, here) changes too.

qualification problem : how to specify all things relevant for the
applicability of an action? For example, we can shoot the gun, unless
it’s jammed, unless it is a water gun, unless it transforms into a
magical rabbit if touched, unless ... etc.

In the remainder we will mainly deal with the frame problem.

– p. 9/45



(Model 1) Monkey-Banana
A classic (McCarthy): A hungry monkey: A monkey is in a room where a
bunch of bananas is hanging from the ceiling, too high to reach. In the
corner of the room is a box, which is not under the bananas. The box is
sturdy enough to support the monkey if he climbs on it, and light enough
so that he can move it easily. If the box is under the bananas, and the
monkey is on the box, he will be high enough to reach the bananas.
Initially the monkey is on the ground, and the box is not under the
bananas. There’s a lot the monkey can do:

Go somewhere else in the room (assuming the monkey is not
standing on the box)

Climb onto the box (assuming the monkey is at the box, but not on it)

Climb off the box (assuming it is standing on the box)

Push the box anywhere (assume monkey is at box, but not on it)

Grab the bananas (assume monkey is on the box, under bananas)

– p. 10/45



Actions and Change

Logic is syntax and semantics...
works equally fine with rabbits and carrots...

– p. 11/45



Monkey-Banana
To automaticallly find a plan we need to formalize it as a search problem
with four elements:

States : a form of snapshots of how the world can look like. A state
consist of the locations of the monkey, the box and the bananas.

Operators : actions that can change the state of the world. Moving
the box changes the location of the box (and the monkey).

Initial State : the state of the world at the start of problem. The
monkey is not on the box, and the box is not under the bananas.

Goal State : the desired state we want to be in. This state is the goal
of the whole planning process.

Planning consists of computing a sequence of operators such that once
that sequence is applied starting from the initial state, one will reach the
goal state.

– p. 12/45



Planning and Search
A simple logical model: each state has the location of the bananas (b), the
monkey (m) and the box (l), as well as whether the monkey is on the box
(o, is y or n), and whether the monkey has the bananas h (y or n).

Idea: use Prolog lists of atoms, e.g. [loc1, loc2, loc3, n, n]
A goal state will (at least) have as last element in the list a ’y’.

initial_state([loc1, loc2, loc3, n, n]).
goal_state([_, _, _, _, y]).
legal_move([B, M, M, n, H], climb_on, [B, M, M, y, H]).
legal_move([B, M, M, y, H], climb_off, [B, M, M, n, H]).
legal_move([B, B, B, y, n], grab, [B, B, B, y, y]).
legal_move([B, M, M, n, H], push(X), [B, X, X, n, H]).
legal_move([B, _, L, n, H], go(X), [B, X, L, n, H]).

Note that the representation here is fixed in size and order.

– p. 13/45



State State Planning
A general planning algorithm in Prolog
plan(L) : −initial_state(I), goal_state(G), reachable(I, L, G).

reachable(S, [], S).

reachable(S1, [M|L], S3) : −legal_move(S1, M, S2), reachable(S2, L, S3).

Running it naively is not the best idea:
?− plan(P).

ERROR : Outoflocalstack

Better take a fixed length:
?− plan([X, Y, Z, W]).

X = go(loc3),

Y = push(loc1),

Z = climbon,

W = grab;

false.

– p. 14/45



State State Planning
Easy extension: iterative deepening search (many others possible)

bplan(L) :- tryplan([],L).

tryplan(L,L) :- plan(L).

tryplan(X,L) :- tryplan([_|X],L).

1 ?- bplan(L).

L = [go(loc3), push(loc1), climb_on, grab] ;

L = [go(loc3), push(loc1), climb_on, grab, climb_off] ;

L = [go(loc3), push(_G228), push(loc1), climb_on, grab] ;

L = [go(loc3), push(loc1), go(loc1), climb_on, grab] ;

L = [go(_G211), go(loc3), push(loc1), climb_on, grab] ;

L = [go(loc3), climb_on, climb_off, push(loc1), climb_on, grab] ;

L = [go(loc3), push(loc1), climb_on, climb_off, climb_on, grab] ;

L = [go(loc3), push(loc1), climb_on, grab, climb_off, climb_on] ;

...

L = [go(loc3), push(_G231), push(loc1), climb_on, grab, climb_off] ;

L = [go(loc3), push(_G231), push(_G248), push(loc1), climb_on, grab] ;

L = [go(loc3), push(_G231), push(loc1), go(loc1), climb_on, grab] ;

...

