
Outline

Why probabilistic logic?

Abduction as an underlying framework

Abduction by logic programming

Relationship between graphical models and
probabilistic logic

Research topics
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Why Relational + Probabilistic

Structure, but also uncertainty

Medical diagnosis, pedigrees, etc.

Social network structures, citation analysis, etc.
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Representations

We have see generalisations of propositional logic:

Talented ∧GoodTeacher→ PassCourse

Extensions in different directions:

1. How to incorporate uncertainty?
Rule-based uncertainty (1970’s and 1980’s)

Talented ∧GoodTeacher CF=0.9
−−−−−→ PassCourse

Bayesian networks (1990’s – now)

2. How to incorporate relations?
First-order logic as a general language
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Bayesian networks

P

T G
P (p | t, g) = 0.9
P (p | ¬t, g) = 0.5
P (p | t,¬g) = 0.7
P (p | ¬t,¬g) = 0.1
P (g) = 0.6
P (t) = 0.9

P (P, S, T ) = P (P | S, T )P (S)P (T )

Allows computing arbitrary probabilities:

P (p | t, g) = 0.9

P (p | t) = ...

P (t | p) = ...
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First-order logic

First-order logic allows modelling relations; consider this
formula ϕ:

∀sTalented(s) ∧GoodTeacher→ PassCourse(s) (1)

Example reasoning (first-order, abductive):

If John does not pass the course, then (obviously) it is
because of the teachers

{ϕ,∀sTalented(s),¬PassCourse(J)} |= ¬GoodTeacher

This might be bad news for Mary, because now there is
no hypothesis H such that:

{ϕ,∀sTalented(s),¬PassCourse(J), H} |= PassCourse(M)
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Probability and First-Order Domains

FOL can talk about constants and relations

Propositional/BN only about fixed settings

So, FOL really opens up new possibilities for
representing, reasoning and learning, but...

We have seen before (with CF) that naive combinations
of logic and probability need to be approached with care

A key general issue: what does it mean to say:
P(Some randomly chosen bird can fly) ≥ 0.8

P(Tweety can fly) ≥ 0.8 (Tweety is a particular bird)

Halpern (1990): type-1 and type-2 probability
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Probabilistic relational reasoning

First-order logic: good for relational reasoning in
various ways about classes of objects

Probabilistic graphical models such as Bayesian
networks are good for reasoning with uncertainty

⇒ Is there no way to combine them?

Solutions for:

Probability that all students are talented

Probability that Mary will pass the course, given the
observations about John
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Many combinations

Hot topic in AI, many approaches since end of the
nineties

Start from logic programming: KBMC, SLP, PRISM,
LPAD, ICL, CPLogic, SCFG, etc.

Start from probabilistic graphical models: BLP, BLN,
SRM, RMM, MLN, RDN, etc.

Probabilistic programming languages starting to appear

Imperative-Functional: infer.net, Church, Factorie,
Scala, etc.

Horn-Logic and Prolog: PRISM, ProbLog, ICL, Dyna,
etc.
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Lessons learned

Consider:

if P (a) = 0.3 and P (b) = 0.6, what is P (a ∧ b)?

if P (a) = 0.3 and P (b) = 0.6, what is P (a ∨ b)?

if P (h | e) = 0.3 and P (h | e′) = 0.3, what is P (h | e, e′)?
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Probabilistic reasoning

X3

y/n

X1

y/n
X2

y/n

X4

y/n

P (x4 | x3) = 0.4
P (x4 | ¬x3) = 0.1
P (x3 | x1, x2) = 0.3
P (x3 | ¬x1, x2) = 0.5
P (x3 | x1,¬x2) = 0.7
P (x3 | ¬x1,¬x2) = 0.9
P (x1) = 0.6
P (x2) = 0.2

P (x3) =
∑

X1,X2

P (x3 | X1, X2)P (X1)P (X2)

probabilistic reasoning = abduction?
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Recall: abductive explanations

feverflu chills

thirst

myalgiasport

α1

α2

Causal specification: Σ = (∆,Φ,R), met:
∆: potential causes and incompleteness
assumptions (assumables)
Φ: facts that can be observed
R: causal model

Explanations (prediction) E ⊆ ∆: R∪ E � F

Let E(F ) be the set of all explanations of F
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Example explanations

feverflu chills

thirst

myalgiasport

α1

α2

Causal specification: Σ = (∆,Φ,R)

Example 1: R ∪ {flu, α1} � chills ∧ thirst

Example 2: R ∪ {flu, α1, α2} � chills ∧ thirst

The set of all explanations for chills and thirst contains:

E(chills ∧ thirst) = {{flu, α1}, {flu, α1, α2},

{flu, α1, sport}, {flu, α1, sport, α2}}
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Closed world assumption

feverflu chills

thirst

myalgiasport

α1

α2

Closed world assumption: F is only true if and only if one of
its explanations is true:

F =
∨

Ei∈E(F )

