

Ronald J. Brachman

Hector J. Levesque

Knowledge Representation
and

Reasoning

AT&T Labs – Research
Florham Park, New Jersey

USA 07932
rjb@research.att.com

Department of Computer Science
University of Toronto

Toronto, Ontario
Canada M5S 3H5

hector@cs.toronto.edu

c 2003 Ronald J. Brachman and Hector J. Levesque

1

1

�

� �

�

�

Actions

Chapter 14

change

belief revision

situation calculus

Of course, we might also have changing beliefs about a changing world, but we will not pursue
this here.

The language of FOL is sometimes criticized as being an overly “static” represen-
tation formalism. Sentences of FOL are either true or false in an interpretation and
stay that way. Unlike procedural representations or production systems, there is
seemingly nothing in FOL corresponding to any sort of .

In fact, there are two sorts of changes that we might want to consider. First, there
is the idea of changing what is believed about the world. Suppose is a sentence
saying that birds are the descendants of dinosaurs. At some point, you might come
to believe that is true, perhaps by being told directly. If you had no beliefs about
before, this is a straightforward process that involves adding to your current KB.
If you had previously thought that was false, however, perhaps having concluded
this from a number of other beliefs, dealing with the new information is a much
more complicated process. The study of which of your old beliefs to discard is
an important area of research known as , but one that is beyond the
scope of this book.

The second notion of change to consider is when the beliefs themselves are
about a changing world. Instead of merely believing that John is a student, for
example, you might believe that John was not a student initially, but that he became
a student by enrolling at a university, and that he later graduated, and ceased to be
a student. In this case, while the world you are imagining is certainly changing, the
beliefs you have about John’s history as a whole need not change at all.

In this chapter, we will study how beliefs about a changing world of this sort
can in fact be represented in a dialect of FOL called the . This
is not the only way to represent a changing world, of course, but it is a simple and

�

�

: ^

0 0

2 1 0

1 0 2

1 2 0

14.1.1 Fluents

14.1 The situation calculus

actions

situations
do

do

do do

do do

fluents

do

2003 R. Brachman and H. Levesque July 17, 2003

x x

r; x; y r x y

S S

a; s

a s

b ; b ; S

b S b

b ; b ; S

r; x; s

r x s

r; x; s r; x; r; x ; s

r x s x

jump kick
put

pickup pickup

pickup pickup

Holding

Holding Holding pickup

c 280

powerful way to do so. It also naturally lends itself to various sorts of reasoning,
including planning, discussed separately in the next chapter.

One way of thinking about change is to imagine being in a certain situation, with
actions moving you from one situation to the next. The situation calculus is a dialect
of FOL in which such situations and actions are taken to be objects in the domain.
In particular, there are two distinguished sorts of first-order terms:

: such as (the act of jumping), () (kicking object), and
() (robot putting object on top of object). The constant and

function symbols for actions are completely application-dependent.

, which denote possible world histories. A distinguished constant
and function symbol are used. denotes the initial situation, before

any action has been performed; () denotes the situation that results from
performing action in situation .

For example, the situation term (() (())) denotes the situ-
ation that results from first picking up object in and then picking up object .
Note that this situation is not the same as (() (())), since
they have different histories, even though the resulting states may be indistinguish-
able.

Predicates and functions whose values may vary from situation to situation are
called , and are used to describe what holds in a situation. By convention,
the last argument of a fluent is a situation. For example, the fluent ()
might stand for the relation of robot holding object in situation . Thus, we can
have formulas like

() ((()))

which says that robot is not holding in some situation , but is holding in the
situation that results from picking it up. Note that in the situation calculus there is
no distinguished “current” situation. A single formula like this can talk about many
different situations, past, present, or future.

2

3

0

2

3

�

�
8 : ^ : ^

�

� ^

�

�

�

:

14.1.2 Precondition and effect axioms

2003 R. Brachman and H. Levesque July 17, 2003

a; s a

s

r; x ; S

r x

r; x ; s

z: r; z; s x r; x; s

r; x ; s x; s r; s :

x x; r; x ; s

x; r; x ; s :

pickup

pickup
Holding Heavy NextTo

repair Broken HasGlue

Fragile Broken drop

Broken repair

Poss

Poss

preconditions

Poss

Poss

effects

do

do

precondition axioms effect axioms
positive

negative

In this chapter, free variables should be assumed to be universally quantified from the outside.
These are called “axioms” for historical reasons: a KB can be thought of as the axioms of a

logical theory (like number theory or set theory), with the entailed beliefs considered as theorems.

c 281

Finally, a distinguished predicate () is used to state that action can be
performed in situation . For example,

(())

says that the robot is able to pick up object in the initial situation.
This completes the specification of the dialect.

To reason about a changing world, it is necessary to have beliefs not only about
what is true initially, but also about how the world changes as the result of actions.

