Knowledge Representation and Reasoning answers to selected exercises

16th December, 2012

Exercises Logic and Resolution

This set of exercises already contains several examples. We only illustrate unification once more.

Exercise 2.1(iv)

We have to find a substitution θ such that:

$$
P(x, z, y) \theta=P(x, z, x) \theta=P(a, x, x) \theta
$$

To make the first argument equal, we must replace x by a. This yields:

$$
\begin{aligned}
& P(x, z, y)\{a / x\}=P(a, z, y) \\
& P(x, z, x)\{a / x\}=P(a, z, a) \\
& P(a, x, x)\{a / x\}=P(a, a, a)
\end{aligned}
$$

To unify the second and third argument, it is clear that z and y also have to be replaced by a. So $\theta=\{a / x, a / y, a / z\}$.

Exercises Description Logics \& Frames

Exercise 1

1. Employee \sqsubseteq Human
2. Mother \equiv Female $\sqcap \exists$ hasChild. \top
3. Parent \equiv Mother \bigsqcup Father
4. Grandmother \equiv Mother $\sqcap \exists$ hasChild.Parent
5. ヨhasChild.Human \sqsubseteq Human

Exercise 4.a.

Consider the formula in predicate logic:

$$
\forall x((\forall y r(x, y) \rightarrow A(y) \wedge B(y)) \rightarrow((\forall y r(x, y) \rightarrow A(y)) \wedge(\forall y r(x, y) \rightarrow B(y)))
$$

Proof: Take an arbitrary x. Suppose that (1) $\forall y r(x, y) \rightarrow A(y) \wedge B(y)$. Take an arbitrary y such that $r(x, y)$. Then $A(y)$ follows from (1). So $\forall y r(x, y) \rightarrow A(y)$. The same reasoning for $\forall y r(x, y) \rightarrow B(y)$.

Figure 1: Multiple inheritance with exceptions

Exercise 4.c.

In predicate logic:

$$
\forall x((\forall y r(x, y) \rightarrow A(y) \vee B(y)) \rightarrow((\forall y r(x, y) \rightarrow A(y)) \wedge(\forall y r(x, y) \vee B(y)))
$$

Consider the structure with domain $D=\left\{d_{1}, d_{2}, d_{3}\right\}$ and interpretation I such that:

$$
\begin{aligned}
& I(r)=\left\{\left(d_{1}, d_{2}\right),\left(d_{1}, d_{3}\right)\right\} \\
& I(A)=\left\{d_{2}\right\} \\
& I(B)=\left\{d_{3}\right\}
\end{aligned}
$$

Choose $x=d_{1}$. Then it holds that $\forall y r(x, y) \rightarrow A(y) \vee B(y)$, but (e.g.) not $\forall y r(x, y) \rightarrow A(y)$. So the formula does not hold.

Exercise 5

a.

$$
\begin{aligned}
& \text { car } \sqsubseteq \exists \text { wheels. }\{4\} \\
& \text { car } \sqsubseteq \exists \text { seats. }\{4\} \\
& \text { sportscar } \sqsubseteq \text { car } \\
& \text { sportscar } \sqsubseteq \exists \text { seats. }\{2\} \\
& \\
& \text { Rolls-Royce : car } \\
& \text { (Rolls-Royce, enough) : max-speed }
\end{aligned}
$$

If a sportscar would have been given, then the set would have become inconsistent. In this case, it is possible that there are no sportscars, so the set is consistent.
b. The problem is in a situation as illustrated in Figure 1. The algorithm is non-deterministic because the order is not specified. If the order is y_{3}, and then y_{2}, then the attribute a gets the value c_{1} (which happens to be correct). If the order is the other way around then the attribute a gets the value c_{2}.

