Outline

- Why probabilistic logic?
- Abduction as an underlying framework
- Abduction by logic programming
- Relationship between graphical models and probabilistic logic
- Research topics

Why Relational + Probabilistic

- Structure, but also uncertainty
- Medical diagnosis, pedigrees, etc.
- Social network structures, citation analysis, etc.

Representations

- We have see generalisations of propositional logic:

Talented \wedge GoodTeacher \rightarrow PassCourse

Extensions in different directions:

1. How to incorporate uncertainty?

- Rule-based uncertainty (1970's and 1980's)

Talented \wedge GoodTeacher $\xrightarrow{\mathrm{CF}_{=0.9}}$ PassCourse

- Bayesian networks (1990's - now)

2. How to incorporate relations?

- First-order logic as a general language

Bayesian networks

$$
\begin{aligned}
& P(p \mid t, g)=0.9 \\
& P(p \mid \neg t, g)=0.5 \\
& P(p \mid t, \neg g)=0.7 \\
& P(p \mid \neg t, \neg g)=0.1 \\
& P(g)=0.6 \\
& P(t)=0.9
\end{aligned}
$$

$$
P(P, S, T)=P(P \mid S, T) P(S) P(T)
$$

Allows computing arbitrary probabilities:

$$
\begin{aligned}
P(p \mid t, g) & =0.9 \\
P(p \mid t) & =\ldots \\
P(t \mid p) & =\ldots
\end{aligned}
$$

First-order logic

First-order logic allows modelling relations; consider this formula φ :

$$
\begin{equation*}
\forall s \text { Talented }(s) \wedge \text { GoodTeacher } \rightarrow \text { PassCourse }(s) \tag{1}
\end{equation*}
$$

Example reasoning (first-order, abductive):

- If John does not pass the course, then (obviously) it is because of the teachers

$$
\{\varphi, \forall s \text { Talented }(s), \neg \text { PassCourse }(J)\} \models \neg \text { GoodTeacher }
$$

- This might be bad news for Mary, because now there is no hypothesis H such that:
$\{\varphi, \forall s$ Talented $(s), \neg$ PassCourse $(J), H\} \models$ PassCourse (M)

Probability and First-Order Domains

- FOL can talk about constants and relations
- Propositional/BN only about fixed settings
- So, FOL really opens up new possibilities for representing, reasoning and learning, but...
- We have seen before (with CF) that naive combinations of logic and probability need to be approached with care
- A key general issue: what does it mean to say:
- $\mathrm{P}($ Some randomly chosen bird can fly) ≥ 0.8
- $P($ Tweety can fly) ≥ 0.8 (Tweety is a particular bird)
- Halpern (1990): type-1 and type-2 probability

Probabilistic relational reasoning

- First-order logic: good for relational reasoning in various ways about classes of objects
- Probabilistic graphical models such as Bayesian networks are good for reasoning with uncertainty
\Rightarrow Is there no way to combine them?
Solutions for:
- Probability that all students are talented
- Probability that Mary will pass the course, given the observations about John

Many combinations

- Hot topic in AI, many approaches since end of the nineties
- Start from logic programming: KBMC, SLP, PRISM, LPAD, ICL, CPLogic, SCFG, etc.
- Start from probabilistic graphical models: BLP, BLN, SRM, RMM, MLN, RDN, etc.

Probabilistic programming languages starting to appear

- Imperative-Functional: infer.net, Church, Factorie, Scala, etc.
- Horn-Logic and Prolog: PRISM, ProbLog, ICL, Dyna, etc.

Lessons learned

Consider:

- if $P(a)=0.3$ and $P(b)=0.6$, what is $P(a \wedge b)$?
- if $P(a)=0.3$ and $P(b)=0.6$, what is $P(a \vee b)$?
- if $P(h \mid e)=0.3$ and $P\left(h \mid e^{\prime}\right)=0.3$, what is $P\left(h \mid e, e^{\prime}\right)$?

