
Procedures, actions and vision

Outline for today:

Remarks about the second assignments series

Extending reasoning about actions
Procedural programming (Golog)
Probability and utility

Model-based interpretation and computer vision

Vision Applications
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2nd Assignments: first part

We have seen:
Logic programming and resolution
Bayesian networks and uncertainty
Probabilistic logic and explanations
AILog language

The first part of the assignment asks you to model a
specific probabilistic domain in AILog and to interact
with AILog to compute (conditional) probabilities in that
domain. You can ask AILog to predict and condition.

The domain is about relational crime.
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(Recap) Three solutions
We have seen three core types of models for action and
change in logical representations

State-operator models: potentially needs all frame
axioms, requiring O(FA) axioms (F and A are numbers
of fluents and actions).

STRIPS: uses CWA + procedural semantics of actions.
It only needs to specify O(A) actions, but the rules can
become long and tedious.

Situation calculus: requires one axiom per fluent and
promises that they tend to stay compact (total O(AE)
with E the number of effects).

Sitcalc does not represent the state explicitly, i.e. inferring
the truth value of a fluent Goal(do(a, S0)) requires to reason
all the way back to the initial situation.
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(Recap) States and Operators
A simple logical model: each state has the location of the bananas (b), the
monkey (m) and the box (l), as well as whether the monkey is on the box
(o, is y or n), and whether the monkey has the bananas h (y or n).

Idea: use Prolog lists of atoms, e.g. [loc1, loc2, loc3, n, n]
A goal state will (at least) have as last element in the list a ’y’.

States and Operators:
initial_state([loc1, loc2, loc3, n, n]).
goal_state([_, _, _, _, y]).
legal_move([B, M, M, n, H], climb_on, [B, M, M, y, H]).
...

Note that the representation here is fixed in size and order.
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(Recap) STRIPS

A STRIPS operator 〈Act,Pre,Add,Del〉 represents the effects of an action
using add and delete lists, preceded by preconditions.
Let O be an operator and let S be a state, i.e. a set of ground relational
atoms. The operational semantics of applying O to S is

first find a matching of Pre and S, i.e. find a subset S′ ⊆ S and a
substitution θ such that Preθ ≡ S′

compute the new state as S′′ = (S\Delθ) ∪ Addθ.

Example: Let O = 〈Go(x, y)
{At(Monkey, x),On(Monkey,Floor)},
{At(Monkey, x)}, {At(Monkey, Y )}〉,
and S = {On(Monkey,Floor),At(Monkey, Loc1), . . . , etc.}

Taking Go(Loc1, Loc2) spawns the new state
S′ = {On(Monkey,Floor),At(Monkey, Loc2), . . . , etc.}
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(Recap) Sitcalc effect axioms

Suppose there are two positive effect axioms for the fluent Broken :

Fragile(x)→ Broken(x, do(drop(r, x), s))
NextTo(b, x, s)→ Broken(x, do(explode(b), s))

These can be rewritten as
∃r{a = drop(r, x) ∧ Fragile(x)} ∨ ∃b{a = explode(b) ∧
NextTo(b, x, s)} → Broken(x, do(a, s))

Similarly, consider the negative effect axiom:
¬Broken(x, do(repair(r, x), s))

which can be rewritten as
∃r{a = repair(r, x)} → ¬Broken(x, do(a, s)) In

general, for any fluent F , we can rewrite all the effect axioms as two
formulas of the form:

PF (x, a, s)→ F (x, do(a, s)) (1)
NF (x, a, s)→ ¬F (x, do(a, s)) (2)
(both are formulas with free variables which are among xi, a and s)
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(Recap) Explanation closure

Now make a completeness assumption regarding these effect axioms:
assume that (1) and (2) characterize all the conditions under which
an action a changes the value of fluent F .

