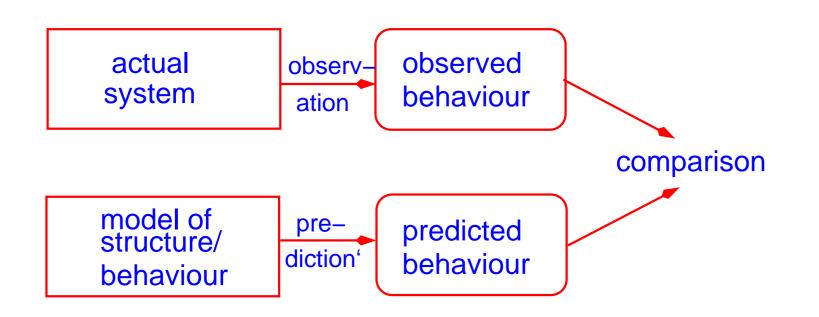
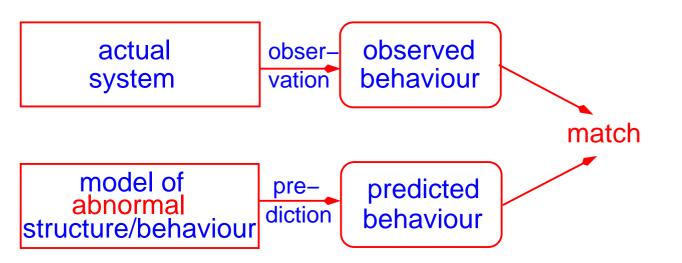
Model-based Reasoning – Abduction



- Model: representation of normal or abnormal behaviour and, possibly, internal structure
- Formalisation of model-based diagnosis:
 - consistency-based diagnosis (normal behaviour), and
 - abductive diagnosis (abnormal behaviour)

Abductive diagnosis

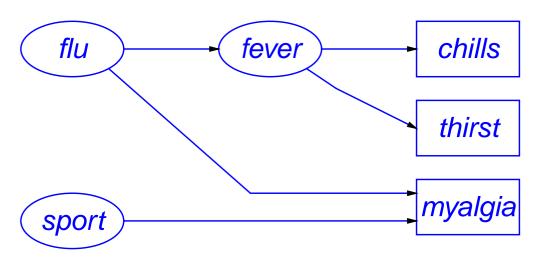


Correspondence between predicted *abnormal* behaviour and observed behaviour \Rightarrow defect!

Originators:

- L. Console, D. Theseider Dupré and P. Torasso, "A theory of diagnosis for incomplete causal models", In: IJCAI'89, 1311–1317, 1989
- D. Poole, "Explanation and prediction: an architecture for default and abductive reasoning", Computational Intelligence, vol. 5, nr. 2, 97–110, 1989
- Y. Peng and J.A. Reggia, Abductive Inference Models for Diagnostic Problem Solving, New York: Springer-Verlag, 1990

Causal models



Causality: combination of causes gives rise to effects

flu causes feverfever causes chillsfever causes thirstflu causes myalgiasport also causes myalgia

- Using logic: (Cause₁ $\land \cdots \land$ Cause_n) \rightarrow Effect
- Example:

fever \rightarrow chills fever \rightarrow thirst sport \rightarrow myalgia \cdots

Causality and implication

x causes y: Causes(x, y)

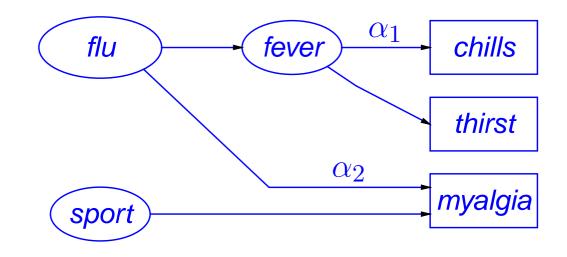
Axiomatisation:

- transitivity:
 - $\forall x \forall y \forall z \left(\left(\mathsf{Causes}(x, z) \land \mathsf{Causes}(z, y) \right) \rightarrow \mathsf{Causes}(x, y) \right) \\$
- antisymmetry: $\forall x \forall y (Causes(x, y) \rightarrow \neg Causes(y, x))$
- reflexivity: $\forall x \text{ Causes}(x, x)$ (by definition this excludes antisymmetry)
- With implication: $x \text{ causes } y \equiv x \rightarrow y$
- transitivity \checkmark : $\{P \rightarrow Q, Q \rightarrow R\} \models P \rightarrow R$
- no antisymmetry but contraposition: $\{P \rightarrow Q, \neg Q\} \models \neg P$ $(P \rightarrow Q \equiv \neg Q \rightarrow \neg P)$
 - reflexivity $\checkmark : \vDash P \rightarrow P$