Exercise 6

a. $\phi=\left\{\forall x\left(F_{1}(x) \rightarrow F_{2}(x)\right)\right.$,
$\forall x\left(F_{1}(x) \rightarrow a\left(x, c_{1}\right)\right)$, $\forall x\left(F_{1}(x) \rightarrow a\left(x, c_{2}\right)\right)$, $\left.\forall x\left(F_{1}(x) \rightarrow a\left(x, c_{3}\right)\right)\right\}$

Figure 2: Inheritance relationship

In the function Inherit, replace attr-value-pairs \leftarrow attr-value-pairs \cup NewAttributes(pairs, attr-value-pairs) by attr-value-pairs \leftarrow MergeAttributes(pairs, attr-value-pairs)
such that MergeAttributes adds new values for an attribute to the set of values that it has already found. This contrasts NewAttribute, that ignores values of an attribute if it has already found a value for that attribute.
b. Correct values:
edge $=2 \quad$ value cube1 not: default cube base $=4 \quad$ demon cube \quad not: default prism
height $=2 \quad$ demon cube \quad not: value prism
volume $=8 \quad$ demon prism \quad not: default cube1
The inheritance is illustrated in Figure 2.

Exercises Model-based Reasoning

Opgave 4a
The circuit can be visualised as follows:

Conflict sets are sets of components that, if we assume they are normal, then we have an inconsistency with the observations. In this cas, we can find 5 conflict sets:

$$
\begin{aligned}
& \mathrm{CS}_{1}=\left\{O_{1}, A_{1}\right\} \\
& \mathrm{CS}_{2}=\left\{O_{1}, O_{2}, A_{2}\right\} \\
& \mathrm{CS}_{3}=\left\{O_{1}, A_{1}, A_{2}\right\} \\
& \mathrm{CS}_{4}=\left\{O_{1}, A_{1}, O_{2}\right\} \\
& \mathrm{CS}_{5}=\left\{O_{1}, O_{2}, A_{1}, A_{2}\right\}
\end{aligned}
$$

The first two conflict sets are (subset) minimal. Every extension of a conflict set is (of course) also a conflict set.

There are many different hitting set trees, depending on the order of 'choosing' a conflict set. A start could look as follows:

The rest is left as an exercise. The diagnoses are the minimal hitting sets, e.g. $\left\{O_{1}\right\}$ and $\left\{O_{2}, A_{1}\right\}$.

Exercises Uncertainty Reasoning

Exercise 1

a. $\mathrm{CF}\left(a, e^{\prime}\right)=0.7 ; \mathrm{CF}\left(b, e^{\prime}\right)=0.8 ; \mathrm{CF}\left(c, e^{\prime}\right)=0.5 ; \mathrm{CF}\left(d, e^{\prime}\right)=0.7$
$\mathrm{CF}\left(a\right.$ or $\left.b, e^{\prime}\right)=\max \left\{\mathrm{CF}\left(a, e^{\prime}\right), \mathrm{CF}\left(b, e^{\prime}\right)\right\}=\max \{0.7,0.8\}=0.8\left(e_{1}\right)$
$\mathrm{CF}\left(f, e_{1}^{\prime}\right)=\mathrm{CF}\left(f, e_{1}\right) \cdot \max \left\{0, \mathrm{CF}\left(e_{1}, e^{\prime}\right)\right\}=0.5 \cdot 0.8=0.4$
$\mathrm{CF}\left(c\right.$ and $\left.d, e^{\prime}\right)=\min \left\{\mathrm{CF}\left(c, e^{\prime}\right), \mathrm{CF}\left(d, e^{\prime}\right)\right\}=\min \{0.5,0.7\}=0.5\left(e_{2}\right)$
$\mathrm{CF}\left(f, e_{2}^{\prime}\right)=\mathrm{CF}\left(f, e_{2}\right) \cdot \max \left\{0, \mathrm{CF}\left(e_{2}, e^{\prime}\right)\right\}=0.8 \cdot 0.5=0.4$
$\mathrm{CF}\left(e, b^{\prime}\right)=\mathrm{CF}(e, b) \cdot \max \left\{0, \mathrm{CF}\left(b, e^{\prime}\right)\right\}=0.5 \cdot 0.8=0.4\left(e_{3}\right)$
$\mathrm{CF}\left(e, c^{\prime}\right)=\mathrm{CF}(e, c) \cdot \max \left\{0, \mathrm{CF}\left(c, e^{\prime}\right)\right\}=1.0 \cdot 0.5=0.5\left(e_{4}\right)$
$\mathrm{CF}\left(e, e_{3}^{\prime} \boldsymbol{\operatorname { c o }} e_{4}^{\prime}\right)=0.4+0.5(1-0.4)=0.7\left(e_{5}\right)$
$\mathrm{CF}\left(f, e_{5}^{\prime}\right)=\mathrm{CF}\left(f, e_{5}\right) \cdot \max \left\{0, \mathrm{CF}\left(e_{5}, e^{\prime}\right)\right\}=0.9 \cdot 0.7=0.63$
$\mathrm{CF}\left(f, e_{1}^{\prime} \boldsymbol{\operatorname { c o }} e_{2}^{\prime}\right)=0.4+0.4(1-0.4)=0.64$
$\mathrm{CF}\left(f,\left(e_{1}^{\prime} \boldsymbol{\operatorname { c o }} e_{2}^{\prime}\right) \boldsymbol{\operatorname { c o }} e_{5}^{\prime}\right)=0.64+0.63(1-0.64) \approx 0.87$
b. Suppose $P(a \mid b, c)=x ; P(a \mid \neg b, c)=y, P(b \mid c)=z, P(\neg b \mid c)=(1-z)$;

