Model-based Reasoning — Abduction
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# Model: representation of normal or abnormal behaviour
and, possibly, internal structure

# Formalisation of model-based diagnosis:

s consistency-based diagnosis (normal behaviour),
and

L » abductive diagnosis (abnormal behaviour) J
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Abductive diagnhosis

actual obser-| observed
system vation | behaviour

match

Jhodelof  fpre=| predicted
structure/behaviour| 4" | behaviour

Correspondence between predicted abnormal behaviour
and observed behaviour = defect!

Originators:

® L. Console, D. Theseider Dupré and P. Torasso, “A theory of diagnosis for incomplete
causal models”, In: IJCAI'89, 1311-1317, 1989

® D. Poole, “Explanation and prediction: an architecture for default and abductive
reasoning”, Computational Intelligence, vol. 5, nr. 2, 97-110, 1989

® Y Peng and J.A. Reggia, Abductive Inference Models for Diagnostic Problem Solving,
New York: Springer-Verlag, 1990
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Causal models

f flu @\_K chills T
thirst

Y Y

myalgia

# Causality: combination of causes gives rise to effects

flu causes fever fever causes chills
fever causes thirst flu causes myalgia
sport also causes myalgia

# Using logic: (Cause; A --- A Cause,,) — Effect

#» Example:
fever — chills

L fever — thirst J

sport — myalgia - - -
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Causality and implication

r causes y. Causes(z,y) T

Axiomatisation:

# transitivity:
VaVyVz ((Causes(z, z) A Causes(z,y)) — Causes(z,y))

# antisymmetry: VaVy(Causes(z,y) — —Causes(y, x))

o reflexivity: Va Causes(z, ) (by definition this excludes
antisymmetry)

With implication: z causes y =z — vy
# transitivity v: {P - Q,Q - R}F P — R

# no antisymmetry but contraposition: {P — @Q,—Q} F —-P
(P —Q=-Q— ~P)

L.p reflexivity v: E P — P J

—n. 4/33



Weak and strong causality

- N

# Strong causality: C — E
“If C' present, then £ must also be present”

# Weak causality: (C' A a) — E or simplified C ANa — FE
“If C' present, then £ may be present” (« Is
Incompleteness assumption)

C —F (CNhNa)— E
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Weak and strong causality

B o
“ (fever )—~1— chills

thirst

a2

Y Y

myalgia

# Strong causality: C — E

# Weak causality (“may cause”): C Na — E
(o IS Incompleteness assumption)

#» Example:

fever A\ «v; — chills
fever — thirst

L sport — myalgia J
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Generalisation

#® Representation for classes of cases
® Va(S(x) — S'(f(x))), with S and S’ states

<D

0

® Vz(Interest(z) — Rate(Stoc.ks(a:).))

Stocks(x)

high

low

low
high
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Prediction

(87 :

a2

thirst

Y Y

myalgia

o Causal specification: ¥ = (A, ®,R), with:
s A: potential causes and incompleteness

assumptions

s ¢: facts that can be observed

s R: causal model

#® PredictionV CA: |[RUVEE
with £ C & (£ can be observed)
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Example prediction

(87 :

thirst

a2

Y Y

myalgia

Causal specification: ¥ = (A, &, R)
o Example 1: R U {flu, a1} F {chills, thirst}
# Example 2:

R U {ﬂu, a1, 042} =
{chills, thirst, myalgia }

L’ Example 3: R U {sport} F myalgia J

—p. 9/33



Diagnostic problem

(fovery—

a2

- chills

thirst

Y Y

# Causal specification: > = (A, &, R)
# Observed facts: F' = {myalgia, thirst}

# Diagnosis D?

(1) Prediction that explains F', formal: RU D E F

myalgia

(2) --- but that does not explain too much

o Example diagnoses: D = {flu,as}, D' = {sport, flu} and

D' ={flu,q}?

|
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Don’t explain too much!