Weak and strong causality

- Strong causality: $C \rightarrow E$ "If C present, then E must also be present"
- Weak causality: $(C \land \alpha) \rightarrow E$ or simplified $C \land \alpha \rightarrow E$ "If *C* present, then *E* may be present" (α is incompleteness assumption)

Weak and strong causality



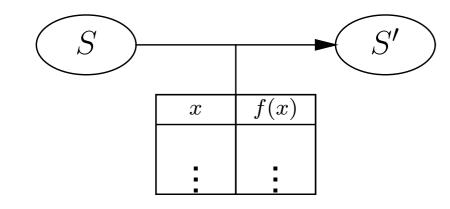
- Strong causality: $C \to E$
- Weak causality ("may cause"): $C \land \alpha \to E$ (α is incompleteness assumption)

Example:

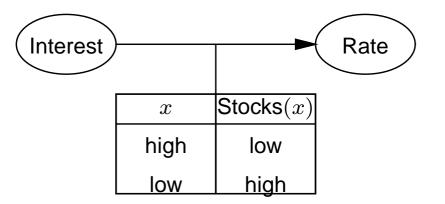
fever $\land \alpha_1 \rightarrow \text{chills}$ fever $\rightarrow \text{thirst}$ sport $\rightarrow \text{myalgia}$

Generalisation

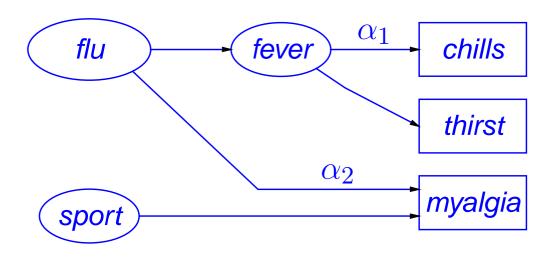
- Representation for classes of cases
- $\forall x(S(x) \rightarrow S'(f(x)))$, with *S* and *S'* states



• $\forall x (\mathsf{Interest}(x) \to \mathsf{Rate}(\mathsf{Stocks}(x)))$

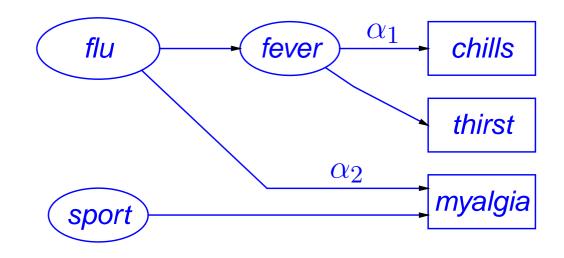


Prediction



- Causal specification: $\Sigma = (\Delta, \Phi, \mathcal{R})$, with:
 - Δ : potential causes and incompleteness assumptions
 - Φ : facts that can be observed
 - \mathcal{R} : causal model
- Prediction $V \subseteq \Delta$: $\mathcal{R} \cup V \vDash E$, with $E \subseteq \Phi$ (*E* can be observed)

Example prediction



Causal specification: $\Sigma = (\Delta, \Phi, \mathcal{R})$

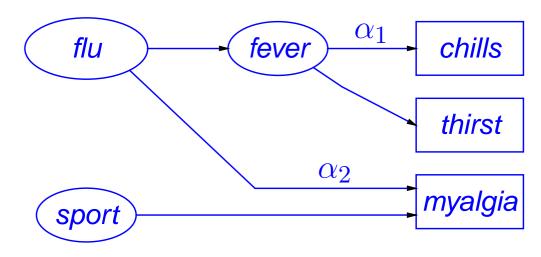
• Example 1: $\mathcal{R} \cup \{ \textit{flu}, \alpha_1 \} \vDash \{ \textit{chills}, \textit{thirst} \}$

Example 2:

 $\mathcal{R} \cup \{ \textit{flu}, \alpha_1, \alpha_2 \} \vDash \\ \{ \textit{chills, thirst, myalgia} \}$