Then $P(a \wedge b \mid c)=P(a \mid b, c) P(b \mid c)=x \cdot z$
The certainty factor interpretation gives $P(a \wedge b \mid c)=\min \{P(a \mid c), P(b \mid c)\}$ with $P(a \mid c)=P(a \mid b, c) P(b \mid c)+P(a \mid \neg b, c) P(\neg b \mid c)=x \cdot z+y \cdot(1-z)$
However, it does not hold in general that $x z=\min \{x z+y(1-z), z\}$.

Also, $P(a \vee b \mid c)=P(a \mid c)+P(b \mid c)-P(a \wedge b \mid c)=x z+y(1-z)+z-x z=z+y(1-z)$

The certainty factor interpretation gives $P(a \vee b \mid c)=\max \{P(a \mid c), P(b \mid c)\}$
However, it does not hold in general that $z+y(1-z)=\max \{x z+y(1-z), z\}$.
c. $\mathrm{CF}\left(a, e^{\prime}\right)=0.8 ; \mathrm{CF}\left(b, e^{\prime}\right)=0.4 ; \mathrm{CF}\left(c, e^{\prime}\right)=0.7 ; \mathrm{CF}\left(d, e^{\prime}\right)=0.6 ; \mathrm{CF}\left(e, e^{\prime}\right)=1.0$
$\mathrm{CF}\left(a\right.$ or b or $\left.c, e^{\prime}\right)=\max \left\{\max \left\{\mathrm{CF}\left(a, e^{\prime}\right), \mathrm{CF}\left(b, e^{\prime}\right)\right\}, \mathrm{CF}\left(c, e^{\prime}\right)\right\}=\max \{0.8,0.7\}=0.8\left(e_{1}\right)$
$\mathrm{CF}\left(f, e_{1}^{\prime}\right)=\mathrm{CF}\left(f, e_{1}\right) \cdot \max \left\{0, \mathrm{CF}\left(e_{1}, e^{\prime}\right)\right\}=1 \cdot 0.8=0.8$
$\mathrm{CF}\left(c\right.$ and $\left.d, e^{\prime}\right)=\min \left\{\mathrm{CF}\left(c, e^{\prime}\right), \mathrm{CF}\left(d, e^{\prime}\right)\right\}=\min \{0.7,0.6\}=0.6\left(e_{2}\right)$
$\mathrm{CF}\left(f, e_{2}^{\prime}\right)=\mathrm{CF}\left(f, e_{2}\right) \cdot \max \left\{0, \mathrm{CF}\left(e_{2}, e^{\prime}\right)\right\}=0.5 \cdot 0.6=0.3$
$\mathrm{CF}\left(e, e^{\prime}\right)=1.0\left(e_{3}\right)$
$\mathrm{CF}\left(f, e_{3}^{\prime}\right)=\mathrm{CF}\left(f, e_{3}\right) \cdot \max \left\{0, \mathrm{CF}\left(e_{3}, e^{\prime}\right)\right\}=0.6 \cdot 1=0.6$
$\mathrm{CF}\left(f, e_{1}^{\prime} \boldsymbol{\operatorname { c o }} e_{2}^{\prime}\right)=0.8+0.3(1-0.8)=0.86$
$\mathrm{CF}\left(f,\left(e_{1}^{\prime} \boldsymbol{\operatorname { c o }} e_{2}^{\prime}\right) \boldsymbol{\operatorname { c o }} e_{3}^{\prime}\right)=0.86+0.6(1-0.86)=0.94\left(e_{4}\right)$
$\mathrm{CF}\left(g, e_{4}^{\prime}\right)=\mathrm{CF}\left(g, e_{4}\right) \cdot \max \left\{0, \mathrm{CF}\left(e_{4}, e^{\prime}\right)\right\}=0.2 \cdot 0.94=0.188$
d. To see what it means that such a rule is idempotent, take a value for y, for example c; then $f_{c o}(x, c)$ is an operator on the argument x (we could call that $o(x)$). So idempotence then means that $f_{c o}(x, c)=f_{c o}\left(f_{c o}(x, c), c\right)$. This is not the case for the rule mentioned. For example, take $x=0.5$ and $c=0.4$. Then $f_{c o}(x, c)=0.5+0.4(1-0.5)=0.7$ and $f_{c o}\left(f_{c o}(x, c), c\right)=0.7+0.4(1-0.7)=0.82$.

