Description Logics and Frames

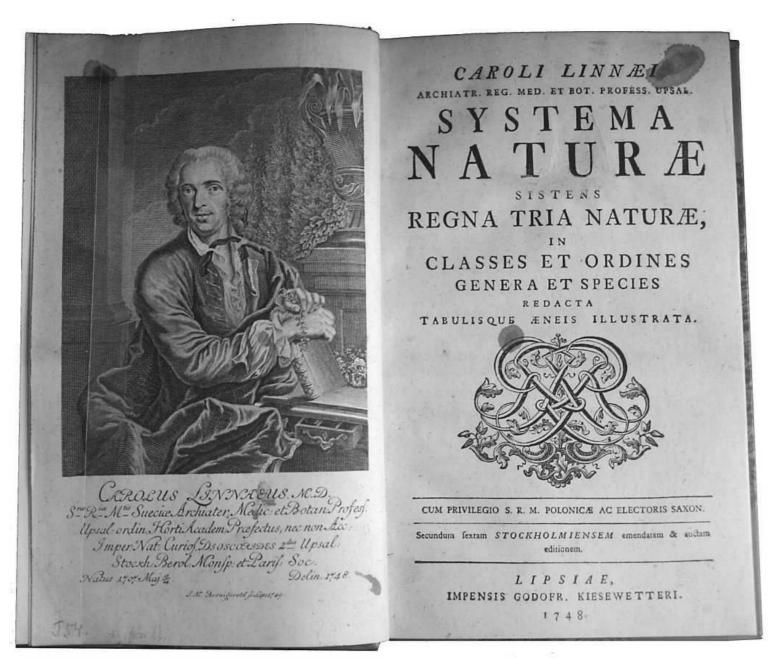
- Considerable interest in this topics
 - seen as starting point for representing huge quantities of knowledge
 - often used for representing terminologies in particular domains
 - any increase of level of automation will give rise to an increased significance in domain description

Semantic web:

OWL DL (Web Ontology Language/Description Logic): formal semantics (model theory) and support for reasoning

http://www.w3.org/TR/owl2-overview/

Basic ideas are old ...



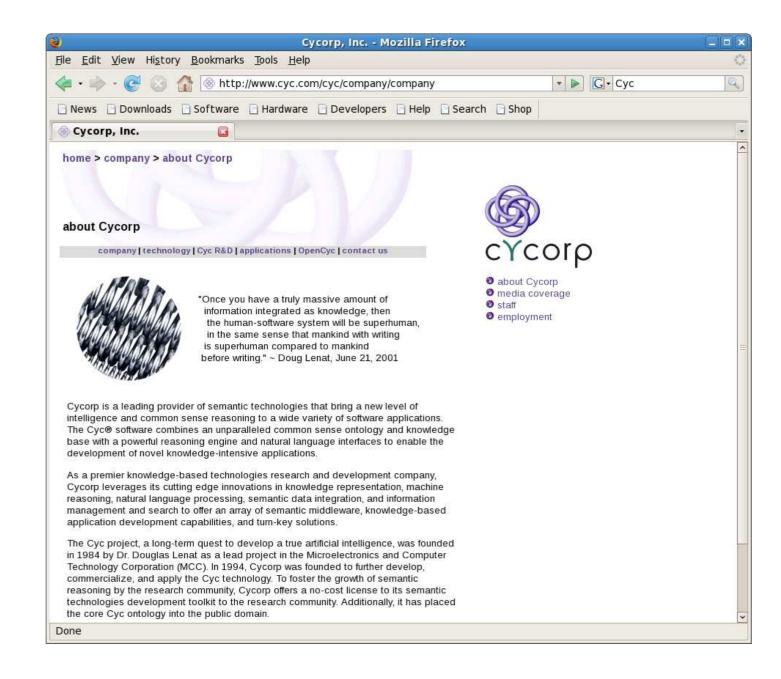
Ontologies

- Ontology: science which investigates and explains the nature and essential properties and relations of all beings (Aristotle: Metaphysica)
- In AI, artifact that
 - makes use of a vocabulary,
 - with a set of rules about syntax and meaning,
 - purpose: computer-interpretable description of a domain
- Typical building blocks:
 - names (concepts)
 - relations and constraints
- Popular applications: in biomedical research (e.g. http://bioontology.org/)