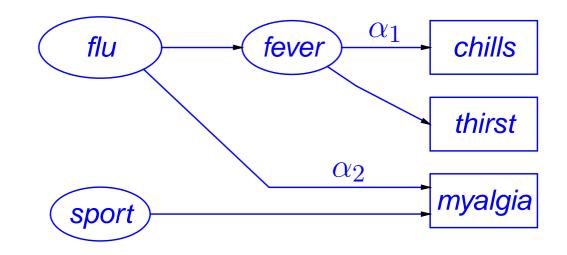
• Example 3: $\mathcal{R} \cup \{sport\} \vDash myalgia$

Diagnostic problem



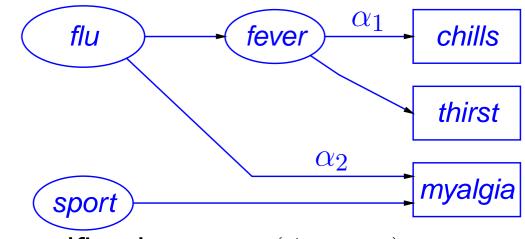
- Causal specification: $\Sigma = (\Delta, \Phi, \mathcal{R})$
- Observed facts: $F = \{myalgia, thirst\}$
- Diagnosis D?
 - (1) Prediction that explains F, formal: $\mathcal{R} \cup D \models F$
 - (2) \cdots but that does not explain too much
- Example diagnoses: $D = \{ flu, \alpha_2 \}, D' = \{ sport, flu \}$ and $D'' = \{ flu, \alpha_1 \}$?

Don't explain too much!



- Causal specification: $\Sigma = (\Delta, \Phi, \mathcal{R})$
- **Observed facts:** $F = \{myalgia, thirst\}$
- Facts that should *not* be explained: $C = \{\neg chills\}$
- Formal: D ⊆ ∆ is a *diagnosis* if:
 (1) $\mathcal{R} \cup D \vDash F$ (covering condition)
 (2) $\mathcal{R} \cup D \cup C \nvDash \bot$ (consistency condition)

Consistency condition



- Causal specification: $\Sigma = (\Delta, \Phi, \mathcal{R})$
- **Observed facts:** $F = \{myalgia, thirst\}$
- Facts that should not be explained:

$$C = \{\neg chills\}$$

$$\mathcal{R} \cup \{ \textit{flu}, \alpha_1, \alpha_2 \} \cup \{ \neg \textit{chills} \} \vDash \bot$$
$$\Rightarrow D = \{ \textit{flu}, \alpha_1, \alpha_2 \} \textit{ no } \text{diagnosis}$$

Abduction = anticausal reasoning

Abduction:

 $\text{Effect}, \ \text{Cause} \rightarrow \text{Effect}$

Cause

Idea: reversal of the causal relation

Example:

fever \rightarrow thirst results in thirst \rightarrow fever

Thus:

$$\{$$
thirst \rightarrow *fever*, *thirst* $\} \models$ *fever*

Conclusion:

Abduction = deduction with implication reversal

Abduction and deduction

Reversal of the causal relations in ${\cal R}$ and addition to ${\cal R}$ is called the completion of ${\cal R}$

Basic idea:

$$\begin{array}{c} d_1 \to f \\ d_2 \to f \end{array}$$

indicates that d_1 and d_2 are possible explanations for f;

 $f \to (d_1 \lor d_2)$

makes this explicit

Together:

$$\{d_1 \to f, d_2 \to f, f \to (d_1 \lor d_2)\} \equiv \{f \leftrightarrow (d_1 \lor d_2)\}$$

Abducibles

- Δ : defects, some of them derivable from other defects, some not:
 - **abducible:** defects *d* not derivable
 - non-abducible: each defect that can be derived
- Φ : findings, also non-abducible

A are abducibles; N are non-abducibles

Example:

 $d_1 \to d_2$ $d_3 \to f_1$ $d_2 \to f_2$ $A = \{d_1, d_3\}; N = \{d_2, f_1, f_2\}$

Completion

$$\mathcal{R} = \{\varphi_{1,1} \to n_1, \dots, \varphi_{1,n_1} \to n_1, \\ \vdots \\ \varphi_{m,1} \to n_m, \dots, \varphi_{m,n_m} \to n_m\}$$

