
Logic and Resolution
Representation and Reasoning

Logic and Resolution – p. 1/35

KR&R using Logic

(ARP)

Logical

Theory predicate logic

holiday advice,

(wine recommendation, tax advice,

Domain

medicine, mathematics,...)

propositional logic

Reasoning
resolution

Automatic

Program

Logic and Resolution – p. 2/35

Goals for Today

Refresh your memory about logic

Make sure everyone understands the notation

Learn the basic method for automated reasoning
systems: resolution

⇒ forms the basis for a large part of the course

Logic and Resolution – p. 3/35

Warm-up Quiz

Which of the following statements are true?

(a) IsHuman→ IsMammal

(b) |= IsHuman→ IsMammal

(c) |= ¬(IsMammal→ IsHuman)

(d) IsHuman 6|= IsMammal

(e) IsHuman→ IsMammal |= IsMammal→ IsHuman

(f) IsHuman→ IsMammal |= ¬IsMammal→ ¬IsHuman

(g) ∃x(IsHuman(x)) |= IsHuman(child(Mary))

(h) ∀x(P (x) ∨ ¬Q(a)) |= Q(a)→ P (b)

(i) ∀x(P (x)∨Q(x))∧∀y(¬P (f(y))∨R(y)) |= ∀z(Q(f(z))∨R(z))

Logic and Resolution – p. 4/35

Logic Concepts

If a formula ϕ is true under a given interpretation M ,
one says that that M satisfies ϕ, M � ϕ

A formula is satisfiable if there is some interpretation
under which it is true

Otherwise, it is unsatisfiable (inconsistent)

A formula is valid (a tautology), denoted by � ϕ, if it is
true in every interpretation

for all M :M � ϕ

A formula ϕ is entailed (or is a logical consequence) by
a conjunction of formulas (sometimes called a theory)
Γ, denoted by Γ � ϕ, if

for all M :M � Γ then M � ϕ

Logic and Resolution – p. 5/35

Proposition Logic

Well-formed formulas F : constants ✷, propositional
symbols (atoms) P , negation ¬ϕ, disjunction (ϕ ∨ ψ),
conjunction (ϕ ∧ ψ), implication (ϕ→ ψ)

Interpreted with a function w:

w : F → {true, false}

such that for w holds:
w(¬ϕ) = true if and only if w(ϕ) = false
w(ϕ ∧ ψ) = true iff w(ϕ) = true and w(ψ) = true
etc.

Equivalently, we could restrict ourselves to an
assignment of truth to the propositional symbols

If w is a model of ϕ then this is denoted by w � ϕ

Logic and Resolution – p. 6/35

Propositional Logic: Example

“Because the classroom was small (S) and many
students subscribed to the course (M), there was a
shortage of chairs (C)”

Formally: ((S ∧M)→ C)

If w(S) = w(M) = w(C) = true, then w � ((S ∧M)→ C),

Also: ((S ∧M) ∧ ((S ∧M)→ C)) � C; other notation:
{S,M, (S ∧M)→ C} � C

If w′(S) = w′(M) = true and w′(C) = false:

{S,M,¬C, (S ∧M)→ C} � ✷

Short notation: remove some brackets ...

Logic and Resolution – p. 7/35

Deduction Rules

Instead of truth assignments (interpretations) we can
focus only the syntax (the form ...)

Examples:

modus ponens: ϕ,ϕ→ψ
ψ

∧-introduction rule: ϕ,ψ
ϕ∧ψ

Replace � by syntactical manipulation (derivation) ⊢

Examples: Given: P , Q and (P ∧Q)→ R, then
{P,Q} ⊢ P ∧Q (∧-introduction)
{P,Q, (P ∧Q)→ R} ⊢ R (∧-introduction and modus
ponens)

Logic and Resolution – p. 8/35

Deduction Concepts

A deductive system S is a set of axioms and rules of
inference for deriving theorems

A formula ϕ can be deduced by a set of formulae Γ if ϕ
can be proven using a deduction system S, written as
Γ ⊢S ϕ

A deductive system S is sound if

Γ ⊢S ϕ⇒ Γ � ϕ

A deductive system S is complete if

Γ � ϕ⇒ Γ ⊢S ϕ

A deductive system S is refutation-complete if

Γ � ✷⇒ Γ ⊢S ✷

Logic and Resolution – p. 9/35

Resolution

Reason only with formulas in its clausal form:

L1 ∨ L2 ∨ · · · ∨ Ln

with Li a literal, i.e., an atom or a negation of an atom; if
n = 0, then it is ✷ (empty clause)

Complementary literals: L and L′, such that L ≡ ¬L′

Resolution (rule) R (J.A. Robinson, 1965):

C ∨ L, C ′ ∨ ¬L

D

with C,C ′ clauses, and D the (binary) resolvent equal to
C ∨ C ′ (repeating literals may be removed)

Logic and Resolution – p. 10/35

Examples Resolution

Given V = {P ∨Q ∨ ¬R,U ∨ ¬Q}, then

P ∨Q ∨ ¬R, U ∨ ¬Q

P ∨ U ∨ ¬R

so V ⊢R P ∨ U ∨ ¬R by applying the resolution rule R
once

Given V = {¬P ∨Q,¬Q,P}, then ¬P∨Q, ¬Q
¬P and ¬P , P

✷

so V ⊢R ✷

If V ⊢R ✷ then it will hold that V is inconsistent and the
derivation will then be called a refutation
R is sound

If V 0R ✷, then V is consistent
R is refutation-complete

Logic and Resolution – p. 11/35

Motivation for Resolution

Proving unsatisfiability is enough, because:

Γ � ϕ⇔ Γ ∪ {¬ϕ} � ✷

If a theory Γ is inconsistent, then resolution will
eventually terminate with a derivation such that

Γ ⊢R ✷

For first-order logic, resolution may not terminate for
consistent theories...

Many applications:

Mathematics: Robbins’ conjecture

Proving that medical procedures are correct

Logic programming
Logic and Resolution – p. 12/35

Soundness Resolution

Theorem: resolution is sound (so, V ⊢R C ⇒ V � C)

Proof (sketch). Suppose C1 = L ∨ C ′
1

and C2 = ¬L ∨ C
′
2
,

so using resolution we find:

{C1, C2} ⊢R D

with D equal to C ′
1
∨ C ′

2
. We thus need to prove:

w � (C1 ∧ C2) ⇒ w � D

for every w. It holds that either L or ¬L is true in w.
Suppose L is true, then C ′

2
must be true, so D is true

Similar for when ¬L is true.

Logic and Resolution – p. 13/35

Resolution (Refutation) Tree

¬P ∨Q ¬Q P

¬P

✷

Given V = {¬P ∨Q,¬Q,P}, then V ⊢R ✷

Note: resolution trees are not unique

Logic and Resolution – p. 14/35

SLD Resolution

Horn clause: clause with maximally one positive literal
¬A1 ∨ · · · ∨ ¬Am ∨ B, also denoted by B ← A1, . . . , Am

SLD resolution (for Horn clauses):

← B1, . . . , Bn, Bi ← A1, . . . , Am

← B1, . . . , Bi−1, A1, . . . , Am, Bi+1, . . . , Bn

SLD derivation: a sequence G0, G1, . . . and C1, C2, . . .

Exercise:
Γ = {R← T, T ←, P ← R}

Prove P from Γ using SLD resolution.

Logic and Resolution – p. 15/35

First-order Logic

Allow the representation of entities (also called objects)
and their properties, and relations among such entities

More expressive than propositional logic

Distinguished from propositional logic by its use of
quantifiers

Each interpretation of first-order logic includes a
domain of discourse over which the quantifiers range

Additionally, it covers predicates
Used to represent either a property or a relation
between entities

Basis for many other representation formalisms

Logic and Resolution – p. 16/35

First-order Logic: Syntax

Well-formed formulas are build up from:

Constants: denoted by a, b, . . . (or sometimes names
such as ‘Peter’ and ‘Martijn’)

Variables: denoted by x, y, z . . .

Functions: maps (sets of) objects to other objects, e.g.
father, plus, . . .

Predicates: resemble a function that returns either true
or false: Brother-of, Bigger-than, Has-color, . . .