Actions typically have , that is, conditions that need to be true for
the action to occur. For example, in a robotics setting, we might have the following:

a robot can pick up an object if and only if it is not holding anything, the
object is not too heavy, and the robot is next to the object:

(())
() () ();

it is possible for a robot to repair an object if and only if the object is broken
and there is glue available:

(()) () ()

Actions typically also have , that is, fluents that are changed as a result of
performing the action. For example,

dropping a fragile object causes it to break:

() ((()));

repairing an object causes it to be unbroken:

((()))

Formulas like those above are often called and
respectively. Effect axioms are called if they describe when a fluent be-
comes true, and otherwise.

14.1.3 Frame axioms

�

�

� 6

: ^ 6 _ : �
:

� � A� F A
F

� :

2003 R. Brachman and H. Levesque July 17, 2003

Colour Colour drop

Broken Fragile
Broken drop

do

unaffected

do

do

frame axioms

frame problem

etc. etc.

all

do

a a; s

x; c; s x; c; r; x ; s

y x x y x

x; s x y x

x; r; y ; s :

F ~x; s a

� ~x; s F ~x; a; s ;

� ~x; s s

c 282

To fully capture the dynamics of a situation, we need to go beyond the preconditions
and effects of actions. So far, if a fluent is not mentioned in an effect axiom for an
action , we would not know anything at all about it in the situation (). To
really know how the world can change, it is also necessary to know what fluents
are by performing an action. For example,

dropping an object does not change its colour:

() ((()));

dropping an object does not break an object when = or is not fragile:

() [= ()]
((()))

Formulas like these are often called . Observe that we would not
normally expect them to be entailed by the precondition or effect axioms for the
actions involved.

Frame axioms do present a serious problem, however, sometimes called the
. Simply put, the problem is that it will be necessary to know and

reason effectively with an extremely large number of frame axioms. Indeed, for
any given fluent, we would expect that only a very small number of actions affect
the value of that fluent; the rest leave it invariant. For instance, an object’s colour is
unaffected by picking things up, opening a door, using the phone, making linguini,
walking the dog, electing a new Prime Minister of Canada All of these
will require frame axioms. It seems very counterintuitive that we should need to
even think about these 2 facts (where is the number of actions, and

, the number of fluents) about what does not change when we perform an action.
What counts as a solution to this problem? Suppose the person responsible for

building a KB has written down the relevant effect axioms. That is, for each
fluent () and action that can cause the fluent to change, we have an effect
axiom of the form

() () (())

where () is some condition on situation . What we would like is a systematic
procedure for generating all the frame axioms from these effect axioms. Moreover,
if possible, we also want a parsimonious representation for them, since in their
simplest form, there are too many.

And why do we want such a solution? There are at least three reasons:

�

n

n n

�

�

�

h i

j

:

h i

1

0 0 0

1 2 1 0

2

1 2 2 2 1

1 2 2 2 1 0

14.1.4 Using the situation calculus

2003 R. Brachman and H. Levesque July 17, 2003

Broken

pickup pickup drop repair drop

drop repair drop pickup pickup

projection task

do do
do do do do

do do do do do

legality
testing task

legal

� s s

~a a ; ; a

� s ~a

S � ~a; S ; ~a; S

a ; a ; ; a ; a ; S :

b ; s

b ; b ; b ; b ; b :

s b ; b ; b ; b ; b ; S :

c 283

Frame axioms are necessary beliefs about a dynamic world that are not en-
tailed by other beliefs we may have.

For the convenience of the KB builder: generating the frame axioms auto-
matically gives us modularity, since only the effect axioms need to be given
by hand. This ensures there is no inadvertent omission or error.

Such a solution is useful for theorizing about actions: we can see what as-
sumptions need to be made to draw conclusions about what does not change.

We will examine a simple solution to the frame problem in Section 14.2.

Given a KB containing facts expressed in the situation calculus as above, there are
various sorts of reasoning tasks we can consider. We will see in the next chapter
that we can do planning. In Section 14.3, we will see that we can figure out how
to execute a high-level action specification. Here we consider two basic reasoning
tasks: projection and legality testing.

The is the following: given a sequence of actions and some ini-
tial situation, determine what would be true if those actions were performed starting
in that initial situation. This can be formalized as follows:

Suppose that () is a formula with a single free variable of the situ-
ation sort, and that is a sequence of actions To find out
if () would be true after performing starting in the initial situation

, we determine whether or not KB = (()) where ()
is an abbreviation for ((. . . (()) . . .))