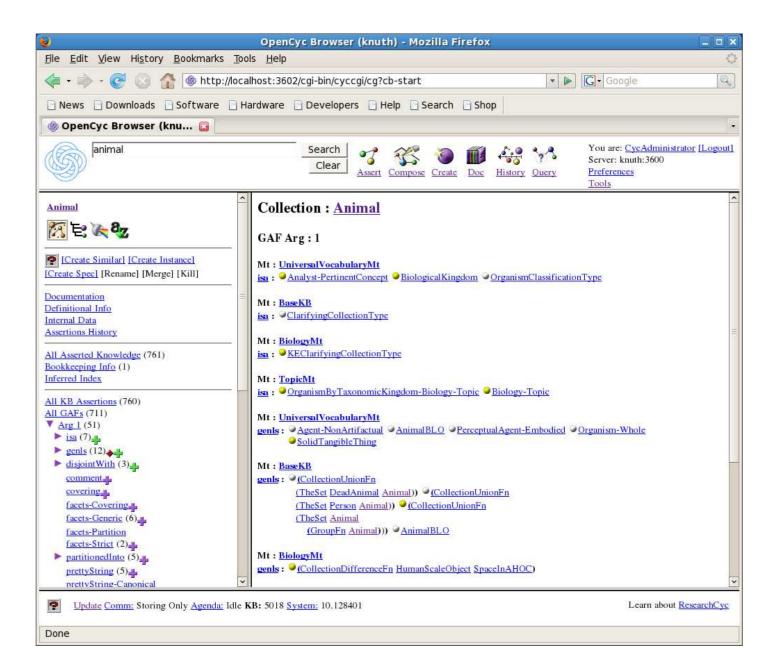
Linnaeus

· Ordo I. PRIMATES. Dentes primores superiores IV paralleli. Mammæ pectorales, binæ. 1. HOMO nofce Te ipfum. 1. H. diurnus. (*) vagans cultura , loco. a. H. rafus, cholericus, rectus. Americanne 2. H. albus, fanguineus torotus. Europens. y. H. luridus, melancholicus rigidus. Adiaticus. J. H. niger, phlegmaticus, laxus. Afer. e. H. monftrofus folo (a), vel arte (b. c.) a. Alpini parvi, aglies, timidi : Patagonici magni, fegnes. b. Monorchides ut minus ferriles: Hottentotti. Junces puella abdomine attenuato: Europea, c. Macrecephali capite conico. Chinenfes. Plagiocepbali capite antice compresso. Canadenfes. 2. Homo nocturnus. Ourang Outang Bont. jav. 84. 1.84. Genus Trogloditæ feu Ourang Outang ab Homine veto difinaum, adbibita quamois owni attentione, obtinere non potui, nifi afsmerem notam lubricam, in allis generibut non conflation. Net Dertes laniarii minime a reliquis remoti; nec Nymphae caffre, quint carent Simire, kune ad Simias reducere admittebant. Inquirant as. topta in vivo, qua ratione, medo note aliqua existant, ab Homins genere feparari queat , nam inter Simias verfantem oportet elle St miam. Apollodor.

Cycorp



OpenCyc



Knowledge server

xterm _ 🗆	×
<pre>Start time: Wed Sep 30 23:27:42 CEST 2009 Lisp implementation: Cycorp Java SubL Runtime Environment JVM: Sun Microsystems Inc. Java HotSpot(TM) Server VM 1.6.0_03 (1.6.0_03-b05) Current KB: 5018 Patch Level: 10.128401 Running on: knuth OS: Linux 2.6.23.17-88.fc7 (i386) Working directory: /home/peterl/Research/Cyc/opencyc-2.0/server/cyc/run Total memory allocated to VM: 1348MB. Memory currently used: 541MB. Memory currently used: 541MB. Memory currently available: 806MB. Initializing HL backing store caches from units/5018/. ;; At this point the cyc http server is running and you can access ;; Cyc directly via the local web browser. ;; http://localhost:3602/cgi-bin/cyccgi/cg?cb-start ;; You can browse cyc via the Guest account or perform updates by ;; logging on as CycAdminstrator. CYC(1):</pre>	

Representation of relations

1. Semantic nets:

- syntactic: nodes and relations between nodes
- represented as a graph
- semantics of nodes and relationships
- 2. Frames:
 - (binary) relations represented as attributes
 - inheritance
 - subtyping
- 3. Description logic:
 - concepts
 - binary relationships
 - restrictions

Basics of description logics

Example DL:

ALC = Attribute concept Language with Complement

Basic ingredients:

- concepts
- roles
- Boolean operators

"A man is married to a doctor, and all of whose children are either doctors or professors"

> Human $\sqcap \neg$ Female $\sqcap \exists$ married.Doctor) $\sqcap (\forall$ hasChild.(Doctor \sqcup Professor))

Language elements

Concept descriptions:

- primitive concept C, e.g., Human, \top (most general), \perp (empty)
- primitive role r, e.g., hasChild
- conjunction □, e.g., SmartHuman □ Student
- disjunction □, e.g., Truck □ Car
- complement ¬, e.g., ¬Human
- value restriction $\forall r.C$, e.g., \forall hasChild.Doctor
- existential restriction $\exists r.C$, e.g., \exists happyChild.Parent

All understood in terms of (groups of) individuals and properties of individuals

General concept inclusion (GCI)

General concept inclusion (GCI) also called subsumption

For concepts C, D:

- $C \sqsubseteq D$, e.g., Professor \sqsubseteq Person
- definition $C \equiv D$ is the same as $C \sqsubseteq D$ and $D \sqsubseteq C$ (Not $(C \sqsubseteq D) \sqcap (D \sqsubseteq C)$, why?)
- C in $C \equiv D$ is called a defined concept, whereas D consists of primitive concepts, e.g.,

Father $\equiv \neg$ Female $\sqcap \exists$ hasChild.Human

Concrete descriptions

Instances of concepts or roles, called assertions:

• c: C, means that c is an instance of concept C, e.g.,

John : Person

• (b,d): r, means that the pair of individuals (b,d) is an instance of role r, e.g.,

(John, Mary): married To

Knowledge base

Knowledge Base = KB

 $\begin{array}{l} \mbox{Terminology} = \mbox{TBox} \\ \mbox{Father} \equiv \neg \mbox{Female} \sqcap \exists \mbox{hasChild.Human} \\ \mbox{Human} \sqsubseteq \mbox{Animal} \end{array}$

Concrete assertions = ABox John : Father (John, Sheila) : hasChild

KB = (TBox, ABox)

Knowledge base

KB = (TBox, ABox):

- TBox: contains general descriptions, definitions, subsumptions relationships (GCIs)
 Father ≡ ¬Female ⊓ ∃hasChild.Human
 Human □ Animal
- ABox: contains description of individuals (instances)
 John : Father (John, Sheila) : hasChild
- Sometimes ABox = Ø, then only interested in general principles: terminological reasoning

Meaning of description logic

In terms of set theory

- Let $\mathcal{I} = (\Delta, \cdot)$ be an interpretation, then
- $\top^{\mathcal{I}} = \Delta$, and $\perp^{\mathcal{I}} = \varnothing$
- $\textbf{ each concept } C^{\mathcal{I}} \subseteq \Delta$
- $\textbf{ each role } r^{\mathcal{I}} \subseteq \Delta \times \Delta$
- $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$
- $(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$
- $(\exists r.C)^{\mathcal{I}} = \{ c \in \Delta \mid \exists d \in C^{\mathcal{I}} \text{ with } (c,d) \in r^{\mathcal{I}} \}$
- $(\forall r.C)^{\mathcal{I}} = \{ c \in \Delta \mid \forall d \in \Delta, \text{if } (c,d) \in r^{\mathcal{I}} \text{ then } d \in C^{\mathcal{I}} \}$

where $C^{\mathcal{I}}$ and $r^{\mathcal{I}}$ are interpretations of C and r as sets

Example

Father $\equiv \neg$ Female $\sqcap \exists$ hasChild.Human

Interpretation $\mathcal{I} = (\Delta, \cdot)$, with $\Delta = \{\text{John}, \text{Sheila}\}$

$$\textbf{Father}^{\mathcal{I}} = \{ \textbf{John} \} \subseteq \Delta$$

• Human
$$^{\mathcal{I}} = \{ John, Sheila \}$$

- hasChild^{\mathcal{I}} = {(John, Sheila)}
- $(\exists hasChild.Human)^{\mathcal{I}} = \{John\}$

Meaning of subsumption

Interpretation $\mathcal{I} = (\Delta, \cdot)$, then

 $(C \sqsubseteq D)^{\mathcal{I}} = C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

Example:

Father \sqsubseteq Human

 $\Delta = \{\text{John}, \text{Sheila}\}, \text{ then }$

Father^{\mathcal{I}} = {John}

and

$$\mathsf{Human}^\mathcal{I} = \{\mathsf{John}, \mathsf{Sheila}\}$$

Relationship with predicate logic

Translation function τ_x (DL \rightarrow first-order predicate logic) that introduces variable x:

- $T_x(C) = C(x)$
- $\, \bullet \, \tau_x(C \sqcap D) = (\tau_x(C) \land \tau_x(D))$

•
$$\tau_x(C \sqcup D) = (\tau_x(C) \lor \tau_x(D))$$

•
$$\tau_x(\exists r.C) = \exists y \ r(x,y) \land \tau_y(C)$$

•
$$\tau_x(\forall r.C) = \forall y \ r(x,y) \rightarrow \tau_y(C)$$

Example: \neg Female $\sqcap \exists$ hasChild.Human: $\tau_x(\neg$ Female $\sqcap \exists$ hasChild.Human) $= \tau_x(\neg$ Female) $\land \tau_x(\exists$ hasChild.Human)) $= \neg$ Female(x) $\land \tau_x(\exists$ hasChild.Human)) $= \neg$ Female(x) $\land \exists y$ (hasChild(x, y) \land Human)(y))

Relationship with predicate logic

• GCIs $C \sqsubseteq D$ in TBox:

$$\bigwedge_{C \sqsubseteq D \in \mathsf{TBox}} \forall x(\tau_x(C) \to \tau_x(D))$$

• Thus, \sqsubseteq becomes logical implication

Example: Translate

```
UnivTeacher \sqsubseteq Prof \sqcup \neg Undergraduate
```

to predicate logic: $\tau_x(\text{UnivTeacher} \sqsubseteq \text{Prof} \sqcup \neg \text{Undergraduate}))$ $= \forall x(\text{UnivTeacher}(x) \rightarrow \tau_x(\text{Prof} \sqcup \neg \text{Undergraduate})))$ $= \forall x(\text{UnivTeacher}(x) \rightarrow (\text{Prof}(x) \lor \neg \text{Undergraduate}(x)))$

Relationship with predicate logic

Translation of ABox:

$$\tau_x(\mathsf{ABox}) = \bigwedge_{c:C \in \mathsf{ABox}} \tau_c(C) \land \bigwedge_{(b,d):r \in \mathsf{ABox}} r(b,d)$$

• Thus, unit clauses of the form C(c) and r(b,d)

Example:

 $\label{eq:ABox} ABox = \{John: Father, (John, Sheila): hasChild\}$ In first-order logic:

 $Father(John) \land hasChild(John, Sheila)$

Reasoning

Possible procedure:

- Translate DL knowledge base to first-order logic
- Use a reasoning engine, e.g., resolution, for reasoning, then

 $\tau(\mathsf{KB})\vdash\phi$

with ϕ something like $\tau_x(\mathsf{Prof} \sqsubseteq \mathsf{Human})$ becomes:

$$\tau(\mathsf{KB}) \land \neg \phi \vdash \bot$$

(i.e., if KB is consistent and KB $\cup \neg \phi$ is inconsistent, then ϕ follows from KB)

However, special purpose reasoning may be advantageous

Typical questions

Let KB = (TBox, ABox), then:

- $KB \models C \sqsubseteq D$? (is C subsumed by D?)
- $KB \vDash c : C?$ (is c an instance of C?)
- ▶ KB \models (*b*, *d*) : *r*? (is the pair (*b*, *d*) true for role *r*?)

Reasoning can be reduced to consistency checking:

- $(\mathsf{TBox}, \mathsf{ABox} \cup \{c : C \sqcap \neg D\}) \vdash \bot$
- $(\mathsf{TBox}, \mathsf{ABox} \cup \{c : \neg C\}) \vdash \bot$
- (TBox, ABox \cup {(b, d) : $\neg r$ } $\vdash \bot$