Quantifiers: allow the representation of properties that
hold for a collection fo objects. Consider a variable x,

Existential: ∃x, ‘there is an x’
Universal: ∀x, ‘for all x’

Logical connectives and auxiliary symbols

Logic and Resolution – p. 17/35

First-order Logic: Interpretations

Formulas are interpreted by a variable assignment v and I
based on a structure

S = (D, {fi}i, {Pj}j)

consisting of

A domain of discourse D (typically non-empty)

fi is a function Dn → D for some n

Pj is a relation, i.e., Pj ⊆ Dn or Pj : Dn → {true, false}
for some n

Then:

v maps all variables to a d ∈ D

I maps all n-ary functions/predicates in the language to
n-ary functions/relations in the structure

Logic and Resolution – p. 18/35

First-order Logic: Example Model

A simple structure S could consist of:
D the set of natural numbers, D = {0, 1, 2, . . .}

2-ary function ‘+’ (regular addition)
2-ary relationship ‘>’ (regular greater than)

A function symbol f /2 can be interpreted as ‘+’

I(f) = +

The constant ⊥ can be interpreted by the constant 0

I(⊥) = 0

The predicate P could mean >, i.e., P (x, y) means ‘x is
greater than y’

I(P) =>

Logic and Resolution – p. 19/35

First-order Logic: Truth

A predicate is true if the interpretation of the predicate
evaluates to ‘true’ (in the structure)

Logical connectives are interpreted just like in
proposition logic

∀xϕ(x) is true if ϕ is true for all variable assignments

∃xϕ(x) is true if ϕ is true for some variable assignments

Example

Consider the formula ∀x∃y∃zP (f(y, z), x)

Given the structure S, this formula is clearly true

Note, however, that this would not be the case if we
had, for instance, interpreted P as ‘less than’

Logic and Resolution – p. 20/35

First-order Clausal Form
First-order resolution only uses clauses

∀x1 . . . ∀xs(L1 ∨ . . . ∨ Lm) written as L1 ∨ . . . ∨ Lm

⇒ we will translate formulas in predicate logic to a clausal
normal form:

1. Convert to negation normal form: eliminate implications
and move negations inwards

2. Make sure each bound variable has a unique name

3. Skolemize: replace ∃x by terms with function symbols
of previously universally quanified variables
∀x∃yP (x, y) becomes ∀xP (x, f(x))

4. Put it into a conjunctive normal form by using the
distributive laws and put the quantifiers up front

Each conjunct is now a clause
Logic and Resolution – p. 21/35

Skolemisation: Underlying Idea

What you have is that,

∀x
(

g(x) ∨ ∃yR(x, y)
)

⇒ ∀x
(

g(x) ∨R(x, f(x))
)

where f(x) is the (Skolem) function that maps x to y

"For every x there is a y s.t. R(x, y)" is converted into
"There is a function f mapping every x into a y s.t. for
every x R(x, f(x)) holds"

∀x∃yR(x, y) is satisfied by a model M iff
For each possible value for x there is a value for y
that makes R(x, y) true
which implies: there exists a function f s.t. y = f(x)
such that R(x, y) holds

Logic and Resolution – p. 22/35

Skolemization: Example

Given a formula
∃xFather(x, amalia) ∧ ¬∃x∃y(Father(x, y) ∧ ¬Parent(x, y))

1. Move negations inwards:

∃xFather(x, amalia) ∧ ∀x∀y(¬Father(x, y) ∨ Parent(x, y))

2. Make variable names unique:

∃zFather(x, amalia) ∧ ∀x∀y(¬Father(x, y) ∨ Parent(x, y))

3. Skolemize (suggestively replacing z by ‘alex’)

Father(alex, amalia) ∧ ∀x∀y(¬Father(x, y) ∨ Parent(x, y))

4. To clausal normal form:

∀x∀y(Father(alex, amalia) ∧ (¬Father(x, y) ∨ Parent(x, y))
Logic and Resolution – p. 23/35

Resolution and First-order Logic

Problem: given
S = {∀x∀y(Father(alex, amalia) ∧ (¬Father(x, y) ∨ Parent(x, y))}

We know S � Parent(alex, amalia)

Extract the clauses (for resolution):
S′ = {Father(alex, amalia),¬Father(x, y) ∨ Parent(x, y)}

Solution: substitute x with ‘alex’ and substitute y with
‘amalia’
⇒ substitution σ = {alex/x, amalia/y}

Application of resolution:

Father(alex, amalia), {¬Father(x, y) ∨ Parent(x, y)}σ

Parent(alex, amalia)

so S′ ⊢R Parent(alex, amalia)

Logic and Resolution – p. 24/35

Substitution

A substitution σ is a finite set of the form
σ = {t1/x1, . . . , tn/xn}, with xi a variabele and ti a term;
xi 6= ti and xi 6= xj, i 6= j