- each $\varphi_{i,j}$ denotes a conjunction of defect literals, possibly including an assumption literal

Predicate completion of \mathcal{R} with respect to N: $\operatorname{COMP}[\mathcal{R}; N] = \mathcal{R} \cup \{n_1 \to \varphi_{1,1} \lor \cdots \lor \varphi_{1,n_1}, \vdots$

 $n_m \to \varphi_{m,1} \lor \cdots \lor \varphi_{m,n_m}$

Example:

$$\mathcal{R} = \{ P \land Q \to V, \\ T \to V, \\ T \to U \}$$

with $N = \{V, U\}$ results in $\operatorname{COMP}[\mathcal{R}; N] = \{V \leftrightarrow ((P \land Q) \lor T), U \leftrightarrow T\}$

Let V be observed: $COMP[\mathcal{R}; N] \cup \{V\} \vDash ((P \land Q) \lor T)$

i.e. two alternative diagnoses: $(P \land Q)$ and T

Conclusion: Abduction = deduction in a *completed theory*

Deduction of the solutions

 $\mathbf{P} = (\Sigma, F) \text{ is an abductive diagnostic problem }$

• $\operatorname{COMP}[\mathcal{R}; N]$ is the predicate completion of \mathcal{R} with respect to N, the set of non-abducible literals in \mathcal{P}

A solution formula S for \mathcal{P} is defined as the most specific formula consisting only of abducible literals, such that

 $\operatorname{COMP}[\mathcal{R}; N] \cup F \cup C \vDash S$

where C is defined as:

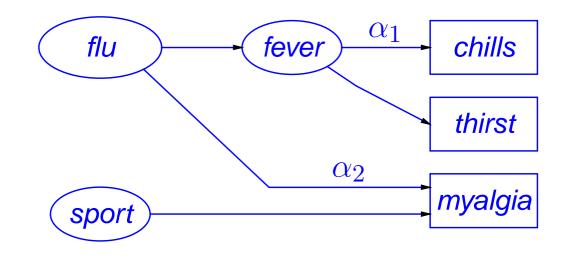
 $C = \{ \neg f \in \Phi \mid f \in \Phi, f \notin F, f \text{ is a positive literal} \}$

Solution formula

Theorem. Let $\mathcal{P} = (\Sigma, F)$ be an abductive diagnostic problem. Let *C* be constraints and *S* be a solution formula for \mathcal{P} . Let $H \subseteq \Delta$ be a set of abducible literals, and let *I* be an interpretation of \mathcal{P} , such that for each abducible literal $a \in A$: $\models_I a$ iff $a \in H$. Then, *H* is a solution to \mathcal{P} iff $\models_I S$.

Proof.

Conjuncts in *S* are equivalent to observed findings $f \in F$, that are logically entailed by $\mathcal{R} \cup H$, or to non-observed findings $\neg f \in C$ that are consistent with $\mathcal{R} \cup H$. Hence, an interpretation *I* for which $\vDash_I H$, that falsifies each abducible in $\Delta \setminus H$, satisfying every $f \in F$ and each $\neg f \in C$ that has been rewritten, must satisfy this collection of conjuncts, i.e. *S*.



\mathcal{R} :

fever $\land \alpha_1 \rightarrow chills$ flu \rightarrow fever fever $\rightarrow thirst$ flu $\land \alpha_2 \rightarrow myalgia$ sport $\rightarrow myalgia$

 $\operatorname{COMP}[\mathcal{R}; \{\text{chills}, \text{thirst}, \text{myalgia}, \text{fever}\}]$

$$= \mathcal{R} \cup \{ \text{chills} \rightarrow \text{fever} \land \alpha_1, \\ \text{fever} \rightarrow \text{flu, thirst} \rightarrow \text{fever}, \\ \text{myalgia} \rightarrow (\text{flu} \land \alpha_2) \lor \text{sport} \}$$

$$= \{ \text{chills} \leftrightarrow \text{fever} \land \alpha_1, \\ \text{fever} \leftrightarrow \text{flu}, \\ \text{thirst} \leftrightarrow \text{fever}, \\ \text{myalgia} \leftrightarrow (\text{flu} \land \alpha_2) \lor \text{sport} \}$$

