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Exercises Logic and Resolution

This set of exercises already contains several examples. We only illustrate unification once more.

Exercise 2.1(iv)

We have to find a substitution θ such that:

P (x, z, y)θ = P (x, z, x)θ = P (a, x, x)θ

To make the first argument equal, we must replace x by a. This yields:

P (x, z, y){a/x} = P (a, z, y)
P (x, z, x){a/x} = P (a, z, a)
P (a, x, x){a/x} = P (a, a, a)

To unify the second and third argument, it is clear that z and y also have to be replaced by a. So
θ = {a/x, a/y, a/z}.

Exercises Description Logics & Frames

Exercise 1

1. Employee ⊑ Human

2. Mother ≡ Female ⊓ ∃hasChild.⊤

3. Parent ≡ Mother
⊔

Father

4. Grandmother ≡Mother ⊓ ∃hasChild.Parent

5. ∃hasChild.Human ⊑ Human

Exercise 4.a.

Consider the formula in predicate logic:

∀x((∀y r(x, y)→ A(y) ∧B(y))→ ((∀y r(x, y)→ A(y)) ∧ (∀y r(x, y)→ B(y)))

Proof: Take an arbitrary x. Suppose that (1) ∀y r(x, y) → A(y) ∧ B(y). Take an arbitrary y
such that r(x, y). Then A(y) follows from (1). So ∀y r(x, y) → A(y). The same reasoning for
∀y r(x, y)→ B(y).
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Figure 1: Multiple inheritance with exceptions

Exercise 4.c.

In predicate logic:

∀x((∀y r(x, y)→ A(y) ∨B(y))→ ((∀y r(x, y)→ A(y)) ∧ (∀y r(x, y) ∨B(y)))

Consider the structure with domain D = {d1, d2, d3} and interpretation I such that:

I(r) = {(d1, d2), (d1, d3)}
I(A) = {d2}
I(B) = {d3}

Choose x = d1. Then it holds that ∀y r(x, y)→ A(y)∨B(y), but (e.g.) not ∀y r(x, y)→ A(y). So
the formula does not hold.

Exercise 5
a.

car ⊑ ∃wheels.{4}
car ⊑ ∃seats.{4}
sportscar ⊑ car
sportscar ⊑ ∃seats.{2}

Rolls-Royce : car
(Rolls-Royce, enough) : max-speed

If a sportscar would have been given, then the set would have become inconsistent. In this
case, it is possible that there are no sportscars, so the set is consistent.

b. The problem is in a situation as illustrated in Figure 1. The algorithm is non-deterministic
because the order is not specified. If the order is y3, and then y2, then the attribute a gets
the value c1 (which happens to be correct). If the order is the other way around then the
attribute a gets the value c2.

Exercise 6

a. φ = { ∀x(F1(x)→ F2(x)),
∀x(F1(x)→ a(x, c1)),
∀x(F1(x)→ a(x, c2)),
∀x(F1(x)→ a(x, c3))}
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Figure 2: Inheritance relationship

In the function Inherit, replace
attr-value-pairs ← attr-value-pairs ∪ NewAttributes(pairs, attr-value-pairs)

by
attr-value-pairs ← MergeAttributes(pairs, attr-value-pairs)

such that MergeAttributes adds new values for an attribute to the set of values that it has
already found. This contrasts NewAttribute, that ignores values of an attribute if it has
already found a value for that attribute.

b. Correct values:
edge = 2 value cube1 not: default cube
base = 4 demon cube not: default prism
height = 2 demon cube not: value prism
volume = 8 demon prism not: default cube1

The inheritance is illustrated in Figure 2.

Exercises Model-based Reasoning

Opgave 4a

The circuit can be visualised as follows:
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Conflict sets are sets of components that, if we assume they are normal, then we have an incon-
sistency with the observations. In this cas, we can find 5 conflict sets:

CS1 = {O1, A1}
CS2 = {O1, O2, A2}
CS3 = {O1, A1, A2}
CS4 = {O1, A1, O2}
CS5 = {O1, O2, A1, A2}

The first two conflict sets are (subset) minimal. Every extension of a conflict set is (of course)
also a conflict set.

There are many different hitting set trees, depending on the order of ‘choosing’ a conflict set.
A start could look as follows:

O1 A2

etc.

O2

v v

v

{O1, O2, A2}

{O1, A1}

O1 A1

The rest is left as an exercise. The diagnoses are the minimal hitting sets, e.g. {O1} and {O2, A1}.

