
Description Logics and Frames

Considerable interest in this topics
seen as starting point for representing huge
quantities of knowledge
often used for representing terminologies in
particular domains
any increase of level of automation will give rise to
an increased significance in domain description

Semantic web:
OWL DL (Web Ontology Language/Description Logic):
formal semantics (model theory) and support for
reasoning

http://www.w3.org/TR/owl2-overview/

– p. 1/34

Basic ideas are old ...

– p. 2/34

Ontologies

Ontology: science which investigates and explains the
nature and essential properties and relations of all
beings (Aristotle: Metaphysica)

In AI, artifact that
makes use of a vocabulary,
with a set of rules about syntax and meaning,
purpose: computer-interpretable description of a
domain

Typical building blocks:
names (concepts)
relations and constraints

Popular applications: in biomedical research (e.g.
http://bioontology.org/)

– p. 3/34

Linnaeus

– p. 4/34

Cycorp

– p. 5/34

OpenCyc

– p. 6/34

Knowledge server

– p. 7/34

Representation of relations

1. Semantic nets:
syntactic: nodes and relations between nodes
represented as a graph
semantics of nodes and relationships

2. Frames:
(binary) relations represented as attributes
inheritance
subtyping

3. Description logic:
concepts
binary relationships
restrictions

– p. 8/34

Basics of description logics

Example DL:
ALC = Attribute concept Language with Complement

Basic ingredients:

concepts

roles

Boolean operators

“A man is married to a doctor, and all of whose
children are either doctors or professors”

Human ⊓ ¬Female ⊓ ∃married.Doctor)
⊓(∀hasChild.(Doctor ⊔ Professor))

– p. 9/34

Language elements

Concept descriptions:

primitive concept C, e.g., Human, ⊤ (most general), ⊥
(empty)

primitive role r, e.g., hasChild

conjunction ⊓, e.g., SmartHuman ⊓ Student

disjunction ⊔, e.g., Truck ⊔ Car

complement ¬, e.g., ¬Human

value restriction ∀r.C, e.g., ∀hasChild.Doctor

existential restriction ∃r.C, e.g., ∃happyChild.Parent

All understood in terms of (groups of) individuals and
properties of individuals

– p. 10/34

General concept inclusion (GCI)

General concept inclusion (GCI) also called subsumption

For concepts C,D:

C ⊑ D, e.g., Professor ⊑ Person

definition C ≡ D is the same as C ⊑ D and D ⊑ C

(Not (C ⊑ D) ⊓ (D ⊑ C), why?)

C in C ≡ D is called a defined concept, whereas D

consists of primitive concepts, e.g.,

Father ≡ ¬Female ⊓ ∃hasChild.Human

– p. 11/34

Concrete descriptions

Instances of concepts or roles, called assertions:

c : C, means that c is an instance of concept C, e.g.,

John : Person

(b, d) : r, means that the pair of individuals (b, d) is an
instance of role r, e.g.,

(John, Mary) : marriedTo

– p. 12/34

Knowledge base

Knowledge Base = KB

Terminology = TBox
Father ≡ ¬Female ⊓ ∃hasChild.Human

Human ⊑ Animal

Concrete assertions = ABox
John : Father

(John, Sheila) : hasChild

KB = (TBox, ABox)

– p. 13/34

Knowledge base

KB = (TBox, ABox):
TBox: contains general descriptions, definitions,
subsumptions relationships (GCIs)
Father ≡ ¬Female ⊓ ∃hasChild.Human
Human ⊑ Animal

ABox: contains description of individuals (instances)
John : Father
(John, Sheila) : hasChild

Sometimes ABox = ∅, then only interested in general
principles: terminological reasoning

– p. 14/34

Meaning of description logic

In terms of set theory

Let I = (∆, .) be an interpretation, then

⊤I = ∆, and ⊥I = ∅

each concept CI ⊆ ∆

each role rI ⊆ ∆ × ∆

(C ⊓ D)I = CI ∩ DI

(C ⊔ D)I = CI ∪ DI

(∃r.C)I = {c ∈ ∆ | ∃d ∈ CI with (c, d) ∈ rI}

(∀r.C)I = {c ∈ ∆ | ∀d ∈ ∆, if (c, d) ∈ rI then d ∈ CI}

where CI and rI are interpretations of C and r as sets

– p. 15/34

Example

Father ≡ ¬Female ⊓ ∃hasChild.Human

Interpretation I = (∆, .), with ∆ = {John, Sheila}

FatherI = {John} ⊆ ∆

HumanI = {John, Sheila}

hasChildI = {(John, Sheila)}

(∃hasChild.Human)I = {John}

– p. 16/34

Meaning of subsumption

Interpretation I = (∆, .), then

(C ⊑ D)I = CI ⊆ DI

Example:
Father ⊑ Human

∆ = {John, Sheila}, then

FatherI = {John}

and
HumanI = {John, Sheila}

– p. 17/34

Relationship with predicate logic

Translation function τx (DL → first-order predicate logic) that
introduces variable x:

τx(C) = C(x)

τx(C ⊓ D) = (τx(C) ∧ τx(D))

τx(C ⊔ D) = (τx(C) ∨ τx(D))

τx(∃r.C) = ∃y r(x, y) ∧ τy(C)

τx(∀r.C) = ∀y r(x, y)→τy(C)

Example: ¬Female ⊓ ∃hasChild.Human:
τx(¬Female ⊓ ∃hasChild.Human)
= τx(¬Female) ∧ τx(∃hasChild.Human))
= ¬Female(x) ∧ τx(∃hasChild.Human))
= ¬Female(x) ∧ ∃y(hasChild(x, y) ∧ Human)(y))

– p. 18/34

Relationship with predicate logic

GCIs C ⊑ D in TBox:
∧

C⊑D∈TBox
∀x(τx(C) → τx(D))

Thus, ⊑ becomes logical implication

Example: Translate

UnivTeacher ⊑ Prof ⊔ ¬Undergraduate

to predicate logic:
τx(UnivTeacher ⊑ Prof ⊔ ¬Undergraduate)
= ∀x(UnivTeacher(x) → τx(Prof ⊔ ¬Undergraduate))
= ∀x(UnivTeacher(x) → (Prof(x) ∨ ¬Undergraduate(x)))

– p. 19/34

Relationship with predicate logic

Translation of ABox:

τx(ABox) =
∧

c:C∈ABox
τc(C) ∧

∧

(b,d):r∈ABox
r(b, d)

Thus, unit clauses of the form C(c) and r(b, d)

Example:

ABox = {John : Father, (John, Sheila) : hasChild}

In first-order logic:

Father(John) ∧ hasChild(John, Sheila)

– p. 20/34

Reasoning

Possible procedure:

Translate DL knowledge base to first-order logic

Use a reasoning engine, e.g., resolution, for reasoning,
then

τ(KB) ⊢ φ

with φ something like τx(Prof ⊑ Human) becomes:

τ(KB) ∧ ¬φ ⊢ ⊥

(i.e., if KB is consistent and KB ∪ ¬φ is inconsistent,
then φ follows from KB)

However, special purpose reasoning may be
advantageous

– p. 21/34

Typical questions

Let KB = (TBox, ABox), then:

KB � C ⊑ D? (is C subsumed by D?)

KB � c : C? (is c an instance of C?)

KB � (b, d) : r? (is the pair (b, d) true for role r?)

Reasoning can be reduced to consistency checking:

(TBox, ABox ∪ {c : C ⊓ ¬D}) ⊢ ⊥

(TBox, ABox ∪ {c : ¬C}) ⊢ ⊥

(TBox, ABox ∪ {(b, d) : ¬r} ⊢ ⊥

– p. 22/34

Summary DL

Description logics: restricted logical languages for the
representation of conceptual information and
terminologies

Basis for all large-scale attempts for the development of
knowledge bases, e.g. semantic web and biomedical
ontologies

Advantages:
Restricted syntax allows developing special purpose,
efficient reasoning systems (e.g., Racer, Fact, Cyc)
ALC is decidable! (a 2 variable fragment of
first-order logic)

Disadvantage: many things cannot be represented in a
DL

– p. 23/34

Frame formalism

Predecessor of description logics, still in use

Concepts and properties of concepts

Example (human anatomy): “An artery is a vessel. An
artery transports blood from the heart to the tissues, and is
characterised by a thick wall and much muscular tissue.”

Frame taxonomy: hierarchical
organisation

nodes (vertices): classes
and instances

arcs (arrows): superclasses
and instance-of relationships

Example

instance−of

aorta

vein

superclass superclass

instance−of

vessel

artery

artery
brachial

– p. 24/34

Syntax

Basic elements:

subclass relationship between
frames

attributes or slots

values or fillers

⇒ attribute-value pair or
slot-filler combination

Example: (structure, tube) is
an attribute-value pair

class vessel is
superclass nil;
structure = tube;
contains = blood

end

class artery is
superclass vessel;
wall = muscular

end

instance aorta is
instance-of artery;
diameter = 3cm

end

– p. 25/34

Meaning of frames

Semantics in terms of predicate logic:

class C is ∀x(C(x) → S(x))
superclass S;
a1 = b1; ∀x(C(x) → a1(x) = b1)

...
...

an = bn ∀x(C(x) → an(x) = bn)
end

instance i is C(i)
instance-of C;
d1 = e1; d1(i) = e1

...
...

dm = em dm(i) = em

end

– p. 26/34

Relationship with description logic

TBox:
class C is C ⊑ S

superclass S;
a1 = b1; C ⊑ ∃a1.{b1}

...
...