L = [go(loc3), push(loc1), go(_G248), go(loc1), climb_on, grab] ;

L = [go(_G214), go(loc3), push(loc1), climb_on, grab, climb_off] ;

...

L = [go(_G214), go(_G231), go(loc3), push(loc1), climb_on, grab] ;
– p. 15/45



(Model 2) The STRIPS representation
STRIPS is a representation language for planning problems

Originally developed for a robot named Shakey in the sixties

Whereas our previous state-operator based model represents explicit
transitions between states, STRIPS defines operators that
syntactically transform world models.

A single world state exists at each time, represented by a database
of ground atomic wffs (e.g. in(robot,room))

we cannot reason directly about actions (it is not a logic) since the
actions are not part of the logical world model (e.g. they are defined
procedurally).

STRIPS does not keep track of the history; at each moment in time
there is only one state.

– p. 16/45



STRIPS operators
A STRIPS operator 〈Act,Pre,Add,Del〉 features four
components:

action name Act: the name (plus arguments) of the
action described in the operator

precondition Pre: atoms that must be true in order to
apply the action

delete list: Add: atoms to be deleted from the current
state (those becoming false) if the action is applied

add list: Del: atoms to be added to the current state
(those becoming true) if the action is applied

– p. 17/45



STRIPS operators (2)

Let O be an operator and let S be a state, i.e. a set of ground relational
atoms. The operational semantics of applying O to S is

first find a matching of Pre and S, i.e. find a subset S′ ⊆ S and a
substitution θ such that Preθ ≡ S′

compute the new state as S′′ = (S\Delθ) ∪ Addθ.

Example: Let O = 〈Go(x, y)
{At(Monkey, x),On(Monkey,Floor)},
{At(Monkey, x)}, {At(Monkey, Y )}〉,
and S = {On(Monkey,Floor),At(Monkey, Loc1), . . . , etc.}

Taking Go(Loc1, Loc2) spawns the new state
S′ = {On(Monkey,Floor),At(Monkey, Loc2), . . . , etc.}

– p. 18/45



STRIPS operator example
In Prolog this looks like this:

action(go(X,Y), [at(monkey,X), on(monkey,floor)],

[at(monkey,X)], [at(monkey,Y)]).

action(push(B,X,Y),

[at(monkey,X), at(B,X), on(monkey,floor), on(B,floor)],

[at(monkey,X), at(B,X)], [at(monkey,Y), at(B,Y)]).

action(climbon(B),

[at(monkey,X), at(B,X), on(monkey,floor), on(B,floor)],

[on(monkey,floor)], [on(monkey,B)]).

action(grab(B),

[on(monkey,box), at(box,X), at(B,X), status(B,hanging)],

[status(B,hanging)], [status(B,grabbed)]).

– p. 19/45



STRIPS progressive planning
plan(State, Goal, Plan):-

plan(State, Goal, [], Plan).

plan(State, Goal, Plan, Plan):-

is_subset(Goal, State), nl,

write_sol(Plan).

plan(State, Goal, Sofar, Plan):-

action(A, Preconditions, Delete, Add),

is_subset(Preconditions, State),

\+ member(A, Sofar),

delete_list(Delete, State, Remainder),

append(Add, Remainder, NewState),

plan(NewState, Goal, [A|Sofar], Plan).

test1(Plan):-

plan([on(monkey,floor),on(box,floor),at(monkey,loc1),at(box,loc2),

at(bananas,loc3),status(bananas,hanging)],

[status(bananas,grabbed)],

Plan).

– p. 20/45



Grabbing Bananas
3 ?- test1(P).

go(loc1,_G209)

push(box,loc2,_G249)

climbon(monkey)

climbon(box)

grab(bananas)

go(loc1,loc2)

push(box,loc2,loc3)

climbon(box)

grab(bananas)

P = [grab(bananas), climbon(box), push(box, loc2, loc3), go(loc1, loc2)] ] ;

climbon(monkey)

climbon(box)

climbon(monkey)

false.

– p. 21/45



Wrong initial situation
test2(Plan):-

plan([on(floor,monkey),on(box,floor),at(monkey,loc1),at(box,loc2),

at(bananas,loc1),status(bananas,hanging)],

[status(bananas,grabbed)],

Plan).

4 ?- test2(P).

false.

