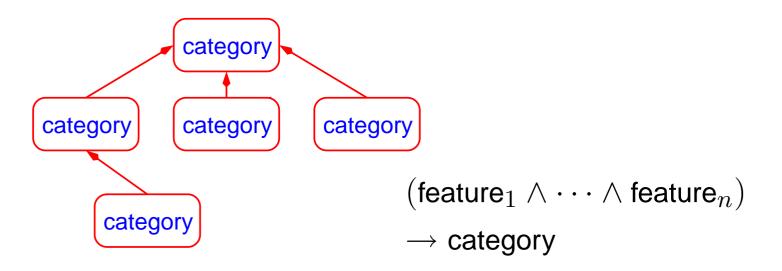
Model-based Reasoning

- 'Traditional' knowledge systems:
 - Rule based (heuristic rules) if conditions then actions/conclusions fi
 - Reasoning:
 - forward chaining: reasoning from facts to conclusions
 - backward chaining: reasoning from goals to facts
 - Recent: business rules
- Model-based systems: reasoning with understandable model, i.e., they have intuitive semantics

Heuristic rules and their disadvantages

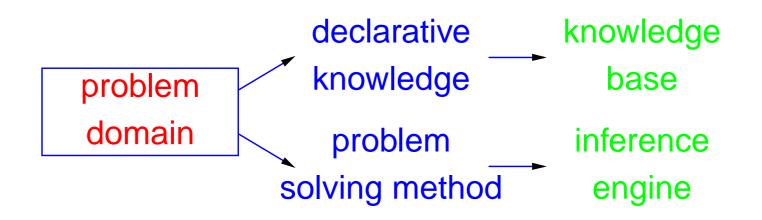
Problem solving based on heuristic rules:



Disadvantages:

- no use of knowledge about structure and workings
- knowledge maintenance and updating is hard

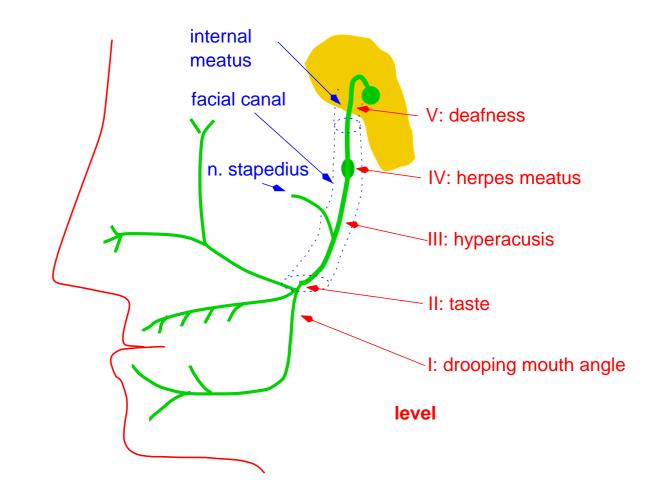
Model use



Models:

- usually designed for handling multiple problems \Rightarrow reuse
- capture instantaneous behaviour, temporal behaviour, structure
- Methods: diagnosis, decision making, prediction, planning

Medical diagnosis of facial palsy



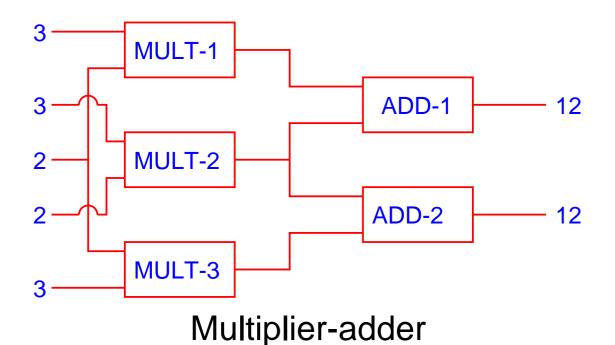
Diagnosis: Symptoms-level_{i+1} = Symptoms-level_{$i} <math>\cup$ New-symptoms</sub>

