
Consistency-based diagnosis (cont.)
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Difference between predicted behaviour and observed
behaviour⇒ defect!

Originators:
R. Reiter, “A Theory of diagnosis from first principles”, Artificial Intelligence, vol. 32,
57–95, 1987.

J. de Kleer, A.K. Macworth, and R. Reiter, “Characterising diagnoses and systems”,
Artificial Intelligence, vol. 52, 197–222, 1992.
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Plan for today

Quick revision of basic concepts

There are some opimisations possible for the hitting-set
algorithm

Consistency-based diagnosis is an example of
non-monotonic reasoning (quite common in AI). We
show why this is the case

Finally, dagnoses can be seen as hypotheses that are
revised when new observations are made. We extend
the theory in this way

=⇒ First, revision!
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System specification

M1

M2

M3
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A 2
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Multiplier-adder
SYStem specification SYS = (SD,COMPS):

SD (System Description):
∀x((MUL(x) ∧ ¬Ab(x))→ in1(x)× in2(x) = out(x))
∀x((ADD(x) ∧ ¬Ab(x))→ in1(x) + in2(x) = out(x))
MUL(M1),MUL(M2),MUL(M3),ADD(A1),ADD(A2)
in1(A1) = out(M1), in2(A1) = out(M2)
in1(A2) = out(M2), in2(A2) = out(M3)

COMPS = {M1,M2,M3, A1, A2}
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Diagnostic problem
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[10] observed

System specification SYS = (SD,COMPS)

Diagnostic problem DP = (SYS,OBS), with OBS a set of
observations

Example:
OBS = {in1(M1) = 3, in2(M1) = 2, in1(M2) = 3, in2(M2) = 2,

in1(M3) = 2, in2(M3) = 3, out(A1) = 10, out(A2) = 12}
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Diagnosis

Diagnostic problem DP = (SYS,OBS), with OBS a set of
observations

A diagnosis D: smallest (subset minimal) set of
components, such that

SD ∪OBS ∪ {Ab(c) | c ∈ D}
︸ ︷︷ ︸

∪{¬Ab(c) | c ∈ COMPS−D}
︸ ︷︷ ︸

Faulty Nonfaulty
components components

is consistent

Remark: {Ab(c) | c ∈ D} can be omitted (why?)

For the multiplier-adder:
D = {A1}, {M1}, {M2,M3}, {A2,M2}
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Conflict set and hitting set

Let CS ⊆ COMPS be a set of components, then CS is called
a conflict set iff

SD ∪OBS ∪ {¬Ab(c) | c ∈ CS}

is inconsistent

Proposition: For each D ⊆ COMPS that is a diagnosis and
each conflict set CS it holds that: D ∩ CS 6= ∅

Theorem: D is a diagnosis for diagnostic problem
DP = (SYS,OBS) iff D is a minimal hitting set for all conflict
sets of DP
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Hitting-set tree

Let F be a set of sets

Let T = (V,E, lV , lE) be a labelled tree, with

node labels

lV (v) =

{

S if S ∈ F , S 6= ∅

X otherwise

and

edge labels if lV (v) = S then ∀s ∈ S: lE(v, vs) = s
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Hitting sets

The hitting set H(v) for node v is defined as:

H(v) = {lE(u,w) | (u,w) is on the path from the root to v}

Example (incorrect why?):

a {1, 3, 5}

c {4}b {2}
d
X

e
X

f
X

31 5

2 4

lV (a) = {1, 3, 5},
lV (b) = {2}, lV (e) = X, etc.

lE(a, b) = 1, lE(a, c) = 3,
lE(b, e) = 2, etc.

H(a) = ∅

H(b) = {1}

H(e) = {1, 2}

H(f) = {3, 4}
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Hitting sets

The hitting set H(v) for node v is defined as:

H(v) = {lE(u,w) | (u,w) is on the path from the root to v}

Example (correct):

a {1, 3, 5}

c {4}b {2} d

e f

g

31 5

2 4

lV (a) = {1, 3, 5},
lV (b) = {2}, lV (e) = X, etc.

lE(a, b) = 1, lE(a, c) = 3,
lE(b, e) = 2, etc.

H(a) = ∅

H(b) = {1}

H(e) = {1, 2}

H(f) = {3, 4}
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Example: full-adder

X1

A1

A2

X2

O1

1
0

1

0 predicted
[1] observed

1 predicted
[0] observed

SD:
∀x((ANDG(x) ∧ ¬Ab(x))→ (out(x) = in1(x) ∧ in2(x)))
∀x((ORG(x) ∧ ¬Ab(x))→ (out(x) = in1(x) ∨ in2(x)))

...
ORG(O1),ANDG(A1),XORG(X1), . . .

