AILog - Logical Reasoning

- Representation and reasoning system for logical reasoning
- Includes facilities normally found in tools for (logical) knowledge systems
- Supports various (sophisticated) reasoning methods
- Supports reasoning with uncertainty using ideas from probabilistic logics

However, experimental tool, not meant for development of real-world applications

Syntax and semantics

Horn clauses (similar but not identical to Prolog):

$$A < - B_1 \& \cdots \& B_n.$$

- Negation by failure: ~
- Directives:
 - Askable atoms: askable p.
 - Asumable atoms: asumable p.
- What follows from a knowledge bases: $KB \vdash \varphi$, with φ atom, becomes: ask φ .
 - No. φ doesn't follow from the knowledge base (what about undecidability?)
 - Answer: φ .

Ask-tell interface

- Tell: add a clause to the knowledge base (not needed if the knowledge based is loaded into AlLog)
- Ask: query a knowledge base about whether the atom can be derived

Example:

```
ailog: tell parent(X, Y) <- mother(X,Y).
ailog: tell parent(X, Y) <- father(X, Y).
ailog: tell mother(bea,alex).
ailog: ask parent(U,V).
Answer: parent(bea, alex).
  [ok,more,how,help]:
(Note the differences with Prolog)</pre>
```

Askable atoms

During the reasoning process, atoms can be asked to users:

When the atom is asked, it should be fully instantiated when the result returns

Trace and explanation facilities

Trace: as in Prolog meant to follow the reasoning process step-by-step

Expanation facilities:

- Why: why is a particular question asked? (Will go through a potential derivation)
- How: how was a particular fact derived? (Will go through a derivation that was already successful)
- Whynot: why is it not possible to derive a fact?

AILog and knowledge systems

resolution - - -

Automatic Reasoning Program (ARP)

Example knowledge base

```
askable age(Patient) = V.
askable duration(Patient, heart, pain) = V.
askable diabetic(Patient).
sclerotic arteries(Patient) <-</pre>
 age(Patient) = A &
A > 50.
disorder(Patient, stable angina pectoris) <-</pre>
  state(Patient, atherosclerosis) &
  state(Patient,ischaemia,reversible) &
  o2_demand(Patient, heart, increased).
condition(Patient, emergency) <-</pre>
  disorder(Patient, myocardial infarction).
condition(Patient, no emergency) <-</pre>
  disorder(Patient, stable angina pectoris)
```

Why

```
What is the value of duration(john, heart, pain)?
        [value, unknown, why, help]: why.
   duration(john, heart, pain)=A is used in the rule
   state(john, ischaemia, irreversible) <-</pre>
      1: ischaemia(john, heart)
   ** 2: duration(john, heart, pain)=A
      3: A>30
      4: ~state(john, coronary vasodilatation)
   [Number, why, help, ok]: why.
   state(john, ischaemia, irreversible) is used in the rule
   disorder(john, unstable_angina_pectoris) <-</pre>
      1: o2_demand(john, heart, normal)
   ** 2: state(john, ischaemia, irreversible)
      3: state(john, atherosclerosis)
   [Number, why, help, ok]:
```

How

```
ailog: ask disorder(john,Y).
Is pain(john) true? [yes,no,unknown,why,help]: yes.
What is the value of duration(john, heart, pain)?
    [value, unknown, why, help]: 50.
Is pattern(john, pain, left_lateral_thoracic) true?
    [yes,no,unknown,why,help]: no.
Is pattern(john, pain, right_lateral_thoracic) true?
    [yes,no,unknown,why,help]: why.
   pattern(john, pain, right lateral thoracic) is used in the rule
   ischaemia(john, heart) <-</pre>
      1: pain(john)
   ** 2: pattern(john, pain, right_lateral_thoracic)
   [Number, why, help, ok]: how 1.
   You told me pain(john) is true.
   pattern(john, pain, right_lateral_thoracic) is used in the rule
   ischaemia(john, heart) <-</pre>
      1: pain(john)
   ** 2: pattern(john, pain, right_lateral_thoracic)
   [Number, why, help, ok]:
```

Methods

• Deductive solution: S is a deductive solution of a problem with associated set of observed findings F iff

$$KB \cup F \vDash S$$

where S is a set of solution formulae

Abductive/inductive solution: S is an abductive solution of a problem with observed findings F

$$KB \cup S \cup K \models F$$

is satisfied covering condition

Consistency-based solution: S is a consistency-based solution with observed findings F:

$$KB \cup S \cup F \nvDash \square$$

Conclusions

- Prolog is a simple and efficient (logic) programming language in which knowledge representation and reasoning systems can be implemented easily
- AlLog is such a knowledge representation and reasoning system:
 - sophisticated reasoning methods (deductive, abductive, consistency-based)
 - reasoning with uncertainty (including Bayesian networks!)
 - user interaction