– p. 22/45



Climbing
test3(Plan):-

plan([on(monkey,box),on(box,floor),at(monkey,loc1),at(box,loc1),

at(bananas,loc2),status(bananas,hanging)],

[status(bananas,grabbed)],

Plan).

action(climboff(B),

[at(monkey,X), at(B,X), on(monkey,B), on(B,floor)],

[on(monkey,B)],

[on(monkey,floor)]).

climboff(box)

go(loc1,loc1)

push(box,loc1,loc2)

climbon(box)

grab(bananas)

P = [grab(bananas), climbon(box), push(box, loc1, loc2), go(loc1, loc1), climboff(box)]

– p. 23/45



About STRIPS
STRIPS is practical, and prototypical for many action planning
languages such as ADL (action description language, Pednault) and
PDDL (planning domain description language)

Many forms of planning are easy to adapt to this format (regression
planning, HTN, ABSTRIPS, Graphplan, etc.)

International planning competition (IPC) uses extensions of PDDL.

Probabilistic aspects can be added in various ways (e.g. to form
relational Markov decision processes)

Frame problem solution: procedural meaning of the actions (i.e. how
to apply them) and closed world assumption (CWA).

For each action there is one rule (deterministic worlds), but rules
quickly grow with the number of fluents, ramifications, etc. (e.g. to
move block a onto b the operator needs to know explicitly that a was
on c in order to delete On(a, c) and add Clear(c).

does not support general reasoning about the domain and the
actions (it is not a logic, search for semantics topic of much research)

– p. 24/45



(Model 3) Situation calculus

The situation calculus is a FOL system for representing changing worlds,
where these changes are usually triggered by named actions.
There are two main sorts in the logic:

actions : such as

put(x, y)

walk(loc)

pickup(r, x)

situations : denoting possible world histories. A distinguished
constant S0 and function symbol do are used:

S0: the initial situation (before any actions have been performed)

do(s, a): the situation that results from doing action a in situation s

For example do(put(A,B), do(put(B,C), S0)

(situation resulting from putting A on B after putting B on C in the initial
situation)

– p. 25/45



Fluents in the SC

Predicates or functions whose values may vary from situation to situation
are called fluents

These are written using predicate or function symbols whose last
argument is a situation

for example Holding(r, x, s): robot r is holding object x in situation s

can have ¬Holding(r, x, s) ∧ Holding(r, x, do(pickup(r, x), s)
(the robot is not holding the object x in situation s, but is holding it in

the situation that results from picking it up)

Note : there is no distinguished current situation. A sentence can talk
about any situation, past, present or future.

A distinguished predicate symbol Poss(a, s) is used to state that s may be
performed in situation s, e.g.

Poss(pickup(r, x), S0)

(robot r can indeed pick up object x in the initial situation)

Yes, this is the entire (basic) language!
– p. 26/45



Preconditions and Effects
It is necessary to include in a KB not only facts about the initial situation
but also about world dynamics: what actions do.

Actions typically have preconditions: what needs to be true for the action
to be performed

Poss(pickup(r, x), s) ≡ ∀z.¬Holding(r, z, s) ∧ ¬Heavy(x) ∧ NextTo(r, x, s)
a robot can pickup an object iff it is not holding anything, the object is not too heavy
and the robot is next to the object (free vars are univ quant)

Poss(repair(r, x), s) ≡ HasGlue(r, s) ∧ Broken(x, s)
it is possible to repair an object iff the object is broken and the robot has glue

Actions typically have effects: the fluents that change as the result of
performing the action:

x → Broken(x, do(drop(r, x), s))
dropping a fragile object causes it to break

¬Broken(x, do(repair(r, x), s))
repairing an object causes it to be unbroken

– p. 27/45



The Frame Problem in SC
We also need to know which fluents are unaffected by actions

Color(x, c, s) → Color(x, c, do(drop(r, x), s))
(dropping an object does not change it’s color)

¬Broken(x, s) ∧ [x 6= y ∨ ¬Fragile(x)] → ¬Broken(x, do(drop(r, y), s))
(not breaking things)

These are sometimes called frame axioms Problem : need to know a vast
number of such axioms (Few actions affect the value of a given fluent;
most do nothing to it)

an object’s color is unaffected by picking things up, opening a door,
using the phone, turning on the light, electing a new president, etc.
But it can change after painting, for example.