Probabilistic reasoning

X_{1}

y / n | X_{2} | |
| :--- | :--- |
| y / n | $P\left(x_{4} \mid x_{3}\right)=0.4$ |
| | $P\left(x_{4} \mid \neg x_{3}\right)=0.1$ |
| | $P\left(x_{3} \mid x_{1}, x_{2}\right)=0.3$ |
| X_{3} | $P\left(x_{3} \mid \neg x_{1}, x_{2}\right)=0.5$ |
| y / n | $P\left(x_{3} \mid x_{1}, \neg x_{2}\right)=0.7$ |
| 1 | $P\left(x_{3} \mid \neg x_{1}, \neg x_{2}\right)=0.9$ |
| X_{4} | $P\left(x_{1}\right)=0.6$ |
| y / n | $P\left(x_{2}\right)=0.2$ |

$$
P\left(x_{3}\right)=\sum_{X_{1}, X_{2}} P\left(x_{3} \mid X_{1}, X_{2}\right) P\left(X_{1}\right) P\left(X_{2}\right)
$$

probabilistic reasoning = abduction?

Recall: abductive explanations

- Causal specification: $\Sigma=(\Delta, \Phi, \mathcal{R})$, met:
- Δ : potential causes and incompleteness assumptions (assumables)
- Φ : facts that can be observed
- \mathcal{R} : causal model
- Explanations (prediction) $E \subseteq \Delta$: $\mathcal{R} \cup E \vDash F$
- Let $\mathcal{E}(F)$ be the set of all explanations of F

Example explanations

Causal specification: $\Sigma=(\Delta, \Phi, \mathcal{R})$

- Example 1: $\mathcal{R} \cup\left\{f l u, \alpha_{1}\right\} \vDash$ chills \wedge thirst
- Example 2: $\mathcal{R} \cup\left\{f l u, \alpha_{1}, \alpha_{2}\right\} \vDash$ chills \wedge thirst

The set of all explanations for chills and thirst contains:

$$
\begin{aligned}
\mathcal{E}(\text { chills } \wedge \text { thirst })= & \left\{\left\{\text { flu }, \alpha_{1}\right\},\left\{\text { flu }, \alpha_{1}, \alpha_{2}\right\},\right. \\
& \left.\left\{f l u, \alpha_{1}, \text { sport }\right\},\left\{\text { flu }, \alpha_{1}, \text { sport }, \alpha_{2}\right\}\right\}
\end{aligned}
$$

Closed world assumption

Closed world assumption: F is only true if and only if one of its explanations is true:

$$
F=\bigvee_{E_{i} \in \mathcal{E}(F)} E_{i}
$$

e.g: chills \wedge thirst $=\left(f l u \wedge \alpha_{1}\right) \vee\left(f l u \wedge \alpha_{1} \wedge \alpha_{2}\right)$

$$
\vee\left(\text { flu } \wedge \alpha_{1} \wedge \text { sport }\right) \vee\left(\text { flu } \wedge \alpha_{1} \wedge \text { sport } \wedge \alpha_{2}\right)
$$

Idea for adding probabilities

Suppose we have a probability distribution over Δ, i.e., $P(\Delta)$, then we can compute $P(F)$, because:

$$
P(F)=P\left(\bigvee_{E_{i} \in \mathcal{E}(F)} E_{i}\right)
$$

$$
\begin{aligned}
P(\text { chills } \wedge \text { thirst })= & P\left(\left(\text { flu } \wedge \alpha_{1}\right) \vee\left(\text { flu } \wedge \alpha_{1} \wedge \alpha_{2}\right)\right. \\
& \left.\vee\left(\text { flu } \wedge \alpha_{1} \wedge \text { sport }\right) \vee\left(\text { flu } \wedge \alpha_{1} \wedge \text { sport } \wedge \alpha_{2}\right)\right)
\end{aligned}
$$

Sufficiency of minimal explanations

Definition. A minimal explanation E for F is an explanation E for F s.t. there is no $E^{\prime} \subset E$ where E^{\prime} is an explanation for F.