Advantage of idempotence: two or more identical production rule only change the CF once. Disadvantage of idempotence: of different rules that result into an equal CF, only 1 of them contributes to the final CF.

Exercise 2

a. $P\left(V_{1}\right)$ and $P\left(V_{2} \mid V_{1}\right)$
b.

$$
\begin{aligned}
P\left(v_{3} \mid v_{1}\right) & =\frac{P\left(v_{1}, v_{3}\right)}{P\left(v_{1}\right)}=\frac{\sum_{x \in \operatorname{dom}\left(V_{2}\right)} P\left(v_{1}, x, v_{3}\right)}{P\left(v_{1}\right)}=\frac{\sum_{x \in \operatorname{dom}\left(V_{2}\right)} P\left(v_{3} \mid x\right) P\left(x \mid v_{1}\right) P\left(v_{1}\right)}{P\left(v_{1}\right)} \\
& =\sum_{x \in \operatorname{dom}\left(V_{2}\right)} P\left(v_{3} \mid x\right) p\left(x \mid v_{1}\right)=P\left(v_{3} \mid v_{2}\right) P\left(v_{2} \mid v_{1}\right)+P\left(v_{3} \mid \neg v_{2}\right) P\left(\neg v_{2} \mid v_{1}\right) \\
& =0.7 \cdot 0.3+0.1 \cdot 0.7=0.28
\end{aligned}
$$

Note the difference with $P\left(v_{3}\right)$ (i.e. V_{1} is unknown):

$$
\begin{aligned}
P\left(v_{3}\right) & =\sum_{y \in \operatorname{dom}\left(V_{2}\right)} P\left(v_{3} \mid y\right) \sum_{x \in \operatorname{dom}\left(V_{1}\right)} P(y \mid x) P(x) \\
& =\sum_{y \in \operatorname{dom}\left(V_{2}\right)} P\left(v_{3} \mid y\right)\left(P\left(y \mid v_{1}\right) P\left(v_{1}\right)+P\left(y \mid \neg v_{1}\right) P\left(\neg v_{1}\right)\right) \\
& =\sum_{y \in \operatorname{dom}\left(V_{2}\right)} P\left(v_{3} \mid y\right) f(y) \\
& =P\left(v_{3} \mid v_{2}\right) f\left(v_{2}\right)+P\left(v_{3} \mid \neg v_{2}\right) f\left(\neg v_{2}\right)
\end{aligned}
$$

c. $P\left(v_{1} \mid V_{1}=\right.$ true, $V_{3}=$ false $)=P\left(\neg v_{3} \mid V_{1}=\right.$ true,$V_{3}=$ false $)=1$