Drilling Automation for Mars

Autonomous drill with sensors

Fault diagnosis

Structure and behaviour

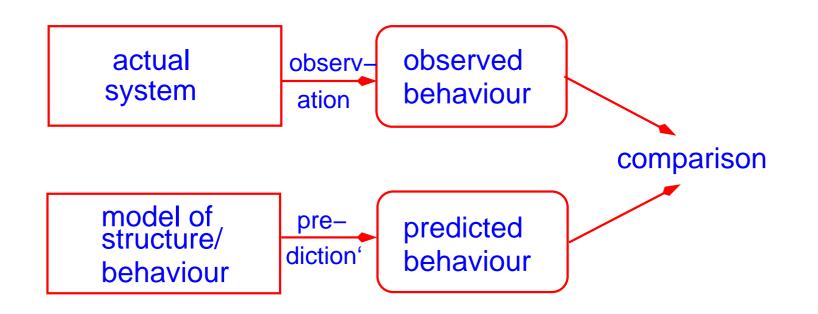


- Structure:
 - components: MULT-1, MULT-2, ...
 - wiring

Behaviour:

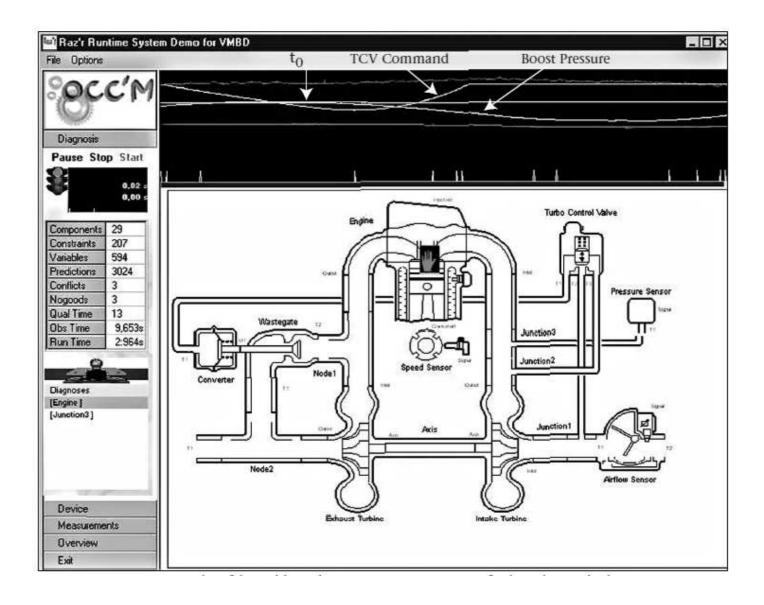
- behaviour of individual components
- combined behaviour

Method: model-based diagnosis

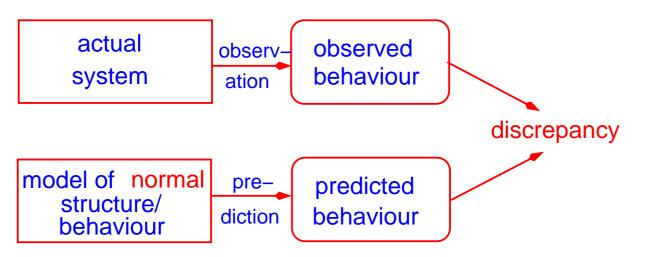


- Model: representation of normal or abnormal behaviour and, possibly, internal structure
- **•** Formalisation:
 - consistency-based diagnosis, and
 - abductive diagnosis

OCC'M



Consistency-based diagnosis

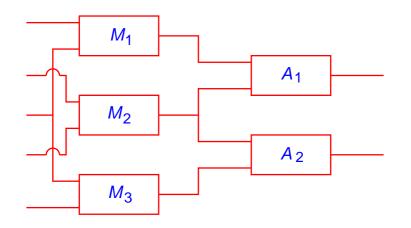


Difference between predicted behaviour and observed behaviour \Rightarrow defect!

Originators:

- R. Reiter, "A Theory of diagnosis from first principles", Artificial Intelligence, vol. 32, 57–95, 1987.
- J. de Kleer, A.K. Macworth, and R. Reiter, "Characterising diagnoses and systems", Artificial Intelligence, vol. 52, 197–222, 1992.