Theorem. Let $\mathcal{E}_{m}(F)$ be the set of all minimal explanations for F. Then:

$$
F=\bigvee_{E_{i} \in \mathcal{E}_{m}(F)} E_{i}
$$

Proof (sketch). Note that if $E_{i} \in \mathcal{E}_{m}(F)$ and $E_{j} \supset E_{i}$, then:

$$
E_{i} \vee E_{j}=E_{i}
$$

Proof by induction on the number of non-minimal explanations

Minimal explanations: example

$$
\begin{aligned}
\text { chills } \wedge \text { thirst } & =\left(\text { flu } \wedge \alpha_{1}\right) \vee\left(\text { flu } \wedge \alpha_{1} \wedge \text { sport }\right) \vee \cdots \\
& =\text { flu } \wedge \alpha_{1}
\end{aligned}
$$

Recall that this is the solution formula S for F : the most specific formula consisting only of abducible literals, such that

$$
\operatorname{comp}[\mathcal{R} ; N] \cup F \models S
$$

Defining a probability distribution

- We assume a very simple distribution consisting of a set of independent random variables
- Partition $V \subseteq \Delta$ is associated to a random variable X_{V} where V is the domain of X

Example:
$P(X=$ sport $)=0.3$
$P(X=f l u)=0.1$
$P(X=$ not_sport_or_flu $)=0.6$
$P\left(Y=\alpha_{1}\right)=0.9$
$P\left(Y=\right.$ other $\left._{1}\right)=0.1$
$P\left(Z=\alpha_{2}\right)=0.7$
$P\left(Z=\right.$ other $\left._{2}\right)=0.3$

Example

$$
\begin{aligned}
P(\text { myalgia }) & =P\left(\left(\text { flu } \wedge \alpha_{2}\right) \vee \text { sport }\right) \\
& =P\left(\text { flu } \wedge \alpha_{2}\right)+P(\text { sport }) \\
& =P(\text { flu }) P\left(\alpha_{2}\right)+P(\text { sport }) \\
& =0.1 \cdot 0.7+0.3=0.37
\end{aligned}
$$

Problem: how to obtain the minimal explanations?

Recall: logic programming

- A substitution θ is a finite set of the form $\theta=\left\{t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right\}$, with x_{i} a variabele and t_{i} a term; $x_{i} \neq t_{i}$ and $x_{i} \neq x_{j}, i \neq j$
- A grounded expression does not contain variables
- A substitution θ is called a unifier of E and E^{\prime} if $E \theta=E^{\prime} \theta ; E$ and E^{\prime} are then called unifiable
- SLD resolution (for Horn clauses):

$$
\frac{\leftarrow\left(B_{1}, \ldots, B_{n}\right) \theta, \quad\left(B_{i} \leftarrow A_{1}, \ldots, A_{m}\right) \theta}{\leftarrow\left(B_{1}, \ldots, B_{i-1}, A_{1}, \ldots, A_{m}, B_{i+1}, \ldots, B_{n}\right) \theta}
$$

such that B_{i} unifies given substitution θ
SLD derivation = backward reasoning + unification

Explanations: by resolution

Given the following specification:

$$
\begin{array}{l|l}
\hline \text { chills } \leftarrow \text { fever } & \text { sport }: 0.3, \text { flu }: 0.1 \\
\text { thirst } \leftarrow \text { fever } & \alpha_{1}: 0.9 \\
\text { fever } \leftarrow \text { flu } & \alpha_{2}: 0.7 \\
\text { myalgia } \leftarrow \text { flu } & \\
\text { myalgia } \leftarrow \text { sport } & \\
\hline
\end{array}
$$

Suppose $F=$ myalgia:

Explanations: by resolution

Given the following specification:

$$
\begin{array}{l|l}
\hline \text { chills } \leftarrow \text { fever } & \text { sport }: 0.3, \text { flu }: 0.1 \\
\text { thirst } \leftarrow \text { fever } & \alpha_{1}: 0.9 \\
\text { fever } \leftarrow \text { flu } & \alpha_{2}: 0.7 \\
\text { myalgia } \leftarrow \text { flu } & \\
\text { myalgia } \leftarrow \text { sport } & \\
\hline
\end{array}
$$

Suppose $F=$ myalgia:

The AILog system

```
prob flu : 0.1, sport : 0.3, dummy : 0.6.
prob a1 : 0.9.
prob a2 : 0.7.
chills <- fever & al.
fever <- flu.
thirst <- fever.
myalgia <- flu & a2.
myalgia <- sport.
```


gives:

```
ailog: predict myalgia.
```

Answer: P(myalgia|Obs)=0.37.
[ok,more, explanations, worlds,help]: explanations.
0: ass([], [a2,flu],0.06999999999999999)
1: ass([],[sport],0.3)