The frame problem:

in building KB, need to think of these (about) 2×A× F facts about
what does not change

the system needs to reason efficiently with them

– p. 28/45



What counts as a solution?
Suppose the person responsible for building a KB has written down all the
effect axioms

for each fluent F and action A that can cause the truth value of F
to change, an axiom of the form R(s) → ±F (do(A, s))]

,

where R(s) is some condition on s

We want a systematic procedure for generating all the frame axioms from
these effect axioms

If possible, we also want a parsimonious representation for them (since in
their simplest form, there are way too many)

Why do we want such as solution?

frame axioms are necessary to reason about actions and are not
entailed by the other axioms

convenience for the KB builder, for theorizing about actions, and
modularity (only add effect axioms, accuracy: no inadvertent
omissions)

– p. 29/45



The projection task
What can we do with the situation calculus?

We will see later that planning is also possible

A simpler job we can handle directly is called the projection task

Given a sequence of actions, determined what would be true in the
situation that results from performing that sequence

This can be formalized as follows:

Suppose that R(s) is a formula with a free situation variable s.
To find out if R(s) would be true after performing 〈a1, . . . , an〉 in the
initial situation, we determine whether or not

KB |= R(do(an, do(an, do(an−1, . . . , do(a1, S0) . . .)))

For example, using the effect and frame axioms from before, it follows that
¬Broken(B, s) would hold after doing the sequence

〈pickup(A), pickup(B), drop(B), repair(B), drop(A)〉

– p. 30/45



The legality task
The projection task above asks if a condition would hold after performing a
sequence of actions, but not whether that sequence can in fact be
properly executed.

We call a situation legal if it is the inititial situation or the result of
performing and action whose preconditions are satisfied starting in a legal
situation.

The legality task is the task of determining whether a sequence of actions
leads to a legal situation.

This can be formalized as follows:

To find out if the sequence 〈a1, . . . an〉 can be legally performed in
the initial situation, we determine whether or not

KB |= Poss(ai, . . . , do(a1, S0) . . .))

for every i such that 1 ≤ i ≤ n

– p. 31/45



Normal form for effect axioms

Suppose there are two positive effect axioms for the fluent Broken :

Fragile(x) → Broken(x, do(drop(r, x), s))
NextTo(b, x, s) → Broken(x, do(explode(b), s))

These can be rewritten as
∃r{a = drop(r, x) ∧ Fragile(x)} ∨ ∃b{a = explode(b) ∧

NextTo(b, x, s)} → Broken(x, do(a, s))

Similarly, consider the negative effect axiom:
¬Broken(x, do(repair(r, x), s))

which can be rewritten as
∃r{a = repair(r, x)} → ¬Broken(x, do(a, s)) In

general, for any fluent F , we can rewrite all the effect axioms as two
formulas of the form:

PF (x, a, s) → F (x, do(a, s)) (1)
NF (x, a, s) → ¬F (x, do(a, s)) (2)
(both are formulas with free variables which are among xi, a and s)

– p. 32/45



Explanation closure

Now make a completeness assumption regarding these effect axioms:
assume that (1) and (2) characterize all the conditions under which
an action a changes the value of fluent F .

This can be formalized by explanation closure axioms:
¬F (x, s) ∧ F (x, do(a, s)) → PF (x, a, s) (3)
if F was false and was made true by doing action a then condition
PF must have been true
F (x, s) ∧ ¬F (x, do(a, s)) → NF (x, a, s) (4)
if F was true and was made false by doing action a then condition
NF must have been true

These explanation closure axioms are in fact
disguised versions of frame axioms!

¬F (x, s) ∧ ¬PF (x, a, s) → ¬F (x, do(a, s))
F (x, s) ∧ ¬NF (x, a, s) → F (x, do(a, s))

– p. 33/45



Successor state axioms
Further assume that our KB entails the following

a) integrity of the effect axioms: ¬∃x, a, s.PF (x, a, s) ∧NF (x, a, s)

b) unique names for actions:
A(x1, . . . , xn) = A(y1, . . . , yn) → (x1 = y1) ∧ . . . ∧ (xn = yn)

A(x1, . . . , xn) 6= B(y1, . . . , yn) where A and B are distinct.