COMPS = {A1, A2, X1, X2, O1}
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Example HS tree

v1 {X1, X2}

v2 v3 {X1, A2, O1}

v4 v5 v6

X

X X

X1 X2

X1 A2 O1

1. CS1 ←
TP(SD,COMPS,OBS);
CS1 ← {X1, X2}

2. CS2 ← TP(SD,COMPS −
{X1},OBS);
CS2 ← X (diagnosis found)

3. CS3 ← TP(SD,COMPS −
{X2},OBS);
CS3 ← {X1, A2, O1}

4.
...

Diagnoses D: {X1}, {X2, A2}, {X2, O1}
(note that {X2, X1} not subset minimal)
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Pruning of the hitting-set tree

v1 {X1, X2}

v2 v3 {X1, A2, O1}

v4 v5 v6

X

X X

X1 X2

X1 A2 O1

Note that there is no need to extend the hitting set H(v4) (as
{X2, X1} is not subset minimal)

⇒ pruning of the hitting-set tree
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Hitting-set tree

F = {{1, 2}, {4, 5}, {1, 2, 3}, {3, 4}}

v1 {1, 2, 3}

v3 {4, 5}v2 {3, 4} v4 {1, 2}

v5 {4, 5} v6
X

v7
X

v8 {3, 4} v9{4, 5} v10{4, 5}

21 3

3 4 4 5 1 2

v11

X

v12

X

v13

X

v14

X

v15

X

v16

X

v17

X

v18

X

4 5 3 4 4 5 4 5

Minimal hitting set: H(v) is subset-minimal and lV (v) = X

Examples: H(v6) = {1, 4} ⊂ H(v11); H(v7) = {2, 4} ⊂ H(v14)
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Optimisation

Pruning the HS tree:
1. H(v) = H(v′): prune the subtree with root v′ and

lV (v′) = ×

2. H(v) ⊂ H(v′): ignore v′, lV (v′) = ×

3. for lV (v) = S, lV (v′) = S′ ∈ F with S′ ⊂ S:
lV (v)← lV (v′) (= S′) and prune

r

v v′← ×

(1)

v

v′

lV (v)← lV (v′)
pruned reconnected

(3)

Reuse of labels when F is dynamic (as in diagnosis): if
S′ ∈ F and H(v) ∩ S′ = ∅, then lV (v) = S′
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Example

F = {{1, 2}, {4, 5}, {1, 2, 3}, {3, 4}}

v1 {1, 2, 3}

v3 {4, 5}v2 {3, 4} v4 {1, 2}

v5 {4, 5} v6
X

v7
X

v8 {3, 4} v9{4, 5} v10{4, 5}

21 3

3 4 4 5 1 2

v11

X

v12

X

v13

X

v14

X

v15

X

v16

X

v17

X

v18

X

4 5 3 4 4 5 4 5
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Example

F = {{1, 2}, {4, 5}, {1, 2, 3}, {3, 4}}

v1 {1, 2, 3}

v3 {4, 5}v2 {3, 4} v4 {1, 2}

v5 {4, 5} v6
X

v7
X

v8 {3, 4} v9{4, 5} v10{4, 5}

21 3

3 4 4 5 1 2

v11

×
v12

X

v13

X

v14

X

v15

×
v16

X

v17

X

v18

X

4 5 3 4 4 5 4 5

Rule (1) and (2)
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Example

F = {{1, 2}, {4, 5}, {1, 2, 3}, {3, 4}}

v1 {1, 2, 3}

v3 {4, 5}v2 {3, 4} v4 {1, 2}

v5 {4, 5} v6
X

v7
X

v8 {3, 4} v9{4, 5} v10{4, 5}

21 3

3 4 4 5 1 2

v11

X

v12

X

v13

X

v14

X

v15

X

v16

X

v17

X

v18

X

4 5 3 4 4 5 4 5
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Example

F = {{1, 2}, {4, 5}, {1, 2, 3}, {3, 4}}

v1 {1, 2, 3}→ {1, 2}

v3 {4, 5}v2 {3, 4}

v5 {4, 5} v6
X

v7
X

v8 {3, 4}

21

3 4 4 5

v11

X

v12

X

v13

X

v14

X

4 5 3 4

Rule (3)
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Non-monotonic reasoning

Knowledge base KB

Add knowledge to KB and obtain new knowledge base
KB′

If KB ⊢ Results and KB′ ⊢ Results′ then
Results ⊆ Results′ does not hold in general
⇒ more knowledge does not always yield more results

Consistency-based reasoning is an example of
non-monotonic reasoning. Why?