The first-order case

- Explanations are sets of ground assumables
- In particular: ground assumables used in an SLD proof
- A declaration:

$$
a_{1}: p, a_{2}: p_{2}, \ldots, a_{n}: p_{n}
$$

now defines a random variable X_{i} for every grounding of a_{1}, \ldots, a_{n} such that $P\left(X_{i}=a_{j} \theta_{i}\right)=p_{j}$

Example:
$\operatorname{Flu}(p): 0.1, \operatorname{Sport}(p): 0.3, \operatorname{Other}(p): 0.6$
implies e.g. $F / u($ Arjen $)=0.1$

First-order inference: example

Given is:
PassCourse $(s) \leftarrow \alpha(s)$, GoodTeacher
GoodTeacher: 0.7
$\alpha(s): 0.9$
What is $P($ PassCourse $(M))$?
\leftarrow PassCourse $(M) \quad$ PassCourse $(s) \leftarrow \alpha(s)$, GoodTeacher
$\leftarrow \alpha(M)$, GoodTeacher
$\alpha(s): 0.9$
\leftarrow GoodTeacher
$P($ PassCourse $(M))=P(\alpha(M) \wedge$ GoodTeacher $)=0.63$

Conditional probabilities

By the definition of conditional probability:

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}=\frac{P\left(\bigvee_{E_{i} \in \mathcal{E}_{m}(A \wedge B)} E_{i}\right)}{P\left(\bigvee_{E_{i} \in \mathcal{E}_{m}(B)} E_{i}\right)}
$$

Example:

$$
\begin{gathered}
\mathcal{E}_{m}(\text { PassCourse }(J))=\{\{\text { GoodTeacher, } \alpha(J)\}\} \\
\mathcal{E}_{m}(\text { PassCourse }(M) \wedge \text { PassCourse }(J) \\
=\{\{\operatorname{GoodTeacher,~} \alpha(J), \alpha(M)\}\} \\
\begin{aligned}
P(P C(M) \mid P C(J)) & =\frac{P(\text { GoodTeacher }) \cdot P(\alpha(J)) \cdot P(\alpha(M))}{P(\text { GoodTeacher }) \cdot P(\alpha(J))} \\
& =P(\alpha(M))=0.9
\end{aligned}
\end{gathered}
$$

Expressiveness

- Every Bayesian network can be translated to probabilistic logic (Assignment 2)
- Intuition: each variable given its parent in the graph becomes an implication
- Every ground probabilistic program can be converted into a Bayesian network
- What happens to multiple rules with the same head?
- Every non-ground probabilistic program can be seen as a template for a Bayesian network:

$$
A(x) \leftarrow \alpha(x), B(x)
$$

can be seen as a piece of Bayesian network for every instantiation for x

Recall: causal independence

$$
\begin{aligned}
P\left(e \mid C_{1}, \ldots, C_{n}\right) & =\sum_{I_{1}, \ldots, I_{n}} P\left(e \mid I_{1}, \ldots, I_{n}\right) \prod_{k=1}^{n} P\left(I_{k} \mid C_{k}\right) \\
& =\sum_{b\left(I_{1}, \ldots, I_{n}\right)=e} \prod_{k=1}^{n} P\left(I_{k} \mid C_{k}\right)
\end{aligned}
$$

Boolean functions: $P\left(E \mid I_{1}, \ldots, I_{n}\right) \in\{0,1\}$ with
$b\left(I_{1}, \ldots, I_{n}\right)=1$ if $P\left(e \mid I_{1}, \ldots, I_{n}\right)=1$

Noisy-OR model

Example: suppose we have an OR model and two (true) causes, it follows:

$$
\begin{aligned}
P\left(e \mid c_{1}, c_{2}\right) & =P\left(i_{1} \mid c_{1}\right) P\left(\neg i_{2} \mid c_{2}\right)+P\left(i_{1} \mid c_{1}\right) P\left(\neg i_{2} \mid c_{2}\right) \\
& +P\left(i_{1} \mid c_{1}\right) P\left(i_{2} \mid c_{2}\right)
\end{aligned}
$$

Compare: $\mathcal{R}=\{E(x) \leftarrow \alpha(x, k, y), C(k, y)\}$ with $\alpha(x, k, y)$ and $C(k, y)$ assumables

