
Model-based Reasoning – Abduction
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Model: representation of normal or abnormal behaviour
and, possibly, internal structure

Formalisation of model-based diagnosis:
consistency-based diagnosis (normal behaviour),
and
abductive diagnosis (abnormal behaviour)
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Abductive diagnosis
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Correspondence between predicted abnormal behaviour
and observed behaviour ⇒ defect!

Originators:
L. Console, D. Theseider Dupré and P. Torasso, “A theory of diagnosis for incomplete
causal models”, In: IJCAI’89, 1311–1317, 1989

D. Poole, “Explanation and prediction: an architecture for default and abductive
reasoning”, Computational Intelligence, vol. 5, nr. 2, 97–110, 1989

Y. Peng and J.A. Reggia, Abductive Inference Models for Diagnostic Problem Solving,
New York: Springer-Verlag, 1990
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Causal models

feverflu chills

thirst

myalgiasport

Causality: combination of causes gives rise to effects
flu causes fever fever causes chills
fever causes thirst flu causes myalgia
sport also causes myalgia

Using logic: (Cause1 ∧ · · · ∧ Causen) → Effect
Example:

fever → chills
fever → thirst
sport → myalgia · · ·
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Causality and implication

x causes y: Causes(x, y)

Axiomatisation:

transitivity:
∀x∀y∀z ((Causes(x, z) ∧ Causes(z, y)) → Causes(x, y))

antisymmetry: ∀x∀y(Causes(x, y) → ¬Causes(y, x))

reflexivity: ∀x Causes(x, x) (by definition this excludes
antisymmetry)

With implication: x causes y ≡ x → y

transitivity X: {P → Q,Q → R} � P → R

no antisymmetry but contraposition: {P → Q,¬Q} � ¬P

(P → Q ≡ ¬Q → ¬P )

reflexivity X: � P → P
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Weak and strong causality

Strong causality: C → E

“If C present, then E must also be present”

Weak causality: (C ∧ α) → E or simplified C ∧ α → E

“If C present, then E may be present” (α is
incompleteness assumption)

C

E

C → E

C

E

α

(C ∧ α) → E
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Weak and strong causality

feverflu chills

thirst

myalgiasport

α1

α2

Strong causality: C → E

Weak causality (“may cause”): C ∧ α → E

(α is incompleteness assumption)

Example:
fever ∧ α1 → chills
fever → thirst
sport → myalgia
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Generalisation

Representation for classes of cases

∀x(S(x) → S′(f(x))), with S and S′ states

S S′

x

...

f(x)

...
∀x(Interest(x) → Rate(Stocks(x)))

Interest Rate

x

high

low

Stocks(x)

low

high
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Prediction

feverflu chills

thirst

myalgiasport

α1

α2

Causal specification: Σ = (∆,Φ,R), with:
∆: potential causes and incompleteness
assumptions
Φ: facts that can be observed
R: causal model

Prediction V ⊆ ∆: R∪ V � E ,
with E ⊆ Φ (E can be observed)
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Example prediction

feverflu chills

thirst

myalgiasport

α1

α2

Causal specification: Σ = (∆,Φ,R)

Example 1: R∪ {flu, α1} � {chills, thirst}

Example 2:
R∪ {flu, α1, α2} �

{chills, thirst, myalgia}

Example 3: R∪ {sport} � myalgia
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Diagnostic problem

feverflu chills

thirst

myalgiasport

α1

α2

Causal specification: Σ = (∆,Φ,R)

Observed facts: F = {myalgia, thirst}

Diagnosis D?
(1) Prediction that explains F , formal: R∪ D � F

(2) · · · but that does not explain too much

Example diagnoses: D = {flu, α2}, D′ = {sport, flu} and
D′′ = {flu, α1}?
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Don’t explain too much!

feverflu chills

thirst

myalgiasport

α1

α2

Causal specification: Σ = (∆,Φ,R)

Observed facts: F = {myalgia, thirst}

Facts that should not be explained: C = {¬chills}

Formal: D ⊆ ∆ is a diagnosis if:
(1) R∪ D � F (covering condition)
(2) R∪ D ∪ C 2 ⊥ (consistency condition)
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Consistency condition

feverflu chills

thirst

myalgiasport

α1

α2

Causal specification: Σ = (∆,Φ,R)

Observed facts: F = {myalgia, thirst}

Facts that should not be explained:

C = {¬chills}

R ∪ {flu, α1, α2} ∪ {¬chills} � ⊥

⇒ D = {flu, α1, α2} no diagnosis
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Abduction = anticausal reasoning