Then it can be shown that KB entails that (1),(2),(3) and (4) together are
logically equivalent to

F (x, do(a, s)) ≡ PF (x, a, s) ∨ (F (x, s) ∧ ¬NF (x, a, s))

This is called the successor state axiom for F .
For example, the successor state axiom for the Broken fluent is:

Broken(x, do(a, s)) ≡
∃r{a = drop(r, x) ∧ Fragile(x)}
∨∃b{a = explode(b) ∧ NextTo(b, x, s)}
∨Broken(x, s) ∧ ¬∃r{a = repair(r, x)}

An object x is broken after doing action a

iff
a is a dropping action and x is fragile
or a is a bomb exploding
(where x is next to the bomb)
or x was already broken and
a is not the action of repairing it

– p. 34/45



A simple solution to the frame problem

This simple solution to the frame problem was introduced by Ray Reiter,
and it yields the following axioms:

one successor state axiom per fluent

on precondition axiom per action

unique name axioms for actions

Moreover, we do not get fewer axioms at the expense of prohibitively long
ones. The length of a successor state axiom is roughly proportional to the
number of actions which affect the truth value of the fluent
The conciseness and perspicuity of the solution relies on

quantification over actions

the assumptions that relatively few actions affect each fluent

the completeness assumption (for effects)

Moreover, the solution depends on the fact that actions always have
deterministic effects.

– p. 35/45



Additional example
Blocks world in situation calculus using clauses

initial state:
On(a, table, s0)
On(b, c, s0)
On(c, table, s0)
Clear(a, s0)
Clear(b, s0)

goal:
¬On(a, b, s) ∨ ¬On(b, c, s)

effect axiom:
¬Clear(x, s) ∨ ¬Clear(y, s)∨
On(x, y, do(move(x, y), s))

successor state axiom:
∀x, y, s, a.

On(x, y,Do(a, s)) ↔
On(x, y, s) ∧ (∀z.a = Move(x, z) → y = z)

∨ (Clear(x, s) ∧ Clear(y, s) ∧ a = Move(x, y))

frame axioms as clauses:
¬On(x, y, s) ∨ a = move(x, Z(x, y, z, s, a)) ∨ On(x, y, do(a, s))
¬On(x, y, s) ∨ a = move(x, Z(x, y, z, s, a)) ∨ On(x, y, do(a, s))

– p. 36/45



Using the Situation Calculus

Situation calculus can be used to represent what is known
about the state of the world and the available actions.
The planning problem can be formulated as follows:

Given a formula Goal(s), find
a sequence of actions a such that

KB |= Goal(do(a, S0)) ∧ Legal(do(a, S0))

where do(〈a1, . . . , an〉, S0) is an abbreviation for

do(an, do(an−1, . . . , do(a2, do(a1, S0)) . . .))

and where Legal(〈a1, . . . , an〉, S0) is an abbreviation for

Poss(a1, S0) ∧ Poss(a2, do(a1, S0)) ∧ . . . ∧ Poss(an, do(〈a1, . . . , an−1〉, S0))

So, given a goal formula, we want an action sequence s.t.
that formula holds in in the situation
that results from executing the actions, and
it is possible to execute each action in the appropriate situation

– p. 37/45



Planning by answer extraction

Having formulated planning this way, we can use resolution
with answer extraction to find a sequence of actions:

KB |= ∃s.Goal(s) ∧ Legal(s)
We can see how this will work using a simplified version of
a previous example:

An object is on the table that we would like to have on the
floor. Dropping it will put it on the floor, and we can drop it,
provided we are holding it. To hold it, we need to pick it up,
and we can always do so.

effects : OnFloor(x, do(drop(x), s)) and Holding(x, do(pickup(x), s))
(note: ignoring frame problem)

preconds : Holding(x, s) → Poss(drop(x), s) and Poss(pickup(x), s)
initial : OnTable(B, S0)

goal : OnFloor(B, s)

– p. 38/45



Deriving a plan

Negated query + answer predicate

[¬OnFloor(B,s1),¬Legal(s1), A(s1)]

[¬Legal(do(drop(B)s2)), A(do(drop(B),s2))]

[¬Legal(s2),¬Poss(drop(B),s2, A(do(drop(B),s2))]

[¬Legal(s2),¬Holding(B,s2), A(do(drop(B),s2))]

[A(do(drop(B),do(pickup(B),s3))),¬Legal(do(pickup(B),s3))]

[¬Legal(s3),A(do(drop(B),do(pickup(B),s3))),¬Poss(pickup(B),s3)]

[¬Legal(s3),A(do(drop(B),do(pickup(B),s3)))]