This can be formalized by explanation closure axioms:
¬F (x, s) ∧ F (x, do(a, s))→ PF (x, a, s) (3)
if F was false and was made true by doing action a then condition
PF must have been true
F (x, s) ∧ ¬F (x, do(a, s))→ NF (x, a, s) (4)
if F was true and was made false by doing action a then condition
NF must have been true

These explanation closure axioms are in fact
disguised versions of frame axioms!
¬F (x, s) ∧ ¬PF (x, a, s)→ ¬F (x, do(a, s))
F (x, s) ∧ ¬NF (x, a, s)→ F (x, do(a, s))
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(Recap) Successor state axioms
Further assume that our KB entails the following

a) integrity of the effect axioms: ¬∃x, a, s.PF (x, a, s) ∧NF (x, a, s)

b) unique names for actions:
A(x1, . . . , xn) = A(y1, . . . , yn)→ (x1 = y1) ∧ . . . ∧ (xn = yn)

A(x1, . . . , xn) 6= B(y1, . . . , yn) where A and B are distinct.

Then it can be shown that KB entails that (1),(2),(3) and (4) together are
logically equivalent to

F (x, do(a, s)) ≡ PF (x, a, s) ∨ (F (x, s) ∧ ¬NF (x, a, s))

This is called the successor state axiom for F .
For example, the successor state axiom for the Broken fluent is:

Broken(x, do(a, s)) ≡
∃r{a = drop(r, x) ∧ Fragile(x)}
∨∃b{a = explode(b) ∧ NextTo(b, x, s)}
∨Broken(x, s) ∧ ¬∃r{a = repair(r, x)}

An object x is broken after doing action a

iff
a is a dropping action and x is fragile
or a is a bomb exploding
(where x is next to the bomb)
or x was already broken and
a is not the action of repairing it
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(Recap) Planning (answer extraction)
planning = theorem proving

Having formulated planning this way, we can use resolution with answer
extraction to find a sequence of actions:

KB |= ∃s.Goal(s) ∧ Legal(s)

Since all of the required elements here can directly be represented using
Horn clauses, we can employ Prolog for planning:

onfloor(X,do(drop(X),S)).

holding(X,do(pickup(X),S)).

poss(drop(X),S) :- holding(X,S).

poss(pickup(X),S).

ontable(b,s0).

legal(s0).

legal(do(A,S)) :- poss(A,S), legal(S).

With the Prolog goal ?− onfloor(b, S), legal(S).

we get the solution S = do(drop(b), do(pickup(b), s0))
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Sitcalc in AILog
Snippets of an example of a delivery robot
(delrob_sitc.ail)
% INITIAL SITUATION

sitting_at(rob,o109,init).

sitting_at(parcel,lng,init).

...

% DERIVED RELATIONS

at(Obj,Pos,S) <- sitting_at(Obj,Pos,S).

...

adjacent(o109,o103,_).

adjacent(o103,o109,_).

...

% STATIC RELATIONS

blocks(door1,o103,lab2).

opens(k1,door1).

autonomous(rob).
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Sitcalc in AILog (2)
% ACTION PRECONDITIONS

poss(move(Ag,Pos,Pos_1),S) <-

autonomous(Ag) &

adjacent(Pos,Pos_1,S) &

sitting_at(Ag,Pos,S).

...

% PRIMITIVE PREDICATE DEFINITIONS

carrying(Ag,Obj,do(pickup(Ag,Obj),S)) <-

poss(pickup(Ag,Obj),S).

sitting_at(Obj,Pos,do(A,S) ) <-

poss(A,S) &

sitting_at(Obj,Pos,S) &

˜ move_action(A,Obj,Pos) &

˜ pickup_action(A,Obj).

move_action(move(Obj,Pos,_),Obj,Pos).

pickup_action(pickup(_,Obj),Obj).
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Sitcalc in AILog (3)
Using AILog to predict and plan

ailog: bound 12.

ailog: ask at(parcel,o111,S).

Answer: at(parcel,o111,do(move(rob,o109,o111),do(mov e(rob,lng,o109),

do(pickup(rob,parcel),do(move(rob,o109,lng),init))) )).

[ok,more,how,help]: more.

Query failed due to depth-bound 12.

[New-depth-bound,where,ok,help]: ok.

ailog: bound 8.

ailog: ask carrying(rob,k1,S).

Answer: carrying(rob,k1,do(pickup(rob,k1),do(move(ro b,o103,mail),

do(move(rob,o109,o103),init)))).