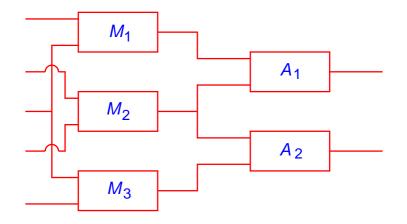
Normal behaviour



SYStem specification SYS = (SD, COMPS):

- Components that may be defective (faulty): $COMPS = \{M_1, M_2, M_3, A_1, A_2\}$
- SD (System Description):
 - generic description of component behaviour (what the component does)
 - declaration of components: $MUL(M_1)$, $ADD(A_1)$
 - connection between components

Normal behaviour: formal



SYStem specification SYS = (SD, COMPS):

SD (System Description):

 $\forall x (\mathsf{MUL}(x) \to \operatorname{in}_1(x) \times \operatorname{in}_2(x) = \operatorname{out}(x)) \\ \forall x (\mathsf{ADD}(x) \to \operatorname{in}_1(x) + \operatorname{in}_2(x) = \operatorname{out}(x)) \end{cases}$

 $MUL(M_1), MUL(M_2), MUL(M_3), ADD(A_1), ADD(A_2)$ in₁(A₁) = out(M₁), in₂(A₁) = out(M₂) in₁(A₂) = out(M₂), in₂(A₂) = out(M₃)

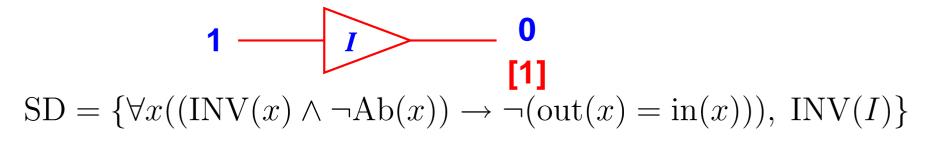
• $\text{COMPS} = \{M_1, M_2, M_3, A_1, A_2\}$

Ab predicate

• Ab(c): component c is *abnormal*

■ ¬Ab(c): component c is not abnormal, i.e. *normal*

Example (Inverter I):



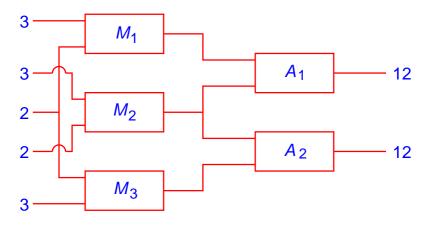
Input: in(I) = 1; observed output: out(I) = 1

$$\mathrm{SD} \cup \{\mathrm{in}(I) = 1, \mathrm{out}(I) = 1\} \cup \{\neg \mathrm{Ab}(I)\} \vDash \bot$$

 $\mathrm{SD} \cup \{\mathrm{in}(I) = 1, \mathrm{out}(I) = 1\} \cup \{\mathrm{Ab}(I)\} \nvDash \bot$

(assumption that *I* is (ab)normal is (in)consistent)

Normal behaviour formal



SYStem specification SYS = (SD, COMPS):

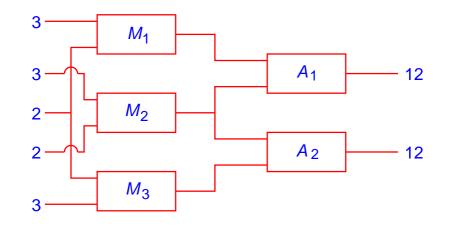
SD (System Description):

 $\forall x ((\mathsf{MUL}(x) \land \neg \mathsf{Ab}(x)) \to \operatorname{in}_1(x) \times \operatorname{in}_2(x) = \operatorname{out}(x)) \\ \forall x ((\mathsf{ADD}(x) \land \neg \mathsf{Ab}(x)) \to \operatorname{in}_1(x) + \operatorname{in}_2(x) = \operatorname{out}(x)) \end{cases}$

 $MUL(M_1), MUL(M_2), MUL(M_3), ADD(A_1), ADD(A_2)$ in₁(A₁) = out(M₁), in₂(A₁) = out(M₂) in₁(A₂) = out(M₂), in₂(A₂) = out(M₃)

• COMPS = $\{M_1, M_2, M_3, A_1, A_2\}$

Prediction of normal behaviour



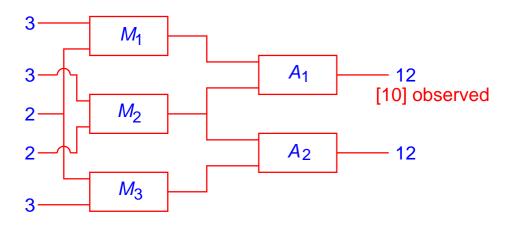
System specification SYS = (SD, COMPS)

A prediction:

• Example:

 $SD \cup \{\neg Ab(M_1), \neg Ab(M_2), \neg Ab(A_1)\} \cup \{in_1(M_1) = 3, in_2(M_1) = 2, in_1(M_2) = 3, in_2(M_2) = 2\} \vDash out(A_1) = 12$

There is a fault!