an = bn C ⊑ ∃an.{bn}
end ({i} is a concept if i is an individual)

ABox:
instance i is i : C

instance-of C;
d1 = e1; (i, e1) : d1

...
...

dm = em (i, em) : dm

end

– p. 27/34

Reasoning
Basic reasoning method is called inheritance,
sometimes example of non-monotonic reasoning

Frame inherits attribute-value pairs from its
generalisations

Two types of inheritance:

1. single: tree-shaped taxonomy

2. multiple: general graph-shaped taxonomy (loops)

��

��

��

��

��

��

�
�
�
�

�
�
�
�

��
��
��
��

����

��

��
��
��
��

��

��
��
��
�� ��

��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�

�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

– p. 28/34

Single inheritance

Requirement: unique attribute names

function Inherit(frame, a-v-pairs)

if frame = nil
then return (a-v-pairs)
fi ;
a-v-pairs← a-v-pairs ∪

AttributePart(frame);
return (Inherit(superframe(frame),

a-v-pairs))
end

Example

a3=v3

a2=v2 a4=v4

a5=v5

1

3

2
a1=v1

F
����

��

��

��

��

��

�
�
�
�

�
�
�
�

���
�
�
�
�
�

�
�
�
�
�
�
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

F inherits a1 = v1, a2 = v2 en
a3 = v3

– p. 29/34

Exceptions

Non-unique attribute names ⇒ exceptions / inconsistency

Example
class artery is instance pulmonary-a is

instance-of artery; instance-of artery;
superclass vessel; blood = oxygenpoor
blood = oxygenrich end

end
∀x(artery(x) → vessel(x))
∀x(artery(x) → blood(x) = oxygenrich)
artery(pulmonary-a)
blood(pulmonary-a) = oxygenpoor

Logically inconsistent!

Solution: local ‘overwriting’

– p. 30/34

Single inheritance with exceptions

Search the taxonomy until a value is found:

function Inherit(frame, a-v-pairs)
if frame = nil
then return (a-v-pairs)
fi ;
pairs← AttributePart(frame);
a-v-pairs← a-v-pairs ∪

NewAttributes(pairs, a-v-pairs);
return (Inherit(superframe(frame), a-v-pairs))

end

Example

1

3

2

a=d a=e

a=c

F
�
�
�
�

�
�
�
�

��

��

����

��

��

��

��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�

�
�
�
�
�

F inherits a = c

– p. 31/34

Multiple inheritance with exceptions

end

class y3:
 superclass y1,y2,y4;
 b=d

end
 a=c4

class y4:
 superclass y1;

end
 a=c2

class y2:
 superclass y1;

class y1:

end

 superclass nil;
 a=c1

Questions:

1. Taxonomy consistent?

2. If yes, what are the inheri-
ted values for attribute a vof
y3?

Requirement: solution must work for both: graph and tree
shaped taxonomies!

– p. 32/34

Monotonic reasoning

Inheritance with exceptions example of non-monotonic
reasoning

Monotonic reasoning:
knowledge base KB

add knowledge to KB and obtain new knowledge
base KB′

if KB ⊢ Results and KB′ ⊢ Results′ then
Results ⊆ Results′

more knowledge yields more results

Example:

KB = {P → Q} KB′ = {P → Q,P}
Results = KB Results′ = KB′ ∪ {Q} = KB ∪ {P,Q}

– p. 33/34

Non-monotonic reasoning

Non-monotonic reasoning is more close related to
human reasoning

knowledge base KB

add knowledge to KB and obtain new knowledge
base KB′

if KB ⊢ Results and KB′ ⊢ Results′ then
Results ⊆ Results′ does not hold in general
more knowledge does not necessarily yield more
results

Example (|∼ is non-monotonic):
{artery(left-pulmonary-artery),
blood(left-pulmonary-artery) = oxygen-poor,
∀x(artery(x) → blood(x) = oxygen-rich)}
|∼ blood(left-pulmonary-artery) = oxygen-poor

– p. 34/34

	Description Logics and Frames
	Basic ideas are old ...
	Ontologies
	Linnaeus
	Cycorp
	OpenCyc
	Knowledge server
	Representation of relations
	Basics of description logics
	Language elements
	General concept inclusion (GCI)
	Concrete descriptions
	Knowledge base
	Knowledge base
	Meaning of description logic
	Example
	Meaning of subsumption
	Relationship with predicate logic
	Relationship with predicate logic
	Relationship with predicate logic
	Reasoning
	Typical questions
	Summary DL
	Frame formalism
	Syntax
	Meaning of frames
	Relationship with description logic
	Reasoning
	Single inheritance
	Exceptions
	Single inheritance with exceptions
	Multiple inheritance with exceptions
	Monotonic reasoning
	Non-monotonic reasoning