[ok,more,how,help]: how.

carrying(rob,k1,do(pickup(rob,k1),do(move(rob,o103, mail),

do(move(rob,o109,o103),init)))) <-

1: poss(pickup(rob,k1),do(move(rob,o103,mail),do(mov e(rob,o109,o103),init)))

How? [Number,up,retry,ok,prompt,help]: ok.

Answer: carrying(rob,k1,do(pickup(rob,k1),do(move(ro b,o103,mail),

do(move(rob,o109,o103),init)))).

[ok,more,how,help]: ok.
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Limitations of situation calculus
So far, situation calculus has a number of limitations:

no time: cannot talk about how long actions take, or when they occur

only known actions: no hidden exogenous actions, no unnamed
events

no concurrency or multiple agents: cannot talk about doing multiple
actions at the same time

only discrete situations: no continuous actions, like pushing an object
from A to B (with duration, for example)

only hypotheticals: cannot say that an action has occurred or will
occur (different for, for example, event calculus)

only primitive actions: no actions made up of other parts, like
conditionals or iterations

no probabilistic information about the world included in the actions

We will deal with the last two issues in the following slides
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The limitation of primitive actions
So far, we have no way of handling in the situation calculus complex
actions made up of other actions such as:

conditionals: if the car is in the driveway then drive else walk

iterations: while there is a block on the table, remove one

non-deterministic choice: pickup some block and put it on the floor

Would be nice to define such actions in terms of the primitive actions and
inherit their solution to the frame problem
Need a compositional treatment of the frame problem for complex actions
This results in a logical programming language for discrete event
simulation and high-level robot control!
Compare to Java or C, where it is natural to program using for-loops,
while-loops, if-then-else-statements, case-statements and all that.
Unless a logic programming language for action supports those things, it
would not be used widely for AI and robotics.
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The Do formula
For each complex action A it is possible to define a formula of the
situation calculus,

Do(A, s, s′)

that says that action A when started in situation s may legally terminate in
situation s′.

Primitive actions: Do(A, s, s′) = Poss(A, s) ∧ s′ = do(A, s)

Sequence: Do([A,B], s, s′) = ∃s′′.Do(A, s, s′′) ∧ Do(B, s′′, s′)

Conditionals:
Do([if ϕ then A else B], s, s′) = ϕ(s) ∧ Do(A, s, s′) ∨ ¬ϕ(s) ∧ Do(B, s, s′)

Nondeterministic branching: Do([A|B], s, s′) = Do(A, s, s′) ∨ Do(B, s, s′)

Nondeterministic choice: Do([πx.A], s, s′) = ∃x.Do(A, s, s′)

etc.

This results in programming language constructs with a purely logical
situation calculus interpretation!
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Golog
H.J. Levesque, R. Reiter, Y. Lesperance, F. Lin and R. Scherl (1997)
GOLOG: A logic programming language for dynamic domains, The
journal of logic programming, vol 31(1-3), pp 59-83.

Based on situation calculus

Programming language for agents embedded in the (physical) world,
based on rigourous logical formalization and supporting logical
reasoning about knowledge and the world.

Extended into many directions, e.g.

probabilistic knowledge

online/realtime control

multi-agent/game-theoretic aspects

knowledge and belief, epistemic logic

Main book: Reiter (2001) Knowledge in action: logical foundations for
specifying and implementing dynamical systems, MIT Press
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Golog
Golog (Algol in logic) is a programming language that generalizes
conventional imperative programming languages

the usual imperative constructs + concurrency, nondeterminism, etc.

bottoms out not on operatios on internal states (assignment
statements, pointer updates) but on primitive actions in ther world
(e.g. pickup a block)

what the primitive actions do is user-specified by precondition and
successor state actions

What does it mean to execute a Golog program?

find a sequence of primitive actions such that performing them
starting in some initial situation s would lead to a situation s′ where
the formula Do(A, s, s′) holds

give the sequence of actions to a robot for actual execution in the
world
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Golog example
primitive actions:

pickup(x), putonfloor(x), putontable(x)

fluents:

Holding(x, s),OnTable(x, s),OnFloor(x, s)

action preconditions:

Poss(pickup(x), s) ≡ ∀z.¬Holding(z, s)
Poss(putonfloor(x), s) ≡ Holding(x, s)
Poss(putontable(x), s) ≡ Holding(x, s)

Successor state axioms:

Holding(x, do(a, s)) ≡ a = pickup(x)

∨Holding(x, s) ∧ a 6= putontable(x) ∧ a 6= putonfloor(x)
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Golog example (2)
Successor state axioms:

OnTable(x, do(a, s)) ≡ a = putontable(x) ∨OnTable(x, s) ∧ a 6= pickup(x)

OnFloor(x, do(a, s)) ≡ a = putonfloor(x) ∨OnFloor(x, s) ∧ a 6= pickup(x)

Initial situation:

∀x.¬Holding(x, S0),OnTable(x, S0) ≡ x = A ∨ x = B

Complex actions:

proc ClearTable
while ∃b.OnTable(b)

do πb[OnTable(b)?; RemoveBlock(b)]]
proc RemoveBlock(x) :

pickup(x) ; putonfloor(x)
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Running Golog
To find a sequence of actions constituting a legal execution of a Golog
program, we can use resolution with answer extraction again!
For the above example, we have KB |= ∃s.Do(ClearTable, S0, s)

The result of this evaluation yields s = do(putonfloor(B),

do(pickup(B), do(putonfloor(A), do(pickup(A), S0))))

and so a correct sequence is
〈pickup(A), putonfloor(A), pickup(B), putonfloor(B)〉
When what is known about the actions and initial state can be expressed
as Horn clauses, the evaluation can be done in Prolog:
The Golog interpreter has additional clauses such as:

do(A,S1,do(A,S1)) :- prim_action(A), poss(A,S1).

do(seq(A,B),S1,S2) :- do(A,S1,S3), do(B,S3,S2).

do(while(F,A),S1,S2) :- not holds(F,S1), S2=S1.

do(while(F,A),S1,S2) :- holds(F,S1), do(seq(A,while(F, A)),S1,S2).

This provides a convenient way of controlling a robot at a high-level.
The main Golog paper provides a nice example of elevator control
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Programs as macros

Interesting additional planner Golog-style:
while ¬Goal do (πa) [Appropriate(a)?; a] endWhile;

Other useful properties one may use (for any program δ):

Correctness

Axioms |= (∀s).Do(δ, S0, s)→ P (s)

(or stronger, for ∀s0, s).
Termination

Axioms |= (∃s)Do(δ, S0, s)

(or stronger, Axioms |= (∀s0)(∃s)Do(δ, S0, s))
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Second shortcoming: probability
Now that we know how logic, probability, resolution and actions work, it is
fairly straightforward to combine all of them.
Easy to add probabilistic information to (ground) atoms as random
variables (using probabilistic logic, explanations and solution formulas)
For actions we usually take the intuitive strategy to define a probability
distribution over deterministic alternatives:
For example, using STRIPS, we extend an earlier example (M is monkey)
O = 〈Go(x, y)
{At(M, x),On(M,Floor)},
{At(M, x)}, {At(M, Y )}〉,to

O = 〈Go(x, y), {At(M, x),On(M,Floor)},
{{At(M, x)}, {At(M, Y )}〉,Prob = 0.9}, {∅, ∅〉,Prob = 0.1}

In other words, in 90% the action has the regular semantics, and in 10% of
the cases, the action has no effect.
Can use it to (compactly) define Markov decision processes in relational
domains! Challenge: probabilities and value functions dependent on the
number of domain objects!
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Probabilistic Sitcalc in AILog
A probabilistic world in situation calculus in AILog (robot_sitc.cil)

% initial situation has the following probabilities

% P(locked(door,s0)) = 0.9

% P(at_key(r101,s0)|locked(door,s0)) = 0.7

% P(at_key(r101,s0)|unlocked(door,s0)) = 0.2

% ( from which we conclude P(at_key(r101,s0))=0.65

prob locked(door,s0):0.9,unlocked(door,s0):0.1.

prob at_key_lo(r101,s0):0.7,at_key_lo(r123,s0):0.3.

prob at_key_unlo(r101,s0):0.2,at_key_unlo(r123,s0):0 .8.

at(key,R,s0) <- at_key_lo(R,s0) & locked(door,s0).

at(key,R,s0) <- at_key_unlo(R,s0) & unlocked(door,s0).

% initially the robot is at room 111.

at(robot,r111,s0).