Summary DL

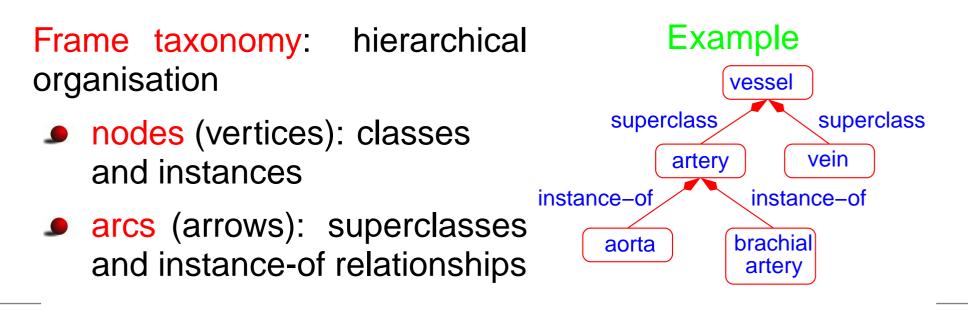
- Description logics: restricted logical languages for the representation of conceptual information and terminologies
- Basis for all large-scale attempts for the development of knowledge bases, e.g. semantic web and biomedical ontologies
- Advantages:
 - Restricted syntax allows developing special purpose, efficient reasoning systems (e.g., Racer, Fact, Cyc)
 - ALC is decidable! (a 2 variable fragment of first-order logic)
- Disadvantage: many things cannot be represented in a DL

Frame formalism

Predecessor of description logics, still in use

Concepts and properties of concepts

Example (human anatomy): "An artery is a vessel. An artery transports blood from the heart to the tissues, and is characterised by a thick wall and much muscular tissue."



Syntax

Basic elements:

- subclass relationship between frames
- attributes or slots
- values or fillers

 \Rightarrow attribute-value pair or slot-filler combination

Example: (structure, tube) is an attribute-value pair

class vessel is
 superclass nil;
 structure = tube;
 contains = blood
end
class artery is
 superclass vessel;
 wall = muscular
end

instance aorta is
 instance-of artery;
 diameter = 3cm
end

Meaning of frames

Semantics in terms of predicate logic:

class C is superclass S; $a_1 = b_1$; \vdots $a_n = b_n$ end

$$\begin{aligned} \forall x(C(x) \to S(x)) \\ \forall x(C(x) \to a_1(x) = b_1) \\ \vdots \\ \forall x(C(x) \to a_n(x) = b_n) \end{aligned}$$

instance i is
instance-of C;
 $d_1 = e_1$;C(i)
 $d_1(i) = e_1$ \vdots
 $d_m = e_m$ $d_m(i) = e_m$ end $d_m(i) = e_m$

Relationship with description logic

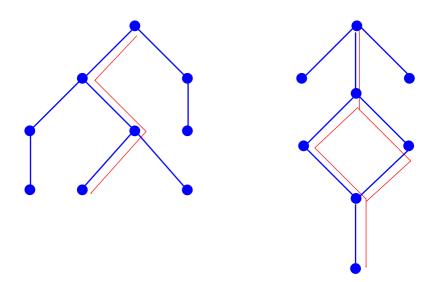
TBox: $C \sqsubset S$ class C is superclass *S*; $a_1 = b_1;$ $C \sqsubseteq \exists a_1.\{b_1\}$ $C \sqsubseteq \exists a_n . \{b_n\}$ $a_n = b_n$ $\{i\}$ is a concept if i is an individual) end **ABox:** i:Cinstance *i* is instance-of C; $(i, e_1) : d_1$ $d_1 = e_1;$ $(i, e_m) : d_m$ $d_m = e_m$ end

Reasoning

- Basic reasoning method is called inheritance, sometimes example of non-monotonic reasoning
- Frame inherits attribute-value pairs from its generalisations

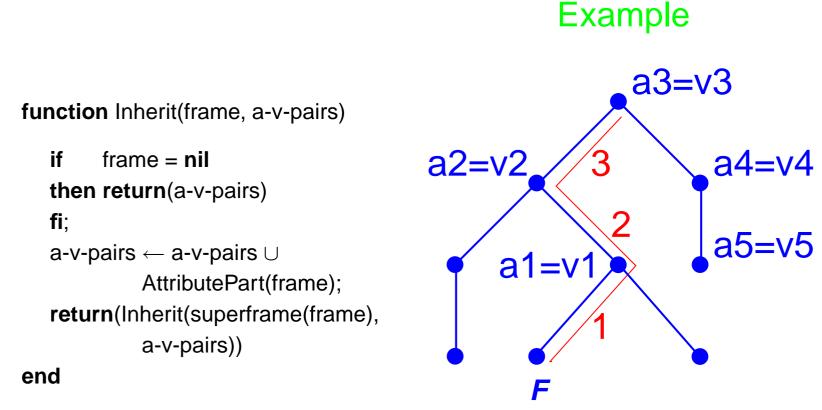
Two types of inheritance:

- 1. single: tree-shaped taxonomy
- 2. multiple: general graph-shaped taxonomy (loops)



