AI Knowledge representation

- Core distinction between:
 - Declarative representation (WHAT)
 - All birds can fly
 - Ducks are birds
 - Penguins are birds, but cannot fly
 - Etc

Inference (HOW to compute)

- Pengi is a penguin
- Pengi is a bird
- Can Pengi fly?

KR general intelligence

Propositional vs. Relational

Finite worlds \leftrightarrow probabilistic graphical model, but

– Random variable for all ground relations, e.g.

on_a_b=1

- Need to order all objects and relations

– No generalization over objects

Number of model parameters grows exponentially fast (in #objects and #relations) even if there is considerable structure

Again: Learning and representation (AIPSML)

Figure 1.6: Data structures for FREGE. a) A state and a set of applicable actions. b) Part of the transition model (T).

States are described by objects and relations; powerful representations and learning algorithms need to support that (~Prolog-like)

An Logical Machine Learning Classic

5

An Logical (Machine Learning) Classic

6

Relational Representation

Example:

eastbound(t1).

Background theory:

car(t1,c1). rectangle(c1). short(c1). none(c1). two wheels(c1). load(c1,11). circle(11). one load(11). one load(12). three loads(14).

car(t1,c2). rectangle(c2). long(c2). none(c2). three_wheels(c2). load(c2, 12).hexagon(12).

car(t1, c3). rectangle(c3). short(c3). peaked(c3). two_wheels(c3). load(c3, 13). triangle(13). one load(13).

car(t1, c4). rectangle(c4). long(c4). none(c4). two_wheels(c4). load(c4, 14). rectangle(14).

Hypothesis:

eastbound(T):-car(T,C), short(C), not none(C).

AI started using relational KR

John McCarthy Situation Calculus

Logic dominates in linguistics and spatial/temporal data

Semantics, discourses, grammars

<text><section-header><section-header><text><text><text>

Deringer

Spatial and Temporal formalisms

KR and AI

State-of-the-art (learning) approaches: Based on propositional, probabilistic graphical models

In: Computer vision, (cognitive) Robotics, Linguistics, and Reinforcement Learning

10 2006

An AI classic: Bioinformatics, molecules, and proteins

Relational representations (graphs: objects and relations)

Real Time Strategy Games (RTS)

StarCraft 2 (Blizzard)

And yes... Blocks World!

Uncertainty and Learning

- Core of this course:
 - Representation
 - Inference (deduction, abduction)
- Later
 - Some uncertainty
 - Some utility
 - No learning
- Current AI:
 - Statistical Relational Learning (SRL)
 - Probabilistic Logic Learning (PLL)
 - KR+learning+probability+utility+AI+...

Uncertainty?

- Real world domains
- Vision, Robotics, Linguistics
- Noisy sensor data
- Most things are uncertain!
- Use logic for knowledge representation
- Add uncertainty
- Often upgrades of probabilistic graphical models (e.g. Bayesian networks)

Upgrading: The Alphabet of SRL

Probabilistic logics (Nilsson, Halpern, Bacchus) Knowledge-Based Model Construction (**KBMC**) Stochastic Logic Programs (SLP) Logic programs with annotated disjunctions (LPAD) Causal Process logic (**CP-Logic**) Probabilistic Relational Models (PRM) Statistical Relational Models (SRM) Bayesian Logic Networks (BLN) Bayesian Logic Programs (BLP) Relational Markov Models (**RMM**) Markov Logic Networks (MLN) Relational Decision Networks (RDN) Relational Dependency Networks (**RDN**) Bayesian Logic (**BLOG**)

Many SRL systems Started as an attempt to **upgrade** a particular propositional learning /probabilistic model. (e.g. BN, CRF, MRF, ME, DBN, HMM, ..)

```
" 1:s(A,B) :- n(A,C), v(C,D), n(D,B). SCFG/SLP
0.4:n([joe|T],T). 0.6:n([kim|T],T).
0.3:v([sees|T],T). 0.7:v([likes|T],T).
```

Computational Logic + Al

Effect prediction

Object recognition/selection

Inputs

(O, A)

(O, E)

(A, E)

E

A

0

Now @ICRA'12

Computational, probabilistic high-level/cognitive vision, high-level robotics,

Decision-theoretic planning, abductive logic

Best paper award @ICPRAM'12

People Tracking

person(p1). ... person(p5).

group(p4,p5).