Let $(out(A_1) = 10) \in Inputs$, then:

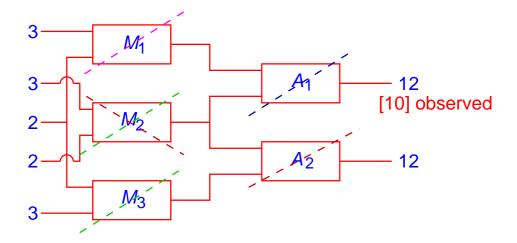
 $\mathrm{SD} \cup \{\neg \mathrm{Ab}(c) \mid c \in \mathrm{COMPS}\} \cup \mathrm{Inputs} \vDash \bot$

because:

SD ∪ {¬Ab(c) | c ∈ COMPS} ∪ Inputs ⊨ out(A₁) = 12, and
SD ∪ {¬Ab(c) | c ∈ COMPS} ∪ Inputs ⊨ out(A₁) = 10

 \Rightarrow faulty component

Which components are faulty?



Possible diagnoses (faulty components) D:

- D = {A₁}, {M₁}, {M₂, M₃}, {A₂, M₂}, because
 SD ∪ {¬Ab(c) | c ∈ COMPS − D}
 ∪ {Ab(c) | c ∈ D} ∪ Inputs ⊭ ⊥
- D must be the smallest set because, D = COMPS would also be a diagnosis otherwise
- \Rightarrow multiple diagnoses

Diagnostic problem

- **System specification** SYS = (SD, COMPS)
- Diagnostic problem DP = (SYS, OBS), with OBS a set of observations
- A diagnosis D: smallest (subset minimal) set of components, such that

 $\mathsf{SD} \cup \mathsf{OBS} \cup \{\mathsf{Ab}(c) \mid c \in D\} \cup \{\neg \mathsf{Ab}(c) \mid c \in \mathsf{COMPS} - D\}$

is consistent

Example:

$$OBS = \{ in_1(M_1) = 3, in_2(M_1) = 2, in_1(M_2) = 3, in_2(M_2) = 2, in_1(M_3) = 2, in_2(M_3) = 3, out(A_1) = 10, out(A_2) = 12 \}$$

Algorithms

Enumerate all diagnoses: #P complete (NP hard for enumeration):

 $Ab(A_1) \land \neg Ab(A_2) \land \neg Ab(M_1) \land \neg Ab(M_2) \land \neg Ab(M_3)$ $Ab(A_1) \land Ab(A_2) \land \neg Ab(M_1) \land \neg Ab(M_2) \land \neg Ab(M_3)$ $Ab(A_1) \land Ab(A_2) \land Ab(M_1) \land \neg Ab(M_2) \land \neg Ab(M_3)$

- Heuristic methods:
 - hitting set algoritme (Reiter)
 - assumption-based truth maintenance system (ATMS, De Kleer)
- Restrictions: for example, only maximally 2 defects, then complexity upperbound

Basic problem: which idea should underly such algorithms?

Conflict set

Let $CS \subseteq COMPS$ be a set of components, then CS is called a conflict set iff

```
\mathsf{SD} \cup \mathsf{OBS} \cup \{\neg \mathsf{Ab}(c) \mid c \in \mathsf{CS}\}
```

is inconsistent (SD \cup OBS \cup { \neg Ab $(c) \mid c \in$ CS} $\models \bot$)

Proposition: For each $D \subseteq \text{COMPS}$ that is a diagnosis and each conflict set CS it holds that: $D \cap \text{CS} \neq \emptyset$

Proof: SD \cup OBS \cup { \neg Ab(c) | $c \in$ COMPS - D} $\nvDash \bot$, with D subset minimal \Rightarrow COMPS - D is subset maximal, hence

$$\mathsf{SD} \cup \mathsf{OBS} \cup \{\neg \mathsf{Ab}(c) \mid c \in \mathsf{COMPS} - D\} \cup \{\neg \mathsf{Ab}(c')\} \vDash \bot$$