SD ∪OBS ∪ {¬Ab(c) | c ∈ COMPS−D} 2 ⊥

e.g., larger OBS or SD may make D smaller or different
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Default logic
DT = (W,R) is a default theory, where
W = {Elephant(john)}, i.e., John is an elephant, and the
following default R:

Elephant(x) : Grey(x)

Grey(x)

If being grey is consistent with
our knowledge, conclude ‘grey’,
so conclude Grey(john)

general form default

prerequisite : justifications
consequent
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Reasoning in default logic

Let DT = (W,R) be a default theory (W a set of logical
formulas and a set of defaults R):

E = Th(E) (so-called fixed point)

W ⊆ E

E includes the maximal set of conclusions obtained by
applying defaults in R

If A:B1,...,Bn

C
∈ R, A ∈ E and ¬B1, . . . ,¬Bn 6∈W , then

C ∈ E

E is called an extension and Th is the derivation operator
(deduction + default rule application)
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Example

DT = (W,R), where

W = {Elephant(clyde),¬Grey(john)}

i.e., Clyde is an elephant and John is not grey, and the
following default R:

Elephant(x) : Grey(x)

Grey(x)

‘elephants are normally grey’

Extension: E = {Elephant(clyde),Grey(clyde),¬Grey(john)}
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Diagnosis as non-monotonic reasoning

Map a diagnostic problem to a default theory DT

A diagnosis D predicts a formula ϕ iff

SD∪OBS∪{¬Ab(c) | c ∈ COMPS−D}∪{Ab(c) | c ∈ D} � ϕ

Lemma: DT = (W,R) is a default theory with extension
E iff

E = Th (W ∪ {L | :L/L ∈ ∆})

with subset-maximal set of defaults ∆ ⊆ R such that

W ∪ {L | :L/L ∈ ∆} 2 ⊥

Remark: :ψ/ψ is a so-called normal default (default
without prerequisite and justification that is the same as
the conclusion)
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Logical characterisation of diagnosis
Theorem. Let DP = (SYS,OBS) be a diagnostic problem.
Let

DT =

(

SD ∪OBS,

{
: ¬Ab(c)

¬Ab(c)
| c ∈ COMPS

})

be a default theory with extension E, then D is a diagnosis
for DP iff E = {ϕ | D predicts ϕ}

Proof: E is an extension of DT, thus (Lemma):

SD ∪OBS ∪

{

¬Ab(c) |
: ¬Ab(c)

¬Ab(c)
∈ ∆

}

2 ⊥

with ∆ ⊆ R such that ∆ subset-maximal. Suppose that
D = {c | c ∈ COMPS, :¬Ab(c)

¬Ab(c) 6∈ ∆}, then . . .
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Logical characterisation of diagnosis
Theorem. Let DP = (SYS,OBS) be a diagnostic problem.
Let

DT =

(

SD ∪OBS,

{
: ¬Ab(c)

¬Ab(c)
| c ∈ COMPS

})

be a default theory with extension E, then D is a diagnosis
for DP iff E = {ϕ | D predicts ϕ}

Proof (continued):
{

¬Ab(c) |
: ¬Ab(c)

¬Ab(c)
∈ ∆

}

= {¬Ab(c) | c ∈ COMPS−D}

Thus, E = Th(SD ∪OBS ∪ {¬Ab(c) | c ∈ COMPS−D}), and
E = {ϕ | D predicts ϕ}
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Example

DP = (SYS,OBS), with
SD = {∀x((ANDG(x) ∧ ¬Ab(x))→ (out(x) = and(in1(x), in2(x)))),

∀x((XORG(x) ∧ ¬Ab(x))→ (out(x) = xorg(in1(x), in2(x)))),
ANDG(A),XORG(X),
out(A) = in1(X)}

COMPS = {A,X} and OBS = {in1(A) = 1, in2(A) =
1, in2(X) = 0, out(A) = 0, out(X) = 1}

Default theory DT = (SD ∪OBS, R), with

R =

{
: ¬Ab(A)

¬Ab(A)
,
: ¬Ab(X)