Eσ is an expression derived from E by simultaneously
replacing all occurences of the variables xi by the terms
ti. Eσ is called an instantiation

If Eσ does not contain variables, then Eσ is called a
ground instance

Examples for C = P (x, y) ∨Q(y, z):

σ1 = {a/x, b/y}, σ2 = {y/x, x/y}: Cσ1 = P (a, b) ∨Q(b, z)
en Cσ2 = P (y, x) ∨Q(x, z)

σ3 = {f(y)/x, g(b)/z}: Cσ3 = P (f(y), y) ∨Q(y, g(b))

Logic and Resolution – p. 25/35

Making Things Equal

Compare ¬Father(alex, amalia) and ¬Father(x, y). What are
the differences and the similarities?

complementary sign
the same predicate symbol (‘Father’)
constant ‘alex’ versus variable x en constant ‘amalia’
versus variable y

Make things equal through substitution

σ = {alex/x, amalia/y}

Compare P (x, f(x)) and ¬P (g(a), f(g(a))); after
removing the sign, make them equal with

σ = {g(a)/x}

Making things syntactically equal = unification
Logic and Resolution – p. 26/35

Unification
Let θ = {t1/x1, . . . , tm/xm} and σ = {s1/y1, . . . , sn/yn},
then the composition, denoted by θ ◦ σ or θσ, is defined
by:

{t1σ/x1, . . . , tmσ/xm, s1/y1, . . . , sn/yn}

where each element tiσ/xi is removed for which xi = tiσ
and also each element sj/yj for which yj ∈ {x1, . . . , xm}

A substitution σ is called a unifier of E and E′ if
Eσ = E′σ; E and E′ are then called unifiable

A unifier θ of expressions E en E′ is called the most
general unifier (mgu) if and only if for each unifier σ of E
and E′ there exists a substitution λ such that σ = θ ◦ λ
⇒ derive expressions which are as general as possible
(with variables)

Logic and Resolution – p. 27/35

Examples Unifiers
Consider the following logical expressions

R(x, f(a, g(y)))

and
R(b, f(z, w))

Some possible unifiers:

σ1 = {b/x, a/z, g(c)/w, c/y}

σ2 = {b/x, a/z, f(a)/y, g(f(a))/w}

σ3 = {b/x, a/z, g(y)/w} (mgu)

Note that:

σ1 = σ3 ◦ {c/y}

σ2 = σ3 ◦ {f(a)/y}

Logic and Resolution – p. 28/35

Resolution in Predicate Logic

Consider: {C1 = P (x) ∨Q(x), C2 = ¬P (f(y)) ∨R(y)};
P (x) and P (f(y)) are not complementary, but they are
unifiable, for example σ = {f(a)/x, a/y}

Result: C1σ = P (f(a)) ∨Q(f(a))
en

C2σ = ¬P (f(a)) ∨R(a)

P (f(a)) en ¬P (f(a)) are complementary

{C1σ, C2σ} ⊢R Q(f(a)) ∨R(a)

Using the mgu θ = {f(y)/x}

{C1θ, C2θ} ⊢R Q(f(y)) ∨R(y)

Logic and Resolution – p. 29/35

Resolution Rule for First-order Logic

Notation: if L is a literal, dan [L] is the atom

Given the following two clauses C1 = C ′
1
∨ L1 and

C2 = C ′
2
∨ L2, with L1 an atom, and L2 negated

Suppose [L1]σ = [L2]σ, with σ an mgu

Binary resolution rule B for predicate logic:

(C ′
1
∨ L1)σ, (C

′
2
∨ L2)σ

C ′
1
σ ∨ C ′

2
σ

C ′
1
σ ∨ C ′

2
σ is binary resolvent, and

{C1, C2} ⊢B C
′
1σ ∨ C

′
2σ

Logic and Resolution – p. 30/35

Resolution: Summary

In summary, this is what occurs,

Find two clauses containing the same predicate, where
such predicate is negated in one clause but not in the
other

Perform a unification on the two complementary
predicates

If the unification fails, you might have made a bad
choice of predicates
Go back to the previous step and try again

Discard the unified predicates, and combine the
remaining ones from the two clauses into a new clause,
also joined by the or-operator

Logic and Resolution – p. 31/35

Schubert’s Steamroller

Wolves, foxes, birds, caterpillars, and snails are animals, and there are
some of each of them