CS

for c^\prime in CS

Basic ideas: hitting sets

- Determine conflict sets of the diagnostic problem DP
- Each conflict set CS has at least one element in common with a diagnosis D:

$$D = \{c_1, c_2, \dots, c_m\} \\ / \\ CS_1 = \{\dots, c_1, \dots\} \\ CS_m = \{\dots, c_m, \dots\}$$

- Compute so-called hitting sets:
 - Let F be a set of sets, and
 - $H \subseteq \bigcup_{S \in F} S$,
 - *H* is a hitting set if for all $S \in F : H \cap S \neq \emptyset$
- Example: $F = \{\{1, 2\}, \{3, 4\}\}$, then $H = \{2, 4\}$ is a (non-unique) hitting set ($H = \{1, 3\}$ is also a hitting set)

Diagnosis as hitting set

Theorem: D is a diagnosis for diagnostic problem DP = (SYS, OBS) iff D is a minimal hitting set for all conflict sets of DP

Proof (sketch):

- Prop. page 19: for all conflict sets CS: CS $\cap D \neq \emptyset$.
 Thus, D is a hitting set
- D is also a minimal hitting set, as COMPS − D is no conflict set, whereas $\{c\} \cup (COMPS D)$ is a conflict set for any $c \in D$

Hitting-set tree

We construct a tree structure for computing diagnoses

Some definitions:

- Let F be a set of sets
- Let $T = (V, E, l_V, l_E)$ be a labelled tree, with V a set of nodes and $E \subseteq V \times V$ a set of edges, and
 - l_V a node label function:

$$l_V: V \to F \cup \{\checkmark\}$$

• l_E an edge label function:

$$l_E: E \to \bigcup_{S \in F} S$$

Node label function

Let *F* be a set of sets:

 \bullet l_V a node label function:

$$l_V: V \to F \cup \{\checkmark\}$$

with

$$l_V(v) = \begin{cases} S & \text{if } S \in F, S \neq \emptyset \\ \checkmark & \text{otherwise} \end{cases}$$

- **•** Example: $F = \{\{1, 2\}, \{4, 5\}\}$
 - Nodes $V = \{u, v, w\}$
 - $l_V(u) = \{1, 2\}$, $l_V(v) = \{4, 5\}$, and $l_V(w) = \checkmark$

Edge label function

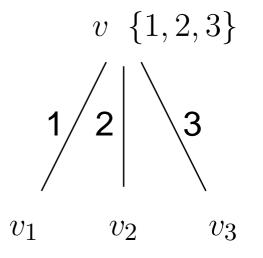
Let *F* be a set of sets:

• l_E an edge label function:

$$l_E: E \to \bigcup_{S \in F} S$$

with if $l_V(v) = S$ and $\forall s \in S$: $l_E(v, v_s) = s$

Example:



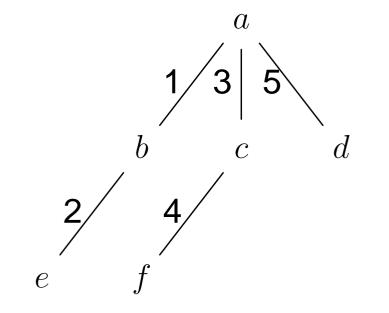
•
$$F = \{\{4, 5\}, \{1, 2, 3\}\}, \text{ and } S = \{1, 2, 3\}$$

• $l_V(v) = \{1, 2, 3\}$
• $l_E(v, v_1) = 1, l_E(v, v_2) = 2, l_E(v, v_3) = 3$

Construction of hitting sets

Let $T = (V, E, l_V, l_E)$ be a labelled tree, then the hitting set H(v) for node v is defined as:

 $H(v) = \{l_E(u, w) \mid (u, w) \text{ is on the path from the root to } v\}$ Example:



• $H(a) = \emptyset$ • $H(b) = \{1\}$ • $H(e) = \{1, 2\}$ • $H(f) = \{3, 4\}$

Hitting-set algorithm

● *F* is the set of conflict sets, which is initially empty

• Let node v_s be a child of node v, then $l_V(v_s) = CS$ if there is exists a $CS \in F$ with