¬Ab(X)

}

E = Th(SD ∪OBS ∪ {¬Ab(X)}), e.g., Ab(A) ∈ E (we can
predict that A is abnormal)
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Extra measurements

Recall: a diagnosis D predicts a formula ϕ iff

SD ∪OBS ∪ {¬Ab(c) | c ∈ COMPS−D} � ϕ

if ϕ is a set of extra observations (measurements), then:

1. Every diagnosis D for DP = (SYS,OBS) that predicts ϕ
is also a diagnosis for DP = (SYS,OBS ∪ {ϕ}), i.e., the
measurement ϕ confirms D

2. No diagnosis for DP = (SYS,OBS) that predicts ¬ϕ is
also a diagnosis for DP = (SYS,OBS ∪ {ϕ}), i.e., the
measurment ϕ disconfirms D

3. Any diagnosis D for DP = (SYS,OBS ∪ {ϕ}) which is not
a diagnosis for DP′ = (SYS,OBS) is a strict superset of
a diagnosis of DP′ which predicts ¬ϕ
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Example

M1

M2

M3

A1

A2

3

3

2

2

3

12

12
[10] observed

Diagnostic problem DP = (SYS,OBS), with
Set of observations

OBS = {in1(M1) = 3, in2(M1) = 2, in1(M2) = 3, in2(M2) = 2,
in1(M3) = 2, in2(M3) = 3, out(A1) = 10, out(A2) = 12}

Predictions w.r.t. out(M2): diagnosis D1 = {M1} predicts
out(M2) = 6, D2 = {A1} predicts out(M2) = 6,
D3 = {M2,M3} predicts out(M2) = 4, D4 = {M2, A2}
predicts out(M2) = 4
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Example (continued)

M1

M2

M3

A1

A2

3

3

2

2

3

12

12
[10] observed

Diagnostic problem DP = (SYS,OBS), with
Set of observations (with new one on M2):
OBS = {in1(M1) = 3, in2(M1) = 2, in1(M2) = 3, in2(M2) = 2,

in1(M3) = 2, in2(M3) = 3, out(A1) = 10, out(A2) = 12,
out(M2) = 5}

The new observation out(M2) = 5 disconfirms all
previous diagnoses
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Example (continued)

M1

M2

M3

A1

A2

3

3

2

2

3

12

12
[10] observed

Diagnostic problem DP = (SYS,OBS), with
Set of observations (with new one on M2):
OBS = {in1(M1) = 3, in2(M1) = 2, in1(M2) = 3, in2(M2) = 2,

in1(M3) = 2, in2(M3) = 3, out(A1) = 10, out(A2) = 12,
out(M2) = 5}

New diagnoses: D′

1 = {M1,M2,M3}, D′

2 = {M1,M2, A2},
D′

3 = {M2,M3, A1}, D′

4 = {M2, A1, A2}; note supersets
of the old diagnoses, e.g., D1, D3 ⊆ D′

1 (case 3)
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Definition of diagnosis revisited

Example two inverters Ik, k = 1, 2:

I1 I20 0
[1]

SD = {∀x((INV(x) ∧ ¬Ab(x))→ ¬(out(x) = in(x))),
INV(I1),
INV(I2)}

OBS = {in(I1) = 0, out(I) = 1}

Diagnoses: {I1} and {I2}

However, {I1, I2} might also be a diagnosis (only
excluded because of definition using subset-minimality
condition)
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Faul models

I1 I20 0
[1]

SD = {∀x((INV(x) ∧ ¬Ab(x))→ ¬(out(x) = in(x))),
∀x((INV(x) ∧Ab(x))→ (Stuck_at0(x) ∨ (out(x) = in(x)))),
∀x(Stuck_at0(x)→ out(x) = 0),
INV(I1),
INV(I2)}

Knowledge about behaviour for Ab(c) is called fault model

{I1} and {I2} still diagnoses,

{I1, I2} no longer a diagnosis, because

SD ∪OBS ∪ {Ab(I1),Ab(I2)} � ⊥
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Conclusions

Consistency-based diagnosis popular for trouble
shooting of equipment and devices

Extensions: temporal behaviour and continuous
behaviour

Diagnoses may be ranked using probability theory and
entropy (General Diagnostic Engine, GDE)

Software:
GDE/ATMS (Palo Alto Research Center):
http://www2.parc.com/spl/members/dekleer/

Leancop (University Darmstad/Potsdam):
http://www.leancop.de/

AILog!
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