$$
\begin{aligned}
P\left(v_{2} \mid V_{1}=\text { true }, V_{3}=\text { false }\right) & =P\left(v_{2} \mid v_{1}, \neg v_{3}\right) \\
& =\frac{P\left(v_{1}, v_{2}, \neg v_{3}\right)}{P\left(v_{1}, \neg v_{3}\right)} \\
& =\frac{P\left(\neg v_{3} \mid v_{2}\right) P\left(v_{2} \mid v_{1}\right)}{P\left(\neg v_{3} \mid v_{2}\right) P\left(v_{2} \mid v_{1}\right)+P\left(\neg v_{3} \mid \neg v_{2}\right) P\left(\neg v_{2} \mid v_{1}\right)} \\
& =\frac{0.3 \cdot 0.3}{0.3 \cdot 0.3+0.9 \cdot 0.7}=0.125
\end{aligned}
$$

Exercise 4

a. In the certainty factor model, CFs are propagated using the following rule: $\mathrm{CF}\left(h, e^{\prime}\right)=$ $\mathrm{CF}(h, e) \cdot \max \left\{0, \mathrm{CF}\left(e, e^{\prime}\right)\right\}$ which we could interpret as the probabilistic statement: $P\left(h \mid e^{\prime}\right)=$ $P(h \mid e) \cdot \max \left\{0, P\left(e \mid e^{\prime}\right)\right\}=P(h \mid e) P\left(e \mid e^{\prime}\right)$.

According to the interpretation of CF rules, we can model the distribution using a Bayesian network $E^{\prime} \rightarrow E \rightarrow H$. Then it holds that: $P\left(h \mid e^{\prime}\right)=P(h \mid e) P\left(e \mid e^{\prime}\right)+P(h \mid \neg e) P\left(\neg e \mid e^{\prime}\right)$. This is close to the CF model, but we still need to make sure that $P(h \mid \neg e) P\left(\neg e \mid e^{\prime}\right)=0$. If $P\left(\neg e \mid e^{\prime}\right)=0$ then $P\left(e \mid e^{\prime}\right)=1$, which is (usually) inconsistent with the CF model, so this is a bad solution. So apparently we also need to require that $P(h \mid \neg e)=0$.
b. We can make the CF factor closer to the probabilistic model by including (besides CF (h, e)) a statement $\mathrm{CF}(h, \neg e)$ to a rule. Different definitions are possible, for example: $\mathrm{CF}\left(h, e^{\prime}\right)=$ $\mathrm{CF}(h, e) \cdot \max \left\{0, \mathrm{CF}\left(e, e^{\prime}\right)+\mathrm{CF}(h, \neg e) \cdot \max \left\{0,-\mathrm{CF}\left(e, e^{\prime}\right)\right\}\right\}$
c. In the noisy-AND model it holds that:

$$
P\left(e \mid C_{1}, C_{2}\right)=\sum_{C_{1} \wedge C_{2}=e} P\left(e \mid I_{1}, I_{2}\right) \prod_{k=1}^{2} P\left(I_{k} \mid C_{k}\right)=P\left(i_{1} \mid C_{1}\right) P\left(i_{2} \mid C_{2}\right)
$$

A corresponding CF definition could look as follows:

$$
\mathrm{CF}\left(h, e_{1}^{\prime} \mathbf{c o} e_{2}^{\prime}\right)=\mathrm{CF}\left(h, e_{1}^{\prime}\right) \mathrm{CF}\left(h, e_{2}^{\prime}\right)
$$

Exercise 5

a.