Single inheritance

Requirement: unique attribute names



F inherits $a_1 = v_1, a_2 = v_2$ en $a_3 = v_3$

Exceptions

Non-unique attribute names \Rightarrow exceptions / inconsistency

Example

class artery is instance-of artery; superclass vessel; blood = oxygenrich instance pulmonary-a is
 instance-of artery;
 blood = oxygenpoor
end

end

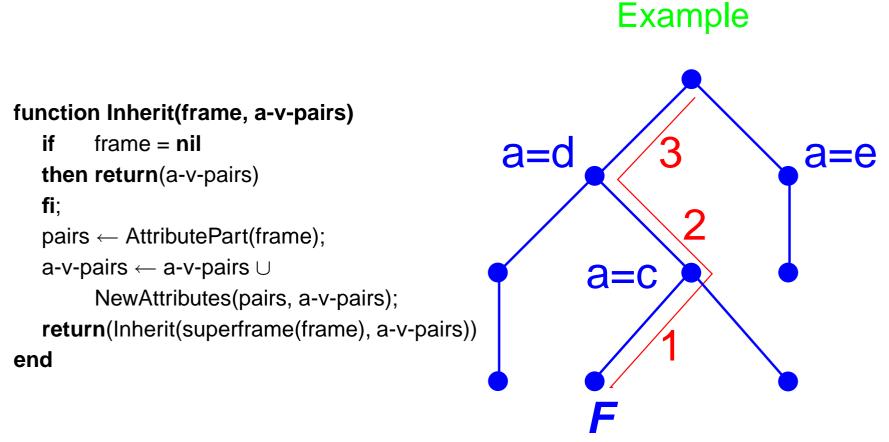
 $\forall x(\operatorname{artery}(x) \rightarrow \operatorname{vessel}(x))$ $\forall x(\operatorname{artery}(x) \rightarrow \operatorname{blood}(x) = \operatorname{oxygenrich})$ $\operatorname{artery}(\operatorname{pulmonary-a})$ $\operatorname{blood}(\operatorname{pulmonary-a}) = \operatorname{oxygenpoor}$

Logically inconsistent!

Solution: local 'overwriting'

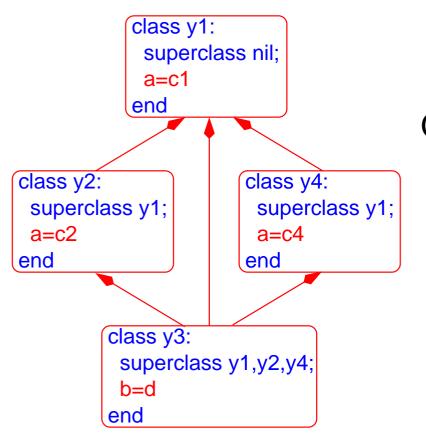
Single inheritance with exceptions

Search the taxonomy until a value is found:



F inherits a = c

Multiple inheritance with exceptions



Questions:

- 1. Taxonomy consistent?
- 2. If yes, what are the inherited values for attribute a vof y_3 ?

Requirement: solution must work for both: graph and tree shaped taxonomies!

Monotonic reasoning

- Inheritance with exceptions example of non-monotonic reasoning
- Monotonic reasoning:
 - knowledge base KB
 - add knowledge to KB and obtain new knowledge base KB'
 - If KB ⊢ Results and KB' ⊢ Results' then Results ⊆ Results'
 - more knowledge yields more results
- Example:

 $\mathsf{KB} = \{ P \to Q \}$ Results = KB

$$\mathsf{KB}' = \{P \to Q, P\}$$

$$\mathsf{Results}' = \mathsf{KB}' \cup \{Q\} = \mathsf{KB} \cup \{P, Q\}$$

Non-monotonic reasoning

- Non-monotonic reasoning is more close related to human reasoning
 - knowledge base KB
 - add knowledge to KB and obtain new knowledge base KB'
 - if KB ⊢ Results and KB' ⊢ Results' then
 Results ⊆ Results' does not hold in general
 - more knowledge does not necessarily yield more results
- Example (\vdash is non-monotonic):

 $\{artery(left-pulmonary-artery), \\ blood(left-pulmonary-artery) = oxygen-poor, \\ \forall x(artery(x) \rightarrow blood(x) = oxygen-rich) \} \\ \sim blood(left-pulmonary-artery) = oxygen-poor$