Noisy-OR model (2)

$$
\begin{aligned}
P(E(t) \mid & \left.C_{1}(t), C_{2}(t)\right) \\
= & \frac{P\left(\mathcal{E}\left(E(t), C_{1}(t), C_{2}(t)\right)\right)}{P\left(\mathcal{E}\left(C_{1}(t), C_{2}(t)\right)\right)} \\
= & \frac{P\left(\left(\alpha(t, 1, t) \wedge C_{1}(t) \wedge C_{2}(t)\right) \vee\left(\alpha(t, 2, t) \wedge C_{1}(t) \wedge C_{2}(t)\right)\right)}{P\left(C_{1}(t) \wedge C_{2}(t)\right)} \\
= & \frac{P\left(C_{1}(t) \wedge C_{2}(t) \wedge(\alpha(t, 1, t) \vee \alpha(t, 2, t))\right)}{P\left(C_{1}(t) \wedge C_{2}(t)\right)} \\
= & P(\alpha(t, 1, t) \vee \alpha(t, 2, t)) \\
= & P(\alpha(t, 1, t) \wedge \alpha(t, 2, t))+P(\alpha(t, 1, t) \wedge \alpha(f, 2, t))+ \\
& P(\alpha(f, 1, t) \wedge \alpha(t, 2, t)) \\
= & P(\alpha(t, 1, t)) P(\alpha(t, 2, t))+P(\alpha(t, 1, t)) P(\alpha(f, 2, t))+ \\
& P(\alpha(f, 1, t)) P(\alpha(t, 2, t))
\end{aligned}
$$

Goal: Probabilistic Logic Learning

Example: Markov Logic Networks

- Specify undirected models (Markov networks) with the use of first-order logic
- An interface layer for Al (Domingos)
- Syntax: weighted first-order formulas
- Semantics: feature templates for Markov networks
- Intuition: soften logical constraints
- Each formula has a weight
- Higher weights mean stronger constraints
- P (world) $\exp ($ sum weights of formulas it satisfies)

Example: Markov Logic Networks(2)

| 1.5 | $\forall x$ MentionOf $(x$, Obama $) \Rightarrow \operatorname{Head}(x$, "Obama" $)$ |
| :--- | :--- | :--- |
| 0.8 | $\forall x \operatorname{MentionOf}(x, \operatorname{Obama}) \Rightarrow \operatorname{Head}(x$, "President" $)$ |
| 100 | $\forall x, y, c \operatorname{Apposition}(x, y) \wedge \operatorname{MentionOf}(x, c) \Rightarrow \operatorname{MentionOf}(y, c)$ |

Two mention constants: A and B

Example: ProbLog

- Probabilistic Prolog (Problog) at KU Leuven
- Probabilistic programming language (extends YAP Prolog, as opposed to meta-interpreter such as AILog)
- Supports probabilistic inference/learning in Prolog
- Fast and Free at http://dtai.cs.kuleuven.be/problog/
- Standard clauses: $\operatorname{path}(X, Y, A):-X \neq Y$, edge (X, Y), etc.
- Probabilistic facts: 0.9 :: edge(y, 1, 2)
- Syntactic sugar: 0.3 :: fall $(X) \vee 0.7:: \operatorname{stay}(X) \leftarrow$ manipulate (X)
- Basically extends standard Prolog queries like ? $-q(X)$. and ? $-\operatorname{mother}(\mathrm{a}, \mathrm{Y})$ to $?-\operatorname{prob}(\mathrm{q}(\mathrm{X}))$. and ? $-\operatorname{prob}(\operatorname{mother}(\mathrm{a}, \mathrm{Y}))$

Research topics

- Efficient inference: given the explanations, it is not so easy to compute the probability, e.g., consider this:

$$
P(a \vee b \vee c)=P(a)+P(a \wedge \neg b)+P(a \wedge \neg b \wedge \neg c)
$$

- Semantical questions such as dealing with hard constraints. Recall that in abduction we have nogoods,
false <- chills
What does this mean for the probability distribution?
And would it possible to add soft constraints?
- Learning clauses and parameters from data
- Application oriented: many application fields are both relational as well as probabilistic