Abduction:
Effect, Cause → Effect

Cause

Idea: reversal of the causal relation

Example:

fever → thirst results in thirst → fever

Thus:
{thirst → fever, thirst} � fever

Conclusion:
Abduction = deduction with implication reversal
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Abduction and deduction

Reversal of the causal relations in R and addition to R is
called the completion of R

Basic idea:

d1 → f

d2 → f

indicates that d1 and d2 are possible explanations for f ;

f → (d1 ∨ d2)

makes this explicit

Together:

{d1 → f, d2 → f, f → (d1 ∨ d2)} ≡ {f ↔ (d1 ∨ d2)}
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Abducibles

∆: defects, some of them derivable from other defects,
some not:

abducible: defects d not derivable
non-abducible: each defect that can be derived

Φ: findings, also non-abducible

A are abducibles; N are non-abducibles

Example:
d1 → d2

d3 → f1

d2 → f2

A = {d1, d3}; N = {d2, f1, f2}
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Completion

R = {ϕ1,1 → n1, . . . , ϕ1,n1
→ n1,

...
ϕm,1 → nm, . . . , ϕm,nm

→ nm}

N = {ni | 1 ≤ i ≤ m} is the set of non-abducible literals,
and

each ϕi,j denotes a conjunction of defect literals,
possibly including an assumption literal

Predicate completion of R with respect to N :
COMP[R;N ] = R∪ {n1 → ϕ1,1∨ · · · ∨ ϕ1,n1

,
...

nm → ϕm,1∨ · · · ∨ ϕm,nm
}
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Example

Example:
R = {P ∧ Q → V,

T → V,

T → U}

with N = {V, U} results in
COMP[R;N ] = {V ↔ ((P ∧ Q) ∨ T ), U ↔ T}

Let V be observed: COMP[R;N ] ∪ {V } � ((P ∧ Q) ∨ T )

i.e. two alternative diagnoses: (P ∧ Q) and T

Conclusion: Abduction = deduction in a completed theory
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Deduction of the solutions

P = (Σ, F ) is an abductive diagnostic problem

COMP[R;N ] is the predicate completion of R with
respect to N , the set of non-abducible literals in P

A solution formula S for P is defined as the most specific
formula consisting only of abducible literals, such that

COMP[R;N ] ∪ F ∪ C � S

where C is defined as:

C = {¬f ∈ Φ | f ∈ Φ, f 6∈ F, f is a positive literal}
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Solution formula

Theorem. Let P = (Σ, F ) be an abductive diagnostic
problem. Let C be constraints and S be a solution formula
for P. Let H ⊆ ∆ be a set of abducible literals, and let I be
an interpretation of P, such that for each abducible literal
a ∈ A: �I a iff a ∈ H. Then, H is a solution to P iff �I S.

Proof.
Conjuncts in S are equivalent to observed findings f ∈ F ,
that are logically entailed by R∪ H, or to non-observed
findings ¬f ∈ C that are consistent with R∪ H. Hence, an
interpretation I for which �I H, that falsifies each abducible
in ∆\H, satisfying every f ∈ F and each ¬f ∈ C that has
been rewritten, must satisfy this collection of conjuncts, i.e.
S.
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Example

feverflu chills

thirst

myalgiasport

α1

α2

R:

fever ∧ α1 → chills
flu → fever
fever → thirst
flu ∧ α2 → myalgia
sport → myalgia
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Example

COMP[R; {chills, thirst, myalgia, fever}]

= R∪ {chills → fever ∧ α1,

fever → flu, thirst → fever ,
myalgia → (flu ∧ α2) ∨ sport}

= {chills ↔ fever ∧ α1,

fever ↔ flu,

thirst ↔ fever,
myalgia ↔ (flu ∧ α2) ∨ sport}

Note that

COMP[R; {chills, thirst, myalgia, fever}] ∪ F ∪ C �

S ≡ (flu ∧ α2) ∨ (flu ∧ sport)

given that F = {thirst, myalgia} and C = {¬chills}
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Example

COMP[R; {chills, thirst, myalgia, fever}]

= R∪ {chills → fever ∧ α1,

fever → flu, thirst → fever ,
myalgia → (flu ∧ α2) ∨ sport}

= {chills ↔ fever ∧ α1,

fever ↔ flu,

thirst ↔ fever,
myalgia ↔ (flu ∧ α2) ∨ sport}

COMP[R; {chills, thirst, myalgia, fever}] ∪ F ∪ C � ¬(fever ∧ α1)

because {¬chills, chills ↔ (fever ∧ α1)} � ¬(fever ∧ α1);
¬(fever ∧ α1) is not part of S, because fever is non-abducible
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Set covering diagnosis

N = (∆,Φ, C) is called a causal net, where:
∆ is a set of possible defects,
Φ is a set of elements called observable findings,
and
C is a binary relation