% path(From,To,Route,Risky,Cost)

% Risky means whether it has to go past the stairs

path(r101,r123,direct,yes,50).

path(r101,r123,long,no,90).

path(r101,door,direct,yes,50).
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Probabilistic Sitcalc in AILog (2)
carrying(key,do(pickup(key),S)) <-

at(robot,P,S) &

at(key,P,S) &

pickup_succeeds(S).

carrying(key,do(A,S)) <-

carrying(key,S) &

A \= putdown(key) &

A \= pickup(key) &

keeps_carrying(key,S).

prob pickup_succeeds(S):0.88, pickup_fails(S):0.12.

prob keeps_carrying(key,S):0.95, drops(key,S):0.05.

sense(at_key,S) <-

at(robot,P,S) & at(key,P,S) & sensor_true_pos(S).

sense(at_key,S) <-

at(robot,P1,S) & at(key,P2,S) &

P1 \= P2 & sensor_false_neg(S).

prob sensor_true_pos(S):0.92, sensor_false_neg(S):0.0 8.

prob sensor_true_neg(S):0.97, sensor_false_pos(S):0.0 3. – p. 24/49



Probabilistic Sitcalc in AILog (3)
AILog theory robot_sitc.cil loaded.

ailog: predict utility(V,do(enter_lab,do(goto(door,di rect),s0))).

Answer: P(utility(160,do(enter_lab,do(goto(door,dire ct),s0)))|Obs)=0.9.

[ok,more,explanations,worlds,help]: ok.

ailog: predict sense(at_key,do(goto(r101,direct), s0)) .

Answer: P(sense(at_key,do(goto(r101,direct),s0))|Obs )=0.5634.

[ok,more,explanations,worlds,help]: explanations.

0: ass([],[sensor_true_pos(do(goto(r101,direct),s0)) ,would_not_fall_down_stairs(s0

1: ass([],[sensor_true_pos(do(goto(r101,direct),s0)) ,would_not_fall_down_stairs(s0

2: ass([],[sensor_false_neg(do(goto(r101,direct),s0) ),would_not_fall_down_stairs(s

3: ass([],[sensor_false_neg(do(goto(r101,direct),s0) ),would_not_fall_down_stairs(s

[ok,more,how i,help]: ok.

Answer: P(sense(at_key,do(goto(r101,direct),s0))|Obs )=0.5634.

[ok,more,explanations,worlds,help]: ok.

ailog: observe sense(at_key,do(goto(r101,direct), s0)) .

Answer: P(sense(at_key,do(goto(r101,direct),s0))|Obs )=0.5634.

[ok,more,explanations,worlds,help]: ok.

ailog: predict utility(V,do(enter_lab, do(unlock_door, do(goto(door,long), do(pickup(key),

Answer: P(utility(90,do(enter_lab,do(unlock_door,do( goto(door,long),do(pickup(key),d

[ok,more,explanations,worlds,help]: ok.
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2nd Assignments: second part
The famous box-pushing game Sokoban

Example Sokoban problem. The grid is a 3x4 rectangle with the
upper-right square missing. The agent is represented by the circle. There
are three crates (represented by the boxes) A, B and C. The stars
represent the goal locations for the respective crates.

The assignment will test your ability to model and implement this domain
in a simple situation calculus.
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Pauze
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The Early Days (1982)
http://homepages.inf.ed.ac.uk/rbf/BOOKS/BANDB/bandb.htm

Chapters: computer vision issues,
imagae formation, early processing,
boundary detection, region growing,
texture, motion, representation
of 2D geometric structures, rep-
resentations of 3D structures,
knowledge representation and
use, matching, inference, goal
achievement,
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Modern computer vision (2011)
http://szeliski.org/Book/

Chapters: introduction, image formation,
image processing, feature detection and
matching, segmentation, feature-based
alignment, structure from motion, dense
motion estimation, image stitching, com-
putational photography, stereo corre-
spondence, 3D reconstruction, image-
based rendering, recognition,

Not much attention for knowledge representation issues per se
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Another Brick in the Wall?



Jurassic Park?



Ceci n'est pas un Tank?



A Weird Cartoon Figure?



A Winter Athlete!