Exercises Uncertainty Reasoning

Exercise 1

a. CF(a, e′) = 0.7; CF(b, e′) = 0.8; CF(c, e′) = 0.5; CF(d, e′) = 0.7

CF(aor b, e′) = max{CF(a, e′), CF(b, e′)} = max{0.7, 0.8} = 0.8 (e1)
CF(f, e′1) = CF(f, e1) ·max{0, CF(e1, e

′)} = 0.5 · 0.8 = 0.4

CF(c and d, e′) = min{CF(c, e′), CF(d, e′)} = min{0.5, 0.7} = 0.5 (e2)
CF(f, e′2) = CF(f, e2) ·max{0, CF(e2, e

′)} = 0.8 · 0.5 = 0.4

CF(e, b′) = CF(e, b) ·max{0, CF(b, e′)} = 0.5 · 0.8 = 0.4 (e3)
CF(e, c′) = CF(e, c) ·max{0, CF(c, e′)} = 1.0 · 0.5 = 0.5 (e4)
CF(e, e′3 co e′4) = 0.4 + 0.5(1− 0.4) = 0.7 (e5)
CF(f, e′5) = CF(f, e5) ·max{0, CF(e5, e

′)} = 0.9 · 0.7 = 0.63

CF(f, e′1 co e′2) = 0.4 + 0.4(1− 0.4) = 0.64
CF(f, (e′1 co e′2) co e′5) = 0.64 + 0.63(1− 0.64) ≈ 0.87

b. Suppose P (a | b, c) = x; P (a | ¬b, c) = y, P (b | c) = z, P (¬b | c) = (1 − z);
Then P (a ∧ b | c) = P (a | b, c)P (b | c) = x · z
The certainty factor interpretation gives P (a ∧ b | c) = min{P (a | c), P (b | c)} with
P (a | c) = P (a | b, c)P (b | c) + P (a | ¬b, c)P (¬b | c) = x · z + y · (1 − z)
However, it does not hold in general that xz = min{xz + y(1− z), z}.

Also, P (a∨ b | c) = P (a | c) + P (b | c)− P (a∧ b | c) = xz + y(1− z) + z − xz = z + y(1− z)
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The certainty factor interpretation gives P (a ∨ b | c) = max{P (a | c), P (b | c)}
However, it does not hold in general that z + y(1− z) = max{xz + y(1− z), z}.

c. CF(a, e′) = 0.8; CF(b, e′) = 0.4; CF(c, e′) = 0.7; CF(d, e′) = 0.6; CF(e, e′) = 1.0

CF(aor b or c, e′) = max{max{CF(a, e′), CF(b, e′)}, CF(c, e′)} = max{0.8, 0.7} = 0.8(e1)
CF(f, e′1) = CF(f, e1) ·max{0, CF(e1, e

′)} = 1 · 0.8 = 0.8

CF(c and d, e′) = min{CF(c, e′), CF(d, e′)} = min{0.7, 0.6} = 0.6(e2)
CF(f, e′2) = CF(f, e2) ·max{0, CF(e2, e

′)} = 0.5 · 0.6 = 0.3

CF(e, e′) = 1.0(e3)
CF(f, e′3) = CF(f, e3) ·max{0, CF(e3, e

′)} = 0.6 · 1 = 0.6

CF(f, e′1 co e′2) = 0.8 + 0.3(1− 0.8) = 0.86
CF(f, (e′1 co e′2) co e′3) = 0.86 + 0.6(1− 0.86) = 0.94(e4)

CF(g, e′4) = CF(g, e4) ·max{0, CF(e4, e
′)} = 0.2 · 0.94 = 0.188

d. To see what it means that such a rule is idempotent, take a value for y, for example c;
then fco(x, c) is an operator on the argument x (we could call that o(x)). So idempotence
then means that fco(x, c) = fco(fco(x, c), c). This is not the case for the rule mentioned.
For example, take x = 0.5 and c = 0.4. Then fco(x, c) = 0.5 + 0.4(1 − 0.5) = 0.7 and
fco(fco(x, c), c) = 0.7 + 0.4(1− 0.7) = 0.82.

Advantage of idempotence: two or more identical production rule only change the CF once.
Disadvantage of idempotence: of different rules that result into an equal CF, only 1 of them
contributes to the final CF.

Exercise 2

a. P (V1) and P (V2 | V1)

b.

P (v3 | v1) =
P (v1, v3)

P (v1)
=

∑
x∈dom(V2) P (v1, x, v3)

P (v1)
=

∑
x∈dom(V2) P (v3 | x)P (x | v1)P (v1)

P (v1)

=
∑

x∈dom(V2)

P (v3 | x)p(x | v1) = P (v3 | v2)P (v2 | v1) + P (v3 | ¬v2)P (¬v2 | v1)

= 0.7 · 0.3 + 0.1 · 0.7 = 0.28

Note the difference with P (v3) (i.e. V1 is unknown):

P (v3) =
∑

y∈dom(V2)

P (v3 | y)
∑

x∈dom(V1)

P (y | x)P (x)

=
∑

y∈dom(V2)

P (v3 | y)(P (y | v1)P (v1) + P (y | ¬v1)P (¬v1))

=
∑

y∈dom(V2)

P (v3 | y)f(y)

= P (v3 | v2)f(v2) + P (v3 | ¬v2)f(¬v2)
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c. P (v1 | V1 = true, V3 = false) = P (¬v3 | V1 = true, V3 = false) = 1