Also there are some grains, and grains are plants

Every animal either likes to eat all plants or all animals much smaller than
itself that like to eat some plants

Caterpillars and snails are much smaller than birds, which are much
smaller than foxes, which are in turn much smaller than wolves

Wolves do not like to eat foxes or grains, while birds like to eat caterpillars
but not snails

Caterpillars and snails like to eat some plants

Prove there is an animal that likes to eat a grain-eating animal

Logic and Resolution – p. 32/35

Representation

Wolfs are animals: ∀x(Wolf(x)→ Animal(x))

There are wolfs: ∃xWolf(x)
Every animal either likes to eat all plants or all animals
much smaller than itself that like to eat some plants
∀x(Animal(x)→ (∀y(Plant(y)→ Eats(x, y)))

∨(∀z(Animal(z) ∧ Smaller(z, x)
∧(∃u(Plant(u) ∧ Eats(z, u)))

→ Eats(x, z))))

Caterpillars are smaller than birds

∀x∀y(Caterpillar(x) ∧ Bird(y)→ Smaller(x, y))

etc.

Logic and Resolution – p. 33/35

Applying an ARP (Prover9)

============================== PROOF =================================

% Proof 1 at 0.02 (+ 0.00) seconds.

% Length of proof is 100.

% Level of proof is 47.

% Maximum clause weight is 20.

% Given clauses 229.

...

25 -Wolf(x) | animal(x). [clausify(1)].

26 -Fox(x) | animal(x). [clausify(2)].

27 -Bird(x) | animal(x). [clausify(3)].

29 -Snail(x) | animal(x). [clausify(5)].

30 -Grain(x) | plant(x). [clausify(6)].

31 Wolf(c1). [clausify(7)].

32 Fox(c2). [clausify(8)].

33 Bird(c3). [clausify(9)].

Logic and Resolution – p. 34/35

Continuation ...
282 -animal(c3) | eats(c3,f3(c2,c3)) | -animal(c5)

| eats(c3,c5). [resolve(278,a,99,b)].

283 -animal(c3) | eats(c3,f3(c2,c3)) | eats(c3,c5).

[resolve(282,c,56,a)].

284 eats(c3,f3(c2,c3)) | eats(c3,c5). [resolve(283,a,54,a)].

287 eats(c3,c5) | eats(c1,c6) | eats(c1,c2) | -animal(c2)

| -animal(c3). [resolve(284,a,224,e)].

297 eats(c3,c5) | eats(c1,c6) | eats(c1,c2) | -animal(c2).

[resolve(287,e,54,a)].

298 eats(c3,c5) | eats(c1,c6) | eats(c1,c2). [resolve(297,d,53,a)].

302 eats(c1,c6) | eats(c1,c2) | -Bird(c3) | -Snail(c5).

[resolve(298,a,49,c)].

305 eats(c1,c6) | eats(c1,c2) | -Bird(c3). [resolve(302,d,35,a)].

306 eats(c1,c6) | eats(c1,c2). [resolve(305,c,33,a)].

310 eats(c1,c2) | -Wolf(c1) | -Grain(c6). [resolve(306,a,48,c)].

313 eats(c1,c2) | -Grain(c6). [resolve(310,b,31,a)].

314 eats(c1,c2). [resolve(313,b,36,a)].

319 -Wolf(c1) | -Fox(c2). [resolve(314,a,47,c)].

321 -Fox(c2). [resolve(319,a,31,a)].

322 $F. [resolve(321,a,32,a)].

============================== end of proof ==========================

Logic and Resolution – p. 35/35

	KR&R using Logic
	Goals for Today
	Warm-up Quiz
	Logic Concepts
	Proposition Logic
	Propositional Logic: Example
	Deduction Rules
	Deduction Concepts
	Resolution
	Examples Resolution
	Motivation for Resolution
	Soundness Resolution
	Resolution (Refutation)
Tree
	SLD Resolution
	First-order Logic
	First-order Logic: Syntax
	First-order Logic: Interpretations
	First-order Logic: Example Model
	First-order Logic: Truth
	First-order Clausal Form
	Skolemisation: Underlying Idea
	Skolemization: Example
	Resolution and First-order Logic
	Substitution
	Making Things Equal
	Unification
	Examples Unifiers
	Resolution in Predicate Logic
	Resolution Rule for First-order Logic
	Resolution: Summary
	Schubert's Steamroller
	Representation
	Applying an ARP (Prover9)
	Continuation ...

