
Knowledge Representation and Reasoning –

Assignment I

Model-based Diagnosis

1 Introduction

Model-based reasoning is one of the central topics of knowledge representation and reasoning
in articial intelligence. This first assignment of the course “Knowledge Representation and
Reasoning” has the aim of increasing your understanding of Prolog and model-based reasoning
through modelling and the implementation of algorithms. The first part of this assignment
consists of implementing the hitting-set algorithm (Task I), the second part of this assignment
consists of modelling and diagnosing a smart home (Task II).

You need to carry out the tasks on your own or in pairs.

2 Warm-up exercise: implementation of trees

In contrast to imperative programming languages, Prolog does not contain constructs for
“real” data structures in the language. However, using terms, it is possible to represent any
data structure by a compound term that constructs such a data structure. While you have
seen some basic data structures before (e.g. lists), the following exercise illustrates this further
using tree structures in Prolog. It is highly recommended to use this exercise as a source of
inspiration for Task I. You do not need to submit the warm-up exercises and you may ask
the instructors for help, if necessary.

(a) Consider for example a binary tree which we can build up using the following two terms:

– a constant leaf which represents a leaf node;

– a function node with arity 2, which, given 2 nodes (its children), returns a tree.

Define a predicate isBinaryTree(Term), which is true if and only if Term represents a
tree. Test this on compound terms such as:

– leaf (true)

– node(leaf) (false)

– node(leaf,leaf) (true)

– node(leaf,node(leaf,leaf)) (true)

(b) Define a predicate nnodes(Tree, N), which computes the number of nodes N of a given
Tree, e.g.

1



?- nnodes(leaf,N).
N = 1.

?- nnodes(node(leaf,node(leaf,leaf)),N).
N = 5.

(c) Extend the representation of the tree so that each node (and leaf) is labelled with a
number. Adapt your definition of isBinaryTree and nnodes to reflect this representa-
tion.

(d) Define a predicate makeBinary(N, Tree), which gets some number N ≥ 0 and returns
a tree where the root node is labelled by N . Furthermore, if a node is labelled by K > 0,
then it has children that are labelled by K − 1. If a node is labelled by 0, then it does
not have children.

(e) Now extend the representation of your tree so that each node can have an arbitrary
number of children. Also define a nnodes predicate for these kind of trees.

3 Task I: Implementation of the hitting-set algorithm

The hitting-set algorithm acts as the core of consistency-based diagnosis, and has been dis-
cussed during the course. In this task, you will implement this algorithm in Prolog.

(0) – Download tp.pl and diagnosis.pl from the webpage or from blackboard.

– In tp.pl, scroll down to the bottom and inspect the definition of tp/5.

– In diagnosis.pl, inspect the definitions of the diagnostic problems in the file.
Formulas are represented by Prolog terms where constants (and functions) are
interpreted as predicates, with additional operators ~ (not), , (and), ; (or), =>
(implies), <=> (iff ), and quantification {all, or} X:f , where X is a (Prolog) variable
and f is a term which contains X. Since , and ; are also Prolog operators, it is
often required to put brackets around these terms. For example, the formula
∀x(P (x) ∨Q(x)) can be represented by the term (all X:(p(X) ; q(X))).
Experiment with tp/5 and determine some conflict sets for the diagnostic problems.

(1) Define a Prolog representation for hitting set trees. Program a corresponding predicate
isHittingSetTree(Tree) and convince yourself that this predicate is true if and only
if Tree is a hittingset tree.

(2) Use this representation to develop a Prolog program of the hitting-set algorithm, prefer-
ably using refinements to prune the search space as described in [3] (see blackboard or
the library for the paper). The input to the program is a diagnostic problem; the output
is the set of all minimal hitting sets (i.e. diagnoses).

(3) Evaluate your program using the given diagnostic problems.

2



4 Task II: Modelling a smart home

There is an increasing interest to use information technology and artificial intelligence in the
home environment. This is also sometimes called home automation or domotics. You can
think of topics such as centralized control of lighting, health care systems at home (eHealth),
but also remote interfaces to home appliances.

In this task, you are expected to model a ‘smart’ lighting system for a room in a house.
This systems should at least have the following properties:

• there should be at least two lamps in the room (l1 and l2);

• there is a motion sensor (s) in the room;

• l1 is turned on by a remote control;

• l2 should be turned on if s senses motion in the room;

• there is a (central) switch that turns off all the lighting in the room;

• of course, the lamp can only be lit if there is a live wire coming from the service panel
to the room, and is somehow connected to the lamp (through switches, and possibly
other components).

You need to carry out the following tasks:

(1) Design a system (as a circuit diagram) for such a lighting system controlled by sensors
and switches. This representation should be at the level of abstraction as the description.
In particular, it should be specific enough to reason about the relevant components and
observations, but it should not be too specific. For example, you could represent the
actual voltages and currents in such an electrical system, but you may abstract from
these details when reasoning about whether a certain component behaves normally.

(2) Formalize this system in first-order logic so that it can be used as input for a consistency-
based diagnosis tool.

(3) Consider the following scenario: John enters the room that you designed, but unfortu-
nately there is no light. John observes that the central switch is on. Moreover, if he
tries to turn on l1 using his remote, l1 produces light. Obviously, John is puzzled and
needs technical assistance.

– Model this scenario as a set of observations using terms of the system description.

– Define the system description and these observations as a diagnostic problem.

– Apply your program (developed in Task I) to find the diagnoses.

(4) Evaluate your solution. In particular, consider the question why or why not the central
switch should be a diagnosis.

3



5 What to submit?

To summarise, you have to submit a report before Friday, 7th December, 2012 containing
the following sections:

(1) A brief introduction to your report.

(2) A description of the most important ideas behind the implementation of Task I.

(3) The lighting system model and the most important ideas of your system.

(4) Examples that show that your Prolog program works like expected and that it can be
used to diagnose the lighting system.

(5) A reflection on your code (such as: what are the limitations? how can it be improved?
what are the problems encountered?)

Please submit the report and your Prolog code on blackboard!

References

[1] R. Greiber, B.A. Smith and R.W. Wilkerson (1989). A correction to the algorithm in
Reiter’s theory of diagnosis. Artificial Intelligence, 41, 79–88.

[2] P.J.F. Lucas (1997). Symbolic diagnosis and its formalisation. The Knowledge Engineer-
ing Review, 12(2), 109–146.

[3] R. Reiter (1987). A theory of diagnosis from first principles. Artificial Intelligence, 32,
57–95.

4