C ⊆ ∆ × Φ

called the causation relation

A diagnostic problem in the set-covering theory of
diagnosis: D = (N , F ), where F ⊆ Φ is a set of
observed findings
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Further notions
From defects to causes and vice versa:

effects function e : ℘(∆) → ℘(Φ) is defined as follows:
for each D ⊆ ∆:

e(D) =
⋃

d∈D

e({d})

where e({d}) = {f | (d, f) ∈ C}

causes function c : ℘(Φ) → ℘(∆) is defined as follows:
for each E ⊆ Φ:

c(E) =
⋃

f∈E

c({f})

where c({f}) = {d | (d, f) ∈ C}
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Example

flu

common cold

pneumonia

cough

dyspnoea

fever

sneezing

e(D) =
⋃

d∈D

e({d})

where

e({d}) =











{cough, fever , sneezing} if d = flu

{cough, sneezing} if d = common cold

{fever , dyspnoea} if d = pneumonia
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Set-covering diagnosis

Let D = (N , F ) be a diagnostic problem, where F denotes a
set of observed findings. Then, a set-covering diagnosis of
D is a set of defects D ⊆ ∆, such that:

e(D) ⊇ F

Let F = {cough, fever} then

D1 = {flu}

is a diagnosis, but
D2 = {flu, common cold}
D3 = {common cold, pneumonia}

and D4 = {flu, common cold, pneumonia} are also diagnoses for
F
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Mapping to abductive diagnosis

Define
e({d}) = {f1, . . . , fn}

and construct for each d ∈ ∆:

d ∧ αf1
→ f1

d ∧ αf2
→ f2

...
d ∧ αfn

→ fn

Note no interactions between defects!

e(D) ⊇ F ⇔ R∪ H � F and R∪ H 2 ⊥, with D defects in H
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Alternative diagnostic definitions

Minimal cardinality: a diagnosis D of F is an
explanation of D iff it contains the minimum number of
elements among all diagnoses of F

Irredundancy: a diagnosis D of F is an explanation of D
iff no proper subset of D is a diagnosis of F

Relevance: a diagnosis D of F is an explanation of D iff
D ⊆ c(F )

Most probable diagnosis: a diagnosis D of F is an
explanation of D iff P (D|F ) ≥ P (D′|F ) for any diagnosis
D′ of F

A diagnosis D is called a minimal-cost explanation of D
iff

∑

d∈D cost(d) ≤
∑

d∈D′ cost(d)
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Example

flu

common cold

pneumonia

cough

dyspnoea

fever

sneezing

D1= {flu}
D2= {flu, common cold} Observed F = {cough, fever}
D3= {common cold, pneumonia}
D4= {flu, common cold, pneumonia}

Diagnoses Di, i = 1, . . . 4, are relevant diagnoses,
because c({cough, fever}) ⊇ Di

Irredundant diagnoses of F are D1 and D3

There is only one minimal cardinality diagnosis: D1
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Software: AILog

Diagnostic problem in AILog (developed by David Poole):

facts, denoted by FACTS

a set of hypotheses, denoted by HYP, and

a set of constraints, denoted by C

FACTS and constraints C are formulae in first-order logic;
hypotheses act as abducibles = assumables in AILog

A set FACTS ∪ H is called an explanation of a closed
formula g, where H is a set of ground instances of
hypothesis elements in HYP, iff:

(1) FACTS ∪ H � g, and

(2) FACTS ∪ H ∪ C 2 ⊥.
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Example

assumable a1.
assumable a2.
assumable fever.
assumable flu.
assumable sport.

chills <- fever & a1.
fever <- flu.
thirst <- fever.
myalgia <- flu & a2.
myalgia <- sport.

false <- chills. % constraint
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Calling AILog
ailog: create nogoods. % enforce consistency
ailog: ask thirst & myalgia.

Yields the following results:
Answer: thirst & myalgia.
Assuming: [a2, fever, flu].
[more,ok,how,help]: more.

Answer: thirst & myalgia.
Assuming: [fever, sport].
[more,ok,how,help]: more.

Answer: thirst & myalgia.
Assuming: [a2, flu].
[more,ok,how,help]: more.

Answer: thirst & myalgia.
Assuming: [flu, sport].
[more,ok,how,help]: more.

No more answers.
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Conclusions

Model-based (consistency-based and abductive)
reasoning is suitable if there are domain models
available

Consistency-gebased diagnosis: no or only scarce
knowledge of problems in domain

Abductive diagnosis: causal models of abnormal
behaviour available

Integration of consistency-based and abductive
diagnosis is possible

Relationship with Bayesian networks
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