Ei

e.g: chills ∧ thirst = (flu ∧ α1) ∨ (flu ∧ α1 ∧ α2)

∨(flu ∧ α1 ∧ sport) ∨ (flu ∧ α1 ∧ sport ∧ α2)
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Idea for adding probabilities

feverflu chills

thirst

myalgiasport

α1

α2

Suppose we have a probability distribution over ∆, i.e.,
P (∆), then we can compute P (F ), because:

P (F ) = P (
∨

Ei∈E(F )Ei)

P (chills ∧ thirst) = P ((flu ∧ α1) ∨ (flu ∧ α1 ∧ α2)

∨(flu ∧ α1 ∧ sport) ∨ (flu ∧ α1 ∧ sport ∧ α2))
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Sufficiency of minimal explanations

Definition. A minimal explanation E for F is an explanation
E for F s.t. there is no E′ ⊂ E where E′ is an explanation
for F .

Theorem. Let Em(F ) be the set of all minimal explanations
for F . Then:

F =
∨

Ei∈Em(F )

Ei

Proof (sketch). Note that if Ei ∈ Em(F ) and Ej ⊃ Ei, then:

Ei ∨ Ej = Ei

Proof by induction on the number of non-minimal
explanations
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Minimal explanations: example

feverflu chills

thirst

myalgiasport

α1

α2

chills ∧ thirst = (flu ∧ α1) ∨ (flu ∧ α1 ∧ sport) ∨ · · ·

= flu ∧ α1

Recall that this is the solution formula S for F : the most
specific formula consisting only of abducible literals, such
that

COMP[R;N ] ∪ F |= S
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Defining a probability distribution

We assume a very simple distribution consisting of a
set of independent random variables

Partition V ⊆ ∆ is associated to a random variable XV

where V is the domain of X

Example:
P (X = sport) = 0.3 (Assumption: sport and flu
P (X = flu) = 0.1 are mutually exclusive)
P (X = not_sport_or_flu) = 0.6

P (Y = α1) = 0.9

P (Y = other1) = 0.1

P (Z = α2) = 0.7

P (Z = other2) = 0.3
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Example

feverflu chills

thirst

myalgiasport

α1

α2

P (myalgia) = P ((flu ∧ α2) ∨ sport)

= P (flu ∧ α2) + P (sport)

= P (flu)P (α2) + P (sport)

= 0.1 · 0.7 + 0.3 = 0.37

Problem: how to obtain the minimal explanations?
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Recall: logic programming

A substitution θ is a finite set of the form
θ = {t1/x1, . . . , tn/xn}, with xi a variabele and ti a term;
xi 6= ti and xi 6= xj, i 6= j

A grounded expression does not contain variables

A substitution θ is called a unifier of E and E′ if
Eθ = E′θ; E and E′ are then called unifiable

SLD resolution (for Horn clauses):

← (B1, . . . , Bn)θ, (Bi ← A1, . . . , Am)θ

← (B1, . . . , Bi−1, A1, . . . , Am, Bi+1, . . . , Bn)θ

such that Bi unifies given substitution θ

SLD derivation = backward reasoning + unification
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Explanations: by resolution

Given the following specification:

chills← fever sport : 0.3, flu : 0.1

thirst← fever α1 : 0.9

fever← flu α2 : 0.7

myalgia← flu
myalgia← sport

Suppose F = myalgia:

← myalgia myalgia← sport
← sport sport : 0.3

�
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Explanations: by resolution

Given the following specification:

chills← fever sport : 0.3, flu : 0.1

thirst← fever α1 : 0.9

fever← flu α2 : 0.7

myalgia← flu
myalgia← sport

Suppose F = myalgia:

← myalgia myalgia← flu, α2

← flu, α2 flu : 0.1

← α2 α2 : 0.7

�
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The AILog system

prob flu : 0.1, sport : 0.3, dummy : 0.6.

prob a1 : 0.9.

prob a2 : 0.7.

chills <- fever & a1.

fever <- flu.

thirst <- fever.

myalgia <- flu & a2.

myalgia <- sport.

gives:

ailog: predict myalgia.

Answer: P(myalgia|Obs)=0.37.

[ok,more,explanations,worlds,help]: explanations.

0: ass([],[a2,flu],0.06999999999999999)

1: ass([],[sport],0.3)
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The first-order case

Explanations are sets of ground assumables

In particular: ground assumables used in an SLD proof

A declaration:

a1 : p, a2 : p2, . . . , an : pn

now defines a random variable Xi for every grounding
of a1, . . . , an such that P (Xi = ajθi) = pj

Example:

Flu(p) : 0.1,Sport(p) : 0.3,Other(p) : 0.6

implies e.g. Flu(Arjen) = 0.1
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First-order inference: example

Given is:

PassCourse(s)← α(s),GoodTeacher

GoodTeacher : 0.7

α(s) : 0.9

What is P (PassCourse(M))?