Note that

 $COMP[\mathcal{R}; \{ chills, thirst, myalgia, fever \}] \cup F \cup C \vDash$ $S \equiv (flu \land \alpha_2) \lor (flu \land sport)$

given that $F = \{$ *thirst*, *myalgia* $\}$ and $C = \{\neg chills\}$

 $\operatorname{COMP}[\mathcal{R}; \{\text{chills}, \text{thirst}, \text{myalgia}, \text{fever}\}]$

$$= \mathcal{R} \cup \{ \text{chills} \rightarrow \text{fever} \land \alpha_1, \\ \text{fever} \rightarrow \text{flu, thirst} \rightarrow \text{fever}, \\ \text{myalgia} \rightarrow (\text{flu} \land \alpha_2) \lor \text{sport} \}$$

$$= \{ \text{chills} \leftrightarrow \text{fever} \land \alpha_1, \\ \text{fever} \leftrightarrow \text{flu}, \\ \text{thirst} \leftrightarrow \text{fever}, \\ \text{myalgia} \leftrightarrow (\text{flu} \land \alpha_2) \lor \text{sport} \}$$

 $\operatorname{COMP}[\mathcal{R}; \{ \text{chills}, \text{thirst}, \text{myalgia}, \text{fever} \}] \cup F \cup C \vDash \neg (\text{fever} \land \alpha_1)$

because $\{\neg chills, chills \leftrightarrow (fever \land \alpha_1)\} \vDash \neg (fever \land \alpha_1);$ $\neg (fever \land \alpha_1)$ is not part of *S*, because *fever* is non-abducible

Set covering diagnosis

 \checkmark $\mathcal{N} = (\Delta, \Phi, C)$ is called a causal net, where:

- Δ is a set of possible defects,
- Φ is a set of elements called observable findings, and
- C is a binary relation

$$C \subseteq \Delta \times \Phi$$

called the causation relation

• A diagnostic problem in the set-covering theory of diagnosis: $\mathcal{D} = (\mathcal{N}, F)$, where $F \subseteq \Phi$ is a set of observed findings

Further notions

From defects to causes and vice versa:

■ effects function $e : \wp(\Delta) \to \wp(\Phi)$ is defined as follows: for each $D \subseteq \Delta$:

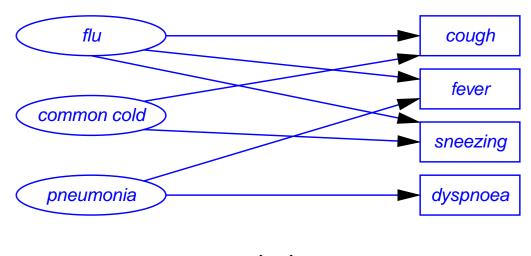
$$e(D) = \bigcup_{d \in D} e(\{d\})$$

where $e(\{d\}) = \{f \mid (d, f) \in C\}$

■ causes function $c: \wp(\Phi) \to \wp(\Delta)$ is defined as follows: for each $E \subseteq \Phi$:

$$c(E) = \bigcup_{f \in E} c(\{f\})$$

where $c(\{f\}) = \{d \mid (d, f) \in C\}$



e(D) =	U	$e(\{d\})$
d	$l \in I$	\mathcal{D}

where

$$e(\{d\}) = \begin{cases} \{cough, fever, sneezing\} & \text{if } d = flu \\ \{cough, sneezing\} & \text{if } d = common \ cold \\ \{fever, dyspnoea\} & \text{if } d = pneumonia \end{cases}$$

Set-covering diagnosis

Let $\mathcal{D} = (\mathcal{N}, F)$ be a diagnostic problem, where *F* denotes a set of observed findings. Then, a set-covering diagnosis of \mathcal{D} is a set of defects $D \subseteq \Delta$, such that:

$$e(D) \supseteq F$$

Let $F = \{cough, fever\}$ then

$$D_1 = \{\mathit{flu}\}$$

is a diagnosis, but

$$D_2 = \{ \textit{flu}, \textit{common cold} \}$$

 $D_3 = \{ \textit{common cold}, \textit{pneumonia} \}$

and $D_4 = \{ flu, common cold, pneumonia \}$ are also diagnoses for F

Mapping to abductive diagnosis

Define

$$e(\{d\}) = \{f_1, \dots, f_n\}$$

and construct for each $d \in \Delta$:

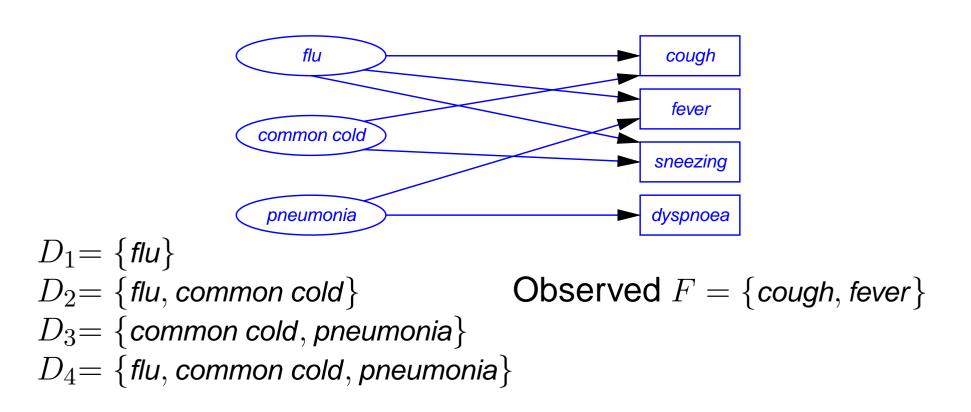
$$d \wedge \alpha_{f_1} \rightarrow f_1$$
$$d \wedge \alpha_{f_2} \rightarrow f_2$$
$$\vdots$$
$$d \wedge \alpha_{f_n} \rightarrow f_n$$

Note no interactions between defects!

 $e(D) \supseteq F \Leftrightarrow \mathcal{R} \cup H \vDash F$ and $\mathcal{R} \cup H \nvDash \bot$, with D defects in H

Alternative diagnostic definitions

- Minimal cardinality: a diagnosis D of F is an explanation of D iff it contains the minimum number of elements among all diagnoses of F
- Irredundancy: a diagnosis D of F is an explanation of \mathcal{D} iff no proper subset of D is a diagnosis of F
- Selevance: a diagnosis D of F is an explanation of D iff $D \subseteq c(F)$
- Most probable diagnosis: a diagnosis D of F is an explanation of \mathcal{D} iff $P(D|F) \ge P(D'|F)$ for any diagnosis D' of F
- A diagnosis *D* is called a minimal-cost explanation of \mathcal{D} iff $\sum_{d \in D} cost(d) \leq \sum_{d \in D'} cost(d)$



- Diagnoses D_i , i = 1, ..., 4, are relevant diagnoses, because $c(\{cough, fever\}) \supseteq D_i$
- Irredundant diagnoses of F are D_1 and D_3
- There is only one minimal cardinality diagnosis: D_1

Software: AILog

Diagnostic problem in AILog (developed by David Poole):

- **facts**, denoted by FACTS
- a set of hypotheses, denoted by HYP, and
- a set of constraints, denoted by C

FACTS and constraints C are formulae in first-order logic; hypotheses act as abducibles = assumables in AlLog

A set $FACTS \cup H$ is called an explanation of a closed formula g, where H is a set of ground instances of hypothesis elements in HYP, iff:

- (1) FACTS $\cup H \vDash g$, and
- (2) FACTS $\cup H \cup C \nvDash \bot$.

assumable a1. assumable a2. assumable fever. assumable flu. assumable sport.

chills <- fever & al. fever <- flu. thirst <- fever. myalgia <- flu & a2. myalgia <- sport.

false <- chills. % constraint

Calling AILog

ailog: create_nogoods. % enforce consistency ailog: ask thirst & myalgia. Yields the following results:

```
Answer: thirst & myalgia.
Assuming: [a2, fever, flu].
  [more,ok,how,help]: more.
Answer: thirst & myalgia.
Assuming: [fever, sport].
  [more,ok,how,help]: more.
Answer: thirst & myalgia.
Assuming: [a2, flu].
  [more,ok,how,help]: more.
Answer: thirst & myalgia.
Assuming: [flu, sport].
  [more,ok,how,help]: more.
No more answers.
```

Conclusions

- Model-based (consistency-based and abductive) reasoning is suitable if there are domain models available
- Consistency-gebased diagnosis: no or only scarce knowledge of problems in domain
- Abductive diagnosis: causal models of abnormal behaviour available
- Integration of consistency-based and abductive diagnosis is possible
- Relationship with Bayesian networks