Context and Configurations

The meaning of                    

depends on the context of surrounding
visual components

and their specific spatial configuration

helped by background knowledge 



The Value of Context in Vision

A Car? A Pedestrian?

Torralba (2003)



An inactive lawnmower



An active lawnmower



High-Level Vision

High-level 
knowledge 
representation

On top of – but 
mixed with --
Low-level 
vision techniques

Part-based 
object 
representations

Scene 
understanding

Uncertain + Relational
→ ideal for SRL



. .

Visual interpretation

Q: Is constraint satisfaction only useful when we are dealing with a
nerdy puzzle of some sort?

A: No, it also can apply to ordinary human behaviours like vision.

Q: What is involved with vision? with seeing something?

A: It involves coming up with an interpretation for a 2-dimensional grid of
colours and intensities.

The main question:

what am I looking at?

Chapter 6: Interpreting visual scenes c© Levesque 2011 2



. .

Thinking as part of seeing

Although much of the visual process is something that happens without
any thought, part of seeing is using what you know about the world.

What is in the circle?

170 Torralba

(a) (b)

Figure 1. The structure of many real-world scenes is governed by strong configurational rules akin to those that apply to a single object.
In such situations, individual objects can be recognized even when the intrinsic information is impoverished, for instance due to blurring
as shown above. In presence of image degradation (due to distance or fast scene scanning), object recognition mechanisms have to in-
clude contextual information in order to make reliable inferences. Recognition based on intrinsic features provides very poor performances
when asking to observers. However, when the object is immersed in its typical environment, subjects experience a vivid recognition of the
object.

The paper is organized as follows: in Section 2 we
review the role of context and discuss some of the past
work on context-based object recognition. Section 3
formalizes the statistical framework used in this work
for including context information in the object detec-
tion task. Section 4 details the contextual representa-
tion. Section 5 describes the image database used for
our experiments. Sections 6, 7 and 8 describe respec-
tively object priming, context-driven focus of attention
and automatic context-driven scale selection.

2. Context

2.1. The Role of Context

Under favorable conditions, the multiplicity of cues
(color, shape, texture) in the retinal image produced
by an object provides enough information to unam-
biguously determine the object category. Under such
high quality viewing conditions, the object recognition
mechanisms could rely exclusively on intrinsic object
features ignoring the background. Object recognition
based on intrinsic object features can robustly handle
many transformations such as displacement, rotation,
scaling, changes in illumination, etc. Therefore, at least
in principle, contributions from context do not seem
necessary for object recognition.

However, in situations with poor viewing quality
(caused, for instance, by large distances, or short ac-
quisition times) context appears to play a major role
in enhancing the reliability of recognition. This is be-
cause, in such circumstances, the analysis of intrinsic
object information alone cannot yield reliable results
(Fig. 1(a)). When the object is immersed in its typ-
ical environment, recognition of the object becomes
reliable (Fig. 1(b)). Under degradation, purely object-
centered representations are not enough for account-
ing for the reliable object recognition performance of
observers when the object is presented in context. In
real-world scenes, intrinsic object information is of-
ten degraded due to occlusions, illumination, shadows,
peripheral vision and distance, leading to poor resolu-
tion and/or contrast. Therefore, the inclusion of con-
text is mandatory in order to build efficient and reliable
algorithms for object recognition. In the absence of
enough local evidence about an object’s identity, the
scene structure and prior knowledge of world regular-
ities provide the only information for recognizing and
localizing the object (see Fig. 2). Figure 2 illustrates
how a simple feature (orientation) in combination with
strong contextual information are driving the recogni-
tion of the object.

Even when objects can be identified via intrin-
sic information, context can simplify the object dis-
crimination by cutting down on the number of object

Now look at some
surrounding context
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Figure 1. The structure of many real-world scenes is governed by strong configurational rules akin to those that apply to a single object.
In such situations, individual objects can be recognized even when the intrinsic information is impoverished, for instance due to blurring
as shown above. In presence of image degradation (due to distance or fast scene scanning), object recognition mechanisms have to in-
clude contextual information in order to make reliable inferences. Recognition based on intrinsic features provides very poor performances
when asking to observers. However, when the object is immersed in its typical environment, subjects experience a vivid recognition of the
object.