[A(do(drop(B),do(pickup(B),S0)))]

[plan] initial situation: pickup block B, and in resulting situation, drop B

Axiom 1expand Legal

Axiom 3

Axiom 2

Legal for S0

expand Legal

Axiom 4

@@ ��

@
@

��

@
@@

��
@@

��

@@
����

HHH @@ ��
����

– p. 39/45



Prolog implementations

Now, since all of the required elements here can directly be represented
using Horn clauses, we can employ Prolog for planning:

onfloor(X,do(drop(X),S)).

holding(X,do(pickup(X),S)).

poss(drop(X),S) :- holding(X,S).

poss(pickup(X),S).

ontable(b,s0).

legal(s0).

legal(do(A,S)) :- poss(A,S), legal(S).

With the Prolog goal ?− onfloor(b, S), legal(S).

we get the solution S = do(drop(b), do(pickup(b), s0))

Thus, in simple cases, planning can be computed easily. In general,
resolution theorem proving in a full first-order setting for planning involves
more things.

– p. 40/45



Planning as theorem proving

Let Sys be a logical description of an action domain, and let Goal be a
goal formula. Planning is very simple to define; just compute a proof for:

Sys |= Goal

and collect useful structures/substitutions from the proof! This way:

planning = theorem proving

(something that has been known for a long time, starting from Green,
Waldinger etc. in the sixties)

In fact, providing useful answer substitutions is the main purpose of
Prolog, e.g. the answer X = mary to the query ?− parent(X, john) is
usually more useful than the notion that the query is a logical
consequence.

In a similar way, we can equate probabilistic planning with theorem
proving in probabilistic logic!

– p. 41/45



Three solutions

We have seen three types of models for change

the state-operator: potentially needs all frame axioms,
requiring O(FA) axioms (F and A are numbers of
fluents and actions).

STRIPS uses CWA + procedural semantics of actions.
It only needs to specify O(A) actions, but the rules can
become long and tedious.

Situation calculus requires one axiom per fluent and
promises that they tend to stay compact (total O(AE)
with E the number of effects).

Sitcalc does not represent the state explicitly, i.e. inferring
the truth value of a fluent Goal(do(a, S0)) requires to reason
all the way back to the initial situation (called: logical
regression).

– p. 42/45



Alternative representations

Planning languages ADL, PDDL, etc.

Agent models, BDI, 3APL, AgentSpeak, etc.

Action logics, A, B, C, ...

Event Calculus (event recognition, abductive planning)

Fluent Calculus (flux agent language, constraints)

Recently: combined action calculus (Thielscher)

– p. 43/45



Conclusions

three different models for action and change

three ways to solve frame problems

STRIPS and SitCalc representative for many action
formalisms

For practical experience: assignment 2 (forthcoming)

lots of things not in these models (continuous change,
probability, utility, control structures, sensing,
knowledge and belief, exogeneous change, explicit
time, multi-agent actions, etc.)

Next week: control policies (Golog), some probabilistic
actions, and vision

– p. 44/45



Literature

Required [see blackboard]: Brachman and Levesque
(Sections 14.1, 14.2, 15.1, 15.2)

Required [see blackboard]: Russell and Norvig (2nd
edition) (Section 10.3)

background: Poole and Mackworth (2010) (Section
14.1.1.)

– p. 45/45


	Actions and Change
	Outline
	Relations and Time
	Dynamics: what and how
	Cold Turkey?
	Logical Turkey = Dead Turkey
	Warm Turkey?
	The General Frame Problem
	More big problems
	(Model 1)
Monkey-Banana
	Actions and Change
	Monkey-Banana
	Planning and Search
	State State Planning
	State State Planning
	(Model 2)
The STRIPS representation
	STRIPS operators
	STRIPS operators (2)
	STRIPS operator example
	STRIPS progressive planning
	Grabbing Bananas
	Wrong initial situation
	Climbing
	About STRIPS
	(Model 3)
Situation calculus
	Fluents in the SC
	Preconditions and Effects
	The Frame Problem in SC
	What counts as a solution?
	The projection task
	The legality task
	Normal form for effect axioms
	Explanation closure
	Successor state axioms
	A simple solution to the frame problem
	Additional example
	Using the Situation Calculus
	Planning by answer extraction
	Deriving a plan
	Prolog implementations
	Planning as theorem proving
	Three solutions
	Alternative representations
	Conclusions
	Literature