P (v2 | V1 = true, V3 = false) = P (v2 | v1,¬v3)

=
P (v1, v2,¬v3)

P (v1,¬v3)

=
P (¬v3 | v2)P (v2 | v1)

P (¬v3 | v2)P (v2 | v1) + P (¬v3 | ¬v2)P (¬v2 | v1)

=
0.3 · 0.3

0.3 · 0.3 + 0.9 · 0.7
= 0.125

Exercise 4

a. In the certainty factor model, CFs are propagated using the following rule: CF(h, e′) =
CF(h, e)·max{0, CF(e, e′)} which we could interpret as the probabilistic statement: P (h|e′) =
P (h|e) ·max{0, P (e|e′)} = P (h|e)P (e|e′).

According to the interpretation of CF rules, we can model the distribution using a Bayesian
network E′ → E → H . Then it holds that: P (h|e′) = P (h|e)P (e|e′) + P (h|¬e)P (¬e|e′).
This is close to the CF model, but we still need to make sure that P (h|¬e)P (¬e|e′) = 0. If
P (¬e|e′) = 0 then P (e|e′) = 1, which is (usually) inconsistent with the CF model, so this is
a bad solution. So apparently we also need to require that P (h|¬e) = 0.

b. We can make the CF factor closer to the probabilistic model by including (besides CF(h, e))
a statement CF(h,¬e) to a rule. Different definitions are possible, for example: CF(h, e′) =
CF(h, e) ·max{0, CF(e, e′) + CF(h,¬e) ·max{0,−CF(e, e′)}}

c. In the noisy-AND model it holds that:

P (e | C1, C2) =
∑

C1∧C2=e

P (e | I1, I2)

2∏

k=1

P (Ik | Ck) = P (i1 | C1)P (i2 | C2)

A corresponding CF definition could look as follows:

CF(h, e′1 co e′2) = CF(h, e′1)CF(h, e′2)

Exercise 5

a.

P (x3 | X2 = y) =
∑

x1

∑

x4

P (x4 | x3)P (x3 | x1, X2 = y)P (x1)P (X2 = y)

=
∑

x1

∑

x4

f1(x3, x4)f2(x1, x3)f3(x1)f4(X2 = y)

∝
∑

x1

∑

x4

f1(x3, x4)f2(x1, x3)f3(x1)

=
∑

x4

f1(x3, x4)
∑

x1

f2(x1, x3)f3(x1)

=
∑

x4

f1(x3, x4)
∑

x1

f5(x1, x3)

=
∑

x4

f1(x3, x4)f6(x3)

=
∑

x4

f7(x3, x4)

= f8(x3)
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with

x1 x3 f2

y y 0.3
y n 0.7
n y 0.5
n n 0.5

x1 x3 f5

y y 0.3 · 0.6 = 0.18
y n 0.7 · 0.6 = 0.42
n y 0.5 · 0.4 = 0.2
n n 0.5 · 0.4 = 0.2

x3 f6

y 0.18 + 0.2 = 0.38
n 0.42 + 0.2 = 0.62

x3 x4 f7

y y 0.4 · 0.38 = 0.152
y n 0.6 · 0.38 = 0.228
n y 0.1 · 0.62 = 0.062
n n 0.9 · 0.62 = 0.558

x3 f8

y 0.152 + 0.228 = 0.38
n 0.062 + 0.558 = 0.62

P (X3 = y | X2 = y) = 0.38/(0.38 + 0.62) = 0.38

b.

P (X3 = y | X2 = y) =
∑

x1

P (X3 = y | x1, X2 = y)P (x1) = 0.3 · 0.6 + 0.5 · 0.4 = 0.38

Exercise 6

P (D) = 0.3, P (S | D) = 0.7, P (S | ¬D) = 0.1, u1(d, t) = 100, u1(d,¬t) = −100, u1(¬d, t) = −10,
u1(¬d,¬t) = 0, u2(t) = −20, u2(¬t) = 0. Define u(D, T ) = u1(D, T )+u2(T ). That is, u(d, t) = 80,
u(d,¬t) = −100, u(¬d, t) = −30, u(¬d,¬t) = 0.

u∗ =
∑

S,D

max
T

f1(D)f2(S, D)u(D, T )

=
∑

S

max
T

f6(S, T )

where (summing out D)

f6(s, t) = 0.3 · 0.7 · 80 + 0.7 · 0.1 · −30 = 14.7

f6(s,¬t) = 0.3 · 0.7 · −100 + 0.7 · 0.1 · 0 = −21

f6(¬s, t) = 0.3 · 0.3 · 80 + 0.7 · 0.9 · −30 = −11.7

f6(¬s,¬t) = 0.3 · 0.3 · −100 + 0.7 · 0.9 · 0 = −9

Optimal policy: given a symptom, treat; given no symptom, do not treat: f7(s) = 14.7,
f7(¬s) = −9; u∗ = 14.7− 9 = 5.7.

7