The paper is organized as follows: in Section 2 we
review the role of context and discuss some of the past
work on context-based object recognition. Section 3
formalizes the statistical framework used in this work
for including context information in the object detec-
tion task. Section 4 details the contextual representa-
tion. Section 5 describes the image database used for
our experiments. Sections 6, 7 and 8 describe respec-
tively object priming, context-driven focus of attention
and automatic context-driven scale selection.

2. Context

2.1. The Role of Context

Under favorable conditions, the multiplicity of cues
(color, shape, texture) in the retinal image produced
by an object provides enough information to unam-
biguously determine the object category. Under such
high quality viewing conditions, the object recognition
mechanisms could rely exclusively on intrinsic object
features ignoring the background. Object recognition
based on intrinsic object features can robustly handle
many transformations such as displacement, rotation,
scaling, changes in illumination, etc. Therefore, at least
in principle, contributions from context do not seem
necessary for object recognition.

However, in situations with poor viewing quality
(caused, for instance, by large distances, or short ac-
quisition times) context appears to play a major role
in enhancing the reliability of recognition. This is be-
cause, in such circumstances, the analysis of intrinsic
object information alone cannot yield reliable results
(Fig. 1(a)). When the object is immersed in its typ-
ical environment, recognition of the object becomes
reliable (Fig. 1(b)). Under degradation, purely object-
centered representations are not enough for account-
ing for the reliable object recognition performance of
observers when the object is presented in context. In
real-world scenes, intrinsic object information is of-
ten degraded due to occlusions, illumination, shadows,
peripheral vision and distance, leading to poor resolu-
tion and/or contrast. Therefore, the inclusion of con-
text is mandatory in order to build efficient and reliable
algorithms for object recognition. In the absence of
enough local evidence about an object’s identity, the
scene structure and prior knowledge of world regular-
ities provide the only information for recognizing and
localizing the object (see Fig. 2). Figure 2 illustrates
how a simple feature (orientation) in combination with
strong contextual information are driving the recogni-
tion of the object.

Even when objects can be identified via intrin-
sic information, context can simplify the object dis-
crimination by cutting down on the number of object
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. .

A similar but simpler case: aerial sketch maps

Would like to label the regions in the
sketch map on the right as either

grass, water, pavement,
house, vehicle

subject to constraints such as

• a region cannot border or be surrounded by another region with the
same label

• houses cannot be next to or surrounded by water

• vehicles must be next to or surrounded by pavement

• pavement cannot be completely inside any other region

• houses, vehicles and pavement are regular (straight-edged); grass
and water are irregular

• vehicles are small; the other regions are large
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. .

Visual properties

The task here is to determine how properties of the image can be
translated into suitable constraints.

The more we extract from the im-
age, the more we are able to rule
out incorrect interpretations

R1

R2

R3

R4R5

In our example image:

1. region R5 is small; the others are large

2. region R3 and R5 are regular; R1 and R2 are irregular;
R4 could go either way

3. region R1 borders on R2; R2 borders on R4

4. region R3 is inside R2; R5 is inside R4
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. .

Visual constraints

We can handle constraints (1) and (2) with facts like

large(grass).

small(vehicle).

regular(pavement).

irregular(water).

To handle (3), we simply ensure that the two regions do not violate any of
the given rules about borders:

• the two regions must be different

• they must not be house and water

• if one is vehicle, the other must be pavement

Constraint (4) is handled analogously.
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. .

What is allowed in an interpretation?
regions.pl

% The five types of regions that can appear in an image

region(grass). region(water). region(pavement).

region(house). region(vehicle).

% small(X) holds when region X can be small in an image.

small(vehicle).

% regular(X) holds when region X can be regular in an image.

regular(pavement). regular(house). regular(vehicle).

% border(X,Y) holds when region X can border region Y.

border(X,Y) :- \+ bad_border(X,Y), \+ bad_border(Y,X).

% Unacceptable borders

bad_border(X,X).

bad_border(house,water).

bad_border(vehicle,X) :- \+ X=pavement.

% inside(X,Y) holds when region X can be surrounded by Y.

inside(X,Y) :- \+ bad_inside(X,Y).

% Unacceptable containment

bad_inside(X,X).

bad_inside(house,water).

bad_inside(vehicle,X) :- \+ X=pavement.

bad_inside(pavement,_).
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. .