$$
\begin{aligned}
P\left(x_{3} \mid X_{2}=y\right) & =\sum_{x_{1}} \sum_{x_{4}} P\left(x_{4} \mid x_{3}\right) P\left(x_{3} \mid x_{1}, X_{2}=y\right) P\left(x_{1}\right) P\left(X_{2}=y\right) \\
& =\sum_{x_{1}} \sum_{x_{4}} f_{1}\left(x_{3}, x_{4}\right) f_{2}\left(x_{1}, x_{3}\right) f_{3}\left(x_{1}\right) f_{4}\left(X_{2}=y\right) \\
& \propto \sum_{x_{1}} \sum_{x_{4}} f_{1}\left(x_{3}, x_{4}\right) f_{2}\left(x_{1}, x_{3}\right) f_{3}\left(x_{1}\right) \\
& =\sum_{x_{4}} f_{1}\left(x_{3}, x_{4}\right) \sum_{x_{1}} f_{2}\left(x_{1}, x_{3}\right) f_{3}\left(x_{1}\right) \\
& =\sum_{x_{4}} f_{1}\left(x_{3}, x_{4}\right) \sum_{x_{1}} f_{5}\left(x_{1}, x_{3}\right) \\
& =\sum_{x_{4}} f_{1}\left(x_{3}, x_{4}\right) f_{6}\left(x_{3}\right) \\
& =\sum_{x_{4}} f_{7}\left(x_{3}, x_{4}\right) \\
& =f_{8}\left(x_{3}\right)
\end{aligned}
$$

with

x_{1}	x_{3}	f_{2}
y	y	0.3
y	n	0.7
n	y	0.5
n	n	0.5
x_{1}	x_{3}	f_{5}
y	y	$0.3 \cdot 0.6=0.18$
y	n	$0.7 \cdot 0.6=0.42$
n	y	$0.5 \cdot 0.4=0.2$
n	n	$0.5 \cdot 0.4=0.2$
x_{3}	f_{6}	
y	$0.18+0.2=0.38$	
n	$0.42+0.2=0.62$	
x_{3}	x_{4}	f_{7}
y	y	$0.4 \cdot 0.38=0.152$
y	n	$0.6 \cdot 0.38=0.228$
n	y	$0.1 \cdot 0.62=0.062$
n	n	$0.9 \cdot 0.62=0.558$
x_{3}	f_{8}	
y	$0.152+0.228=0.38$	
n	$0.062+0.558=0.62$	

$$
P\left(X_{3}=y \mid X_{2}=y\right)=0.38 /(0.38+0.62)=0.38
$$

b.

$$
P\left(X_{3}=y \mid X_{2}=y\right)=\sum_{x_{1}} P\left(X_{3}=y \mid x_{1}, X_{2}=y\right) P\left(x_{1}\right)=0.3 \cdot 0.6+0.5 \cdot 0.4=0.38
$$

Exercise 6

$P(D)=0.3, P(S \mid D)=0.7, P(S \mid \neg D)=0.1, u_{1}(d, t)=100, u_{1}(d, \neg t)=-100, u_{1}(\neg d, t)=-10$, $u_{1}(\neg d, \neg t)=0, u_{2}(t)=-20, u_{2}(\neg t)=0$. Define $u(D, T)=u_{1}(D, T)+u_{2}(T)$. That is, $u(d, t)=80$, $u(d, \neg t)=-100, u(\neg d, t)=-30, u(\neg d, \neg t)=0$.

$$
\begin{aligned}
u^{*} & =\sum_{S, D} \max _{T} f_{1}(D) f_{2}(S, D) u(D, T) \\
& =\sum_{S} \max _{T} f_{6}(S, T)
\end{aligned}
$$

where (summing out D)

$$
\begin{aligned}
f_{6}(s, t) & =0.3 \cdot 0.7 \cdot 80+0.7 \cdot 0.1 \cdot-30=14.7 \\
f_{6}(s, \neg t) & =0.3 \cdot 0.7 \cdot-100+0.7 \cdot 0.1 \cdot 0=-21 \\
f_{6}(\neg s, t) & =0.3 \cdot 0.3 \cdot 80+0.7 \cdot 0.9 \cdot-30=-11.7 \\
f_{6}(\neg s, \neg t) & =0.3 \cdot 0.3 \cdot-100+0.7 \cdot 0.9 \cdot 0=-9
\end{aligned}
$$

Optimal policy: given a symptom, treat; given no symptom, do not treat: $f_{7}(s)=14.7$, $f_{7}(\neg s)=-9 ; u^{*}=14.7-9=5.7$.