 $\mathbf{CS} \cap H(v_s) = \emptyset$

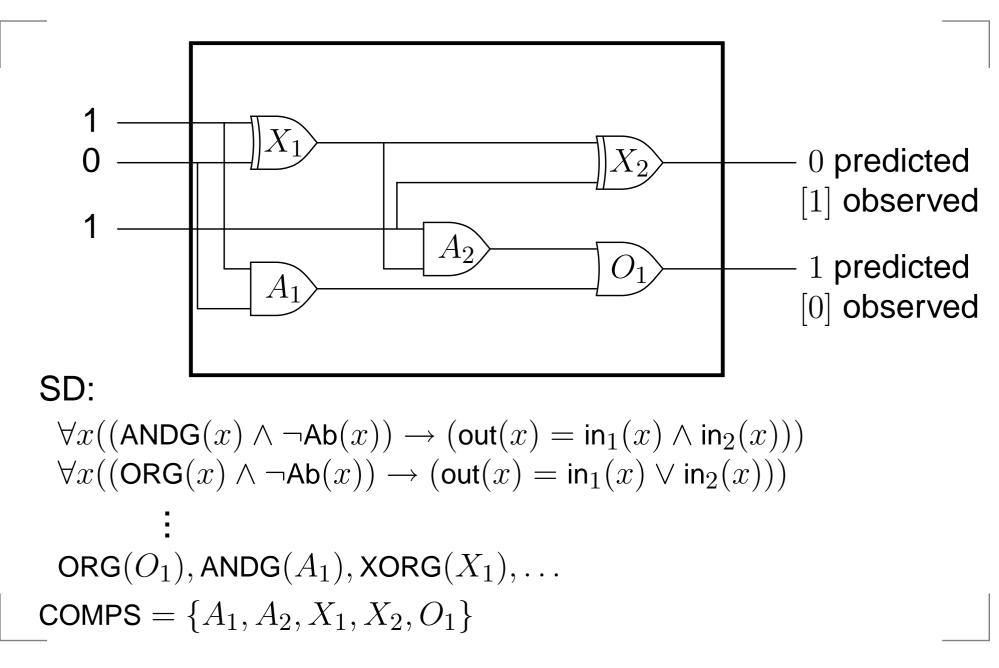
(CS is not yet covered by $H(v_s)$ and we have to extend the path)

- If no suitable $CS \in F$, call logical reasoning program TP:
 - Call: TP(SD, COMPS $H(v_s), OBS$)
 - Returns: conflict set CS if $SD \cup OBS \cup \{\neg Ab(c) \mid c \in COMPS - H(v_s)\} \vDash \bot$, with $CS \cap H(v_s) = \emptyset$ and $CS \subseteq COMPS - H(v_s)$ otherwise, \checkmark (consistent)

Hitting-set algorithm

```
Diagnose(SD, COMPS, OBS)
   generate HS tree by calling
        CS < -TP(SD, COMPS - H(v), OBS);
   (F is build op from these CS's)
   leaves v with \checkmark
      determine diagnosis H(v)
   determine subset-minimal H(v)
        in the HS tree
TP(A, B, C)
   use resolution on A U B U C
```

Example: full-adder



Example HS tree

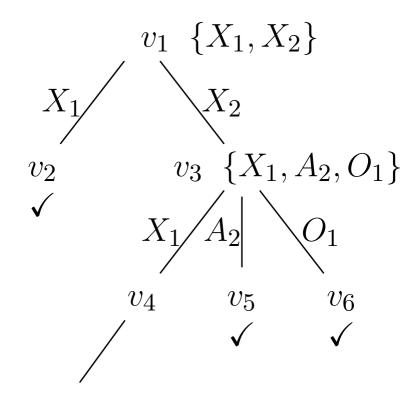


- 1. $CS_1 \leftarrow TP(SD, COMPS, OBS);$ $CS_1 \leftarrow \{X_1, X_2\}$
- 2. $CS_2 \leftarrow TP(SD, COMPS \{X_1\}, OBS);$ $CS_2 \leftarrow \checkmark$ (diagnosis found)
- 3. $CS_3 \leftarrow TP(SD, COMPS \{X_2\}, OBS);$ $CS_3 \leftarrow \{X_1, A_2, O_1\}$

4. :

Diagnoses *D*: $\{X_1\}$, $\{X_2, A_2\}$, $\{X_2, O_1\}$ (note that $\{X_2, X_1\}$ not subset minimal)

Pruning of the HS tree



Note that there is no need to extend the hitting set $H(v_4)$ (as $\{X_2, X_1\}$ is not subset minimal)

 \Rightarrow pruning of the hitting-set tree