The aerial sketch map interpretation in Prolog
sketch.pl

solution(R1,R2,R3,R4,R5) :-

region(R1), region(R2), region(R3), region(R4), region(R5),

% Size constraints

\+ small(R1), \+ small(R2), \+ small(R3),

\+ small(R4), small(R5),

% Regularity constraints (none for R4)

regular(R3), regular(R5), \+ regular(R2), \+ regular(R1),

% Border constraints

border(R1,R2), border(R2,R4),

% Containment constraints

inside(R3,R2), inside(R5,R4).

% The definitions of region, small, border, etc. are elsewhere.

Loading this and the region constraints:

?- solution(R1,R2,R3,R4,R5).

R1 = water, R2 = grass, R3 = house,

R4 = pavement, R5 = vehicle

and this is the only solution.

R1

R2

R3

R4R5
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Explanations and Hypotheses

brick?

Athlete body?

Dino body?

In a (probabilistic) logical setting:
Logical reasoning to find explanations of visual input
Constraints + hypothesis testing
Most probable (semantic) explanations

→ Models are needed to do all of this

Tank? 

brick?

Athlete body?

(Dino body?)

Tank? 



Beyond Shapes: Bongard 3.0.

Real images

Low-level 
segmentation

Uncertainty 

Noise



Example: Houses (1)
Antanas, van Otterlo, Oramas, Tuytelaars, De Raedt, Neurocomputing
(2013, in press)

– p. 30/49



Houses (2)

– p. 31/49



Houses (3)
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Houses (4)
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Example: Logos

– p. 34/49



Example: Design
Bhatt, Lee, Schultz (2011):
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Example: Events
Damen and Hogg: bicycle theft recognition:

Metro stations, CCTV, robot manipulation (3D/Kinect), etc.

One of our MSc students is doing an internship with Philips
Eindhoven on logical event recognition for video data in
psychiatric care.
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Image interpretation in AILog

Following Reiter and Mackworth, for each image object I we assume a
scene object σ(I) which it depicts.
From: Poole (1993) Probabilistic Horn Abduction and Bayesian Networks, Artificial

Intelligence 64, pp 81-129 (in particular Section 5.3)
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Image interpretation in AILog 2
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Image interpretation in AILog 3
region(I)← area(σ(I), T ).
disjoint([area(S, land) : 0.3, area(S,water) : 0.7]).

chain(I)← linear(σ(I), T ).
disjoint([linear(S, road) : 0.2, linear(S, river) : 0.5, linear(S, shore) : 0.3]).
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Image interpretation in AILog 3b
chi(X, Y )← crossable(σ(X), σ(Y )) ∧ docross(σ(X), σ(Y )).
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Image interpretation in AILog 4
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Image interpretation in AILog 5
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Image interpretation in AILog 6
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Image interpretation in AILog 7
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Image interpretation in AILog 8
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Image interpretation in AILog 9
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Remarks
Levesque’s example is based on constraint satisfaction, and has
much more to do with deduction

Poole’s example is based on (probabilistic) explanations, and
abduction

In general, interpretation of images is finding those scene objects
that could have generated the image we see

A probabilistic explanation tells us what is most likely on the picture,
e.g. if square← house : 0.5 and square← car : 0.2 then it is far more
likely that the image depicts a house.

We can extend Poole’s setting with probabilistic observations, i.e.
observations that have probabilities attached, meaning that some
observations are not sure (e.g. noise in sensors, or detection
algorithms)

The KB about the images becomes a probabilistic theory in AILog
and we can condition on the observations found in the image
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Assignment 2; task 3

In this assignment, you will

choose any image domain (examples given throughout these slides, and
additionally one can think of floor plans, Nijntje-images, pictures of houses
and so on), and you will use AILog for image interpretation.
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Conclusions
For image interpretation, or more general vision, we need to combine
lots of uncertainty (noisy sensors, uncertain knowledge) with lots of
knowledge about the world (in the form of logic)

We had already established that planning is theorem proving

Now we can say that vision is again theorem proving, yet more
focused on explanations (or; a kind of abductive diagnosis)

Computer vision is coming back to (logical) knowledge representation
now that probabilistic extensions are becoming mature
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