← PassCourse(M) PassCourse(s)← α(s),GoodTeacher

← α(M),GoodTeacher α(s) : 0.9

← GoodTeacher GoodTeacher : 0.7

�

P (PassCourse(M)) = P (α(M) ∧GoodTeacher) = 0.63
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Conditional probabilities

By the definition of conditional probability:

P (A | B) =
P (A ∧ B)

P (B)
=

P (
∨

Ei∈Em(A∧B)Ei)

P (
∨

Ei∈Em(B)Ei)

Example:

Em(PassCourse(J)) = {{GoodTeacher, α(J)}}
Em(PassCourse(M) ∧ PassCourse(J)

= {{GoodTeacher, α(J), α(M)}}

P (PC(M) | PC(J)) = P (GoodTeacher)·P (α(J))·P (α(M))
P (GoodTeacher)·P (α(J))

= P (α(M)) = 0.9
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Expressiveness

Every Bayesian network can be translated to
probabilistic logic (Assignment 2)

Intuition: each variable given its parent in the graph
becomes an implication

Every ground probabilistic program can be converted
into a Bayesian network

What happens to multiple rules with the same head?

Every non-ground probabilistic program can be seen as
a template for a Bayesian network:

A(x)← α(x), B(x)

can be seen as a piece of Bayesian network for every
instantiation for x
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Recall: causal independence

C1 C2 . . . Cn

I1 I2 . . . In

E b

P (e | C1, . . . , Cn) =
∑

I1,...,In

P (e | I1, . . . , In)

n∏

k=1

P (Ik | Ck)

=
∑

b(I1,...,In)=e

n∏

k=1

P (Ik | Ck)

Boolean functions: P (E | I1, . . . , In) ∈ {0, 1} with
b(I1, . . . , In) = 1 if P (e | I1, . . . , In) = 1
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Noisy-OR model

C1 C2

I1 I2

EOR

Example: suppose we have an OR model and two (true)
causes, it follows:

P (e | c1, c2) = P (i1 | c1)P (¬i2 | c2) + P (i1 | c1)P (¬i2 | c2)

+ P (i1 | c1)P (i2 | c2)

Compare: R = {E(x)← α(x, k, y), C(k, y)} with α(x, k, y)
and C(k, y) assumables
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Noisy-OR model (2)

P (E(t) | C1(t), C2(t))

= P (E(E(t),C1(t),C2(t)))
P (E(C1(t),C2(t)))

= P ((α(t,1,t)∧C1(t)∧C2(t))∨(α(t,2,t)∧C1(t)∧C2(t)))
P (C1(t)∧C2(t))

= P (C1(t)∧C2(t)∧(α(t,1,t)∨α(t,2,t)))
P (C1(t)∧C2(t))

= P (α(t, 1, t) ∨ α(t, 2, t))

= P (α(t, 1, t) ∧ α(t, 2, t)) + P (α(t, 1, t) ∧ α(f, 2, t))+

P (α(f, 1, t) ∧ α(t, 2, t))

= P (α(t, 1, t))P (α(t, 2, t)) + P (α(t, 1, t))P (α(f, 2, t))+

P (α(f, 1, t))P (α(t, 2, t))
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Goal: Probabilistic Logic Learning

Learning

Probability Logic
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Example: Markov Logic Networks

Specify undirected models (Markov networks) with the
use of first-order logic

An interface layer for AI (Domingos)

Syntax: weighted first-order formulas

Semantics: feature templates for Markov networks

Intuition: soften logical constraints
Each formula has a weight
Higher weights mean stronger constraints
P(world) exp(sum weights of formulas it satisfies)
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Example: Markov Logic Networks(2)
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Example: ProbLog

Probabilistic Prolog (Problog) at KU Leuven

Probabilistic programming language (extends YAP
Prolog, as opposed to meta-interpreter such as AILog)

Supports probabilistic inference/learning in Prolog

Fast and Free at http://dtai.cs.kuleuven.be/problog/

Standard clauses: path(X, Y, A) : −X 6= Y, edge(X, Y), etc.

Probabilistic facts: 0.9 :: edge(y, 1, 2)

Syntactic sugar:
0.3 :: fall(X) ∨ 0.7 :: stay(X)← manipulate(X)

Basically extends standard Prolog queries like ?− q(X).
and ?− mother(a, Y) to ?− prob(q(X)). and
?− prob(mother(a, Y))
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Research topics

Efficient inference: given the explanations, it is not so
easy to compute the probability, e.g., consider this:

P (a ∨ b ∨ c) = P (a) + P (a ∧ ¬b) + P (a ∧ ¬b ∧ ¬c)

Semantical questions such as dealing with hard
constraints. Recall that in abduction we have nogoods,

false <- chills

What does this mean for the probability distribution?
And would it possible to add soft constraints?

Learning clauses and parameters from data

Application oriented: many application fields are both
relational as well as probabilistic
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