KR for AI cognitive robotics

Relational/Cognitive Robotics

KR for modern robotics

Relations in High-Level Vision

Bottom-up, hierarchical approach to understanding and semantically segmenting images of houses

(L. Antanas, M. van Otterlo, J. Oramas, T. Tuytelaars, L. De Raedt, ILP-2010)

Spatial (language)

Instructions:

"Move to the first table on your left, and pick the object nearest to the edge of it"

Spatial surroundings

of the robot: near(arm, table), distance(robot,door,10.3), P(succ|forward)=0.9,

Involves high-level vision, planning, manipulation, etc.

In addition to relations: Uncertainty

- Many domains (inc. linguistics) exhibit
 - Structure in terms of objects and relations
 - Highly statistical and ambiguous problems

I saw **the man with a telescope** I saw **the man with a telescope** The book is on the table The book lies on the table The book is supported by the table The book is about a table The book has a table of contents The book contains a table of contents

Hier **in Otterlo** kun je mooie dingen zien.

Martijn **van Otterlo** woont in Leuven..... maar, **Otterlo** heeft een nieuw stadhuis, maar nu is Leuven jaloers. Mr. Mark **van Otterlo** zei dat dat gerechtvaardigd was.

Jeopardy and Watson

Dynamics: CPTL (Thon,Landwehr,De Raedt 2010)

$\underbrace{b_1, \ldots, b_n}_{\text{cause (past)}} \rightarrow \underbrace{h_1 : p_1 \lor \ldots \lor h_m : p_m}_{\text{effect (future)}}$ $\begin{array}{c} \text{conquer a city which is close:} \\ city(C, Owner), city(C2, Attacker), close(C, C2) \rightarrow \\ conquest(Attacker, C) : p \lor nil : (1-p) \end{array}$

Again (AIPSML): Decision networks

Weather	Umbrella	Utility
norain	takelt	20
norain	leavelt	100
rain	takelt	70
rain	leavelt	0

Relational Reinforcement Learning

Logic for abduction/deduction/induction Probability for uncertainty Utility for optimality and learning

ightarrow decision-theoretic high-level cognition

Representation and generalization in terms of **objects** and **relations** Logical learning, reasoning, planning

Decision-theoretic planning Reinforcement learning

Before state-of-the-art was propositional

IOS Press (2009)

Model-free Value-based

DT-Problog (AAAI-2010) Van den Broeck/Thon/van Otterlo/De Raedt Decision-theoretic Prolog

Decision Facts	Probabilistic Facts	
? :: umbrella.	0.3 :: rainy.	
? :: raincoat.	0.5 :: windy.	

Background Knowledge
dry :- rainy, umbrella, not(broken_umbrella).
dry :- rainy, raincoat.
dry :- not(rainy).

broken umbrella :- umbrella, rainy, windy.

Utility Facts umbrella => -2. raincoat => -20.

dry => 60. broken_umbrella => -40. **Probabilistic Facts**

0.3 :: buy_trust(_,_).
0.2 :: buy_marketing(_).

ProbLog

Background Knowledge

buys(X) : trusts(X,Y),
 buys(Y),
 buy_trust(X,Y).

buys(X) : marketed(X),
 buy_marketing(X).

Probabilistic Facts

Marge

Background Knowledge

Decisions

Lenny

0.06

Apu

? :: marketed(P) :- person(P).

Utility Facts
buys(P) => 5 :- person(P).
marketed(P) => -3 :- person(P).

Moe

0.12

Seymou

Homer

Ba

Lis

0.1

eindslide