@8 )

thirst

a2

Y Y

myalgia

# Causal specification: X = (A, ¢, R)

# Observed facts: F' = {myalgia, thirst}

# Facts that should not be explained: C' = {—chills}
o

Formal: D C A is a diagnosis If:
(1) R U D E F (covering condition)
L (2) RuDuC ¥ L (consistency condition) J
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Consistency condition

(87 :

thirst

a2

Y Y

myalgia

Causal specification: > = (A, &, R)

Observed facts: F' = {myalgia, thirst}
Facts that should not be explained:

C' = {—chills}
R UAflu, aq, g} U {—=chills} F L

= D = {flu, a1, a2} No diagnosis
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Abduction = anticausal reasoning

o N

bduction:
Effect, Cause — Effect

Cause
ldea: reversal of the causal relation

fever — thirst results In thirst — fever

Thus:
{thirst — fever, thirst} F fever

Conclusion:
Abduction = deduction with implication reversal

o |
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Abduction and deduction

o N

Reversal of the causal relations in R and addition to R IS
called the completion of R

Basic idea:

di — f
do — f

Indicates that d; and d, are possible explanations for f;
f—(d1Vdg)
makes this explicit

Together:
L {dl_>f7d2_>f7f_>(dl\/dQ)}E{fH(dlde)} J
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Abducibles

- N

® A: defects, some of them derivable from other defects,
some not:

o abducible: defects d not derivable
s nhon-abducible: each defect that can be derived

# &: findings, also non-abducible

A are abducibles; N are non-abducibles

Example:
d1 — do
ds — fi
do — fo

A = {dy1,d3}; N = {do, f1, f2
L {d1,d3} { f J
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Completion

- N

R={v11—=n1,...,01n, — N1,

Pm,l = s -, Pmng, — o}

® N ={n;|1<i<m} Iisthe set of non-abducible literals,
and

® each ¢; ; denotes a conjunction of defect literals,
possibly including an assumption literal

Predicate completion of R with respect to /V:
COMP[R; N] =R U{n1 — p11V -V ©1n,,

\— Nm — Pm,1V eV me,nm} J
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Example

R={PANQ—=V
T —V,
T— U}
with N = {V, U} results in
COMPR;N| =4V < (PANQ)VT),U < T}

Let VV be observed: COMP[R; NJU{V}E (PAQ)VT)

l.e. two alternative diagnoses: (P A Q) and T

Conclusion:

o

Abduction = deduction in a completed theory
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Deduction of the solutions

- N

#® P = (3, F)is an abductive diagnhostic problem

® COMP[R; N] is the predicate completion of R with
respect to N, the set of non-abducible literals in P

A solution formula S for P is defined as the most specific
formula consisting only of abducible literals, such that

COMP[R; NJUFUCES
where C Is defined as:

C={~fed|fecd f&F, fisa positive literal}

o |
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Solution formula

-

Theorem. Let P = (3, F') be an abductive diagnostic
problem. Let C' be constraints and S be a solution formula
for P. Let H C A be a set of abducible literals, and let I be
an interpretation of P, such that for each abducible literal
a € A Fraiffa e H. Then, H is a solutionto P iff 7 S.

-

Proof.

Conjuncts in S are equivalent to observed findings f € F,
that are logically entailed by R U H, or to non-observed
findings —f € C that are consistent with R U H. Hence, an
Interpretation I for which =; H, that falsifies each abducible
In A\ H, satisfying every f € ' and each —f € C that has
been rewritten, must satisfy this collection of conjuncts, I.e.
S.

o |
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@8 )

thirst

a2

myalgia

Y Y

fever A avc; — chills
flu — fever

fever — thirst

flu A ap — myalgia
sport — myalgia

|
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Example

- N

COMP|[R; {chills, thirst, myalgia, fever }|

= R U {chills — fever A a,
fever — flu, thirst — fever,
myalgia — (flu A a2) V sport }

= {chills <> fever A ag,
fever < flu,
thirst < fever,
myalgia <~ (flu A a2) V sport }

Note that

COMP|[R; {chills, thirst, myalgia, fever }| U FU C' FE
S = (flu A ag) V (flu A sport)

Lgiven that /' = {thirst, myalgia} and C' = {—chills} J
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Example

- N

COMP|[R; {chills, thirst, myalgia, fever }|

= R U {chills — fever A a,
fever — flu, thirst — fever,
myalgia — (flu A a2) V sport }

= {chills < fever A ag,
fever < flu,
thirst < fever,
myalgia <~ (flu A a2) V sport }

COMP|[R; {chills, thirst, myalgia, fever }| U F' U C' E —(fever A ay)

because {—chills, chills < (fever A a1)} E —(fever A a1);
Lﬂ(fever A a1) IS not part of .S, because fever is hon-abducible J
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Set covering diagnosis

f.o N = (A, ®,C) is called a causal net, where:
s A IS a set of possible defects,

s O is a set of elements called observable findings,
and

s (C'Is a binary relation
CCAxO

called the causation relation

# A diagnostic problem in the set-covering theory of
diagnosis: D = (N, F'), where F C & is a set of
observed findings

o |
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Further notions

From defects to causes and vice versa:

o effects function e: p(A) — o(P) is defined as follows:
for each D C A:

e(D) = | e({d})

deD

where e({d}) = {f | (d, f) € C}

# causes function ¢ : p(®) — p(A) is defined as follows:
for each £ C ¢:

«(B) = e({f})

fekr

~ wherec({f}) =1d][(d, f) € C} o



cough

fever

common cold

— sneezing

e(D) = | e({d})

deD
where
[ {cough, fever, sneezing} if d = flu
e({d}) = ¢ {cough, sneezing} If d = common cold

\_ \ {fever, dyspnoea } If d = pneumonia J
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Set-covering diagnosis

-

fLet D = (N, F) be a diagnostic problem, where F denotes a
set of observed findings. Then, a set-covering diagnosis of
D Is a set of defects D C A, such that:

e(D) D F
Let /" = {cough, fever } then
Dy = {flu}

IS a diagnosis, but

Dy = {flu, common cold }
D3 = {common cold, pneumonia}

and D, = {flu,common cold, pneumonia} are also diagnoses for

F |
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Mapping to abductive diagnosis

-

Define

T
e(1dy) = Uf1s- s fu)

and construct for each d € A:

d/\Ckf1 —  f1
d/\Ckf2 —  fo

d N af — fn
Note no interactions between defects!

e(D)DF < RUHF Fand RUH ¥ L, with D defects in H

o |
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Alternative diagnostic definitions

-

Minimal cardinality: a diagnosis D of F'is an
explanation of D iff it contains the minimum number of
elements among all diagnoses of F

Irredundancy: a diagnosis D of F'is an explanation of D
Iff no proper subset of D Is a diaghosis of F

Relevance: a diagnosis D of F'is an explanation of D iff
D C ¢(F)

Most probable diagnosis: a diagnosis D of F'is an
explanation of D iff P(D|F) > P(D’|F) for any diagnosis
D' of F

A diagnosis D is called a minimal-cost explanation of D
Iff > cpcost(d) <> ,cp cost(d)

|
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cough

fever

common cold

— sneezing

D= {flu}

Do= {flu, common cold } Observed F' = {cough, fever }
D3= {common cold, pneumonia}

D4= {flu, common cold, pneumonia }

# Diagnoses D;, i =1,...4, are relevant diagnoses,
because c¢({cough, fever}) O D;

# Irredundant diagnoses of F are D; and Dj;
L.o There is only one minimal cardinality diagnhosis: D; J

—pn. 29/33



Software: AlLog
fDiagnosti(: problem in AlLog (developed by David Poole):
# facts, denoted by FACTS
# a set of hypotheses, denoted by HYP, and
# a set of constraints, denoted by C

-

FACTS and constraints C' are formulae In first-order logic;
hypotheses act as abducibles = assumables in AlLog

A set FACTS U H is called an explanation of a closed
formula g, where H is a set of ground instances of
hypothesis elements in HYP, Iff:

(1) FACTSU H E g, and
(2) FACTSUHUCE L.

o |
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Example
al. __1

assumabl e
assumabl e aZ2.
assumabl e fever.
assumabl e f1l u.
assunmabl e sport.

chills <- fever & al.
f ever <- flu.

thirst <- fever.
nmyalgia <- flu & a2.
nyal gia <- sport.

false <- chills. % constral nt
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Calling AlLog

creat e_nogoods.

(__ailog:

% enf orce consi stency

allog: ask thirst & nyal gi a.
Yields the following results:
Answer: thirst & nyal gia.
Assum ng: [a2, fever, flu].
| nor e, ok, how, hel p]: nore.
Answer: thirst & nyal gia.
Assum ng: [fever, sport].

[ nor e, ok, how, hel p]: nore.
Answer . thirst & nyal gia.
Assum ng: [a2, flu].

| nor e, ok, how, hel p]: nore.
Answer: thirst & nyal gia.
Assum ng: [flu, sport].

| nor e, ok, how, hel p]:
NO nore answers.

nor e.
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Conclusions

Model-based (consistency-based and abductive)
reasoning is suitable if there are domain models
available

Consistency-gebased diagnosis: no or only scarce
knowledge of problems in domain

Abductive diagnosis: causal models of abnormal
behaviour available

Integration of consistency-based and abductive
diagnosis is possible

Relationship with Bayesian networks

-
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