For example, using the above effect and frame axioms, it follows that the fluent
() would hold after the sequence of actions

() () () () ()

In other words, the fluent holds in the situation

= (() (() (() (() (())))))

It is a separate matter to determine whether or not the given sequence of actions
could in fact be performed starting in the initial situation. This is called the

. For example, a robot might not be able to pick up more than one
object at a time. We call a situation term if it is either the initial situation,

�

n

i i

2 1 0

2

1

1

0

1 1 0

pickup pickup

h i

j h i
� �

�

�

�

�

�

�

b ; b ; S

b

b

~a a ; ; a ~a

S

a ; a ; ; a ; S

i i n

2003 R. Brachman and H. Levesque July 17, 2003

do do

e.g

Poss do

single agent

no time

no concurrency

discrete actions

only hypotheticals has
will

only primitive actions

c 284

or the result of performing an action whose preconditions are satisfied starting in a
legal situation. For example, although the term

(() (()))

is well formed, it is not a legal situation, since the precondition for picking up
(not holding anything) will not be satisfied in a situation where has already
been picked up. So the legality task is determining whether a sequence of actions
leads to a legal situation. This can be formalized as follows:

Suppose that is a sequence of actions To find out if
can be legally performed starting in the initial situation , we deter-
mine whether or not KB = ((. . .)) for every

such that 1 .

Before concluding this section on the situation calculus, it is perhaps worth
noting some of the representational limitations of this language:

: there are no unknown or unobserved exogenous actions per-
formed by other agents, and no unnamed events;

: we have not talked about how long an action takes, or when it occurs;

: if a situation is the result of performing two actions, one of
them is performed first and the other afterwards;

: there are no continuous actions like pushing an object from
one point to another, or a bathtub filling with water;

: we cannot say that an action occurred in reality, or
occur;

: there are no actions that are constructed from other
actions as parts, such as iterations or conditionals.

Many of these limitations can be dealt with by refinements and extensions to the
dialect of the situation calculus considered here. We will deal with the last of these
in Section 14.3 below.

But first we turn to a solution to the frame problem.

Π

Π

F

F

F F

i

�
�

9 f ^ g _
9 f ^ g �

:

9 f g � :

�

� :

14.2.1 Explanation closure

14.2 A simple solution to the frame problem

2003 R. Brachman and H. Levesque July 17, 2003

do
do

do

do

do

do

do

all

explanation closure axioms

Broken

Fragile Broken drop
NextTo Broken explode

drop Fragile
explode NextTo

Broken

Broken repair

repair Broken

x x; r; x ; s

b; x; s x; b ; s :

a

r a r; x x

b a b b; x; s

x; a; s

x; r; x ; s

r a r; x x; a; s :

F ~x; s

~x; a; s F ~x; a; s ;

~x; a; s F ~x; a; s ;

~x; a; s ~x; a; s

x ; a; s

a F

c 285

The solution to the frame problem we will consider depends on first putting all
effect axioms into a normal form.

Suppose, for example, that there are two positive effect axioms for the fluent
:

() ((()))
() ((()))

So an object is broken if it is fragile and it was dropped, or something next to it
exploded. Using a universally quantified action variable , these can be rewritten
as a single formula

= () ()
= () ()

(())

Similarly, a negative effect axiom like

((())),

saying that an object is not broken after it is repaired, can be rewritten as

= () (())

In general, for any fluent (), we can rewrite all of the positive effect axioms
as a single formula of the form

() (()) (1)

and all the negative effect axioms as a single formula of the form

N () (()) (2)

where () and N () are formulas whose free variables are among the
and .

Now imagine that we make a completeness assumption about the effect axioms
we have for a fluent: assume that formulas (1) and (2) above characterize the
conditions under which an action changes the value of fluent . We can in fact
formalize this assumption using what are called as fol-
lows: ΠF

F4

4

1 1

Π
Π

Π
Π

Π

Π

Π

Π

do

do

do

do

do

F

F

F

F

F

F

F

F

F

F

F F

n n

F F

14.2.2 Successor state axioms

: ^ �

^ : �

: ^ : � :

^ : �

�

:9 ^

�

� ^ � � � ^
6

� _ ^ :

2003 R. Brachman and H. Levesque July 17, 2003

Note that in (3) we need to ensure that was originally false and was made true to be able to
conclude that held, and similarly for (4).

F ~x; s F ~x; a; s ~x; a; s

F a

F ~x; s F ~x; a; s ~x; a; s

F a

F F

F ~x; s ~x; a; s F ~x; a; s

F ~x; s ~x; a; s F ~x; a; s

F a F

a

F

~x; a; s: ~x; a; s ~x; a; s

A ~x A ~y x y x y

A ~x B ~y A B

a

F

F;

F ~x; a; s ~x; a; s F ~x; s ~x; a; s :

c 286

() (()) () (3)
if were false, and made true by doing action , then condition
must have been true;

() (()) N () (4)
if were true, and made false by doing action , then condition N
must have been true.

Informally, these axioms add an “only if” component to the normal form effect
axioms: (1) says that is made true if holds, while (3) says that is made true
only if holds. In fact, by rewriting them slightly, these explanation closure
axioms can be seen to be disguised versions of frame axioms:

() () (())

() N () (()).

In other words, remains false after doing when is false, and remains true
after doing when N is false.

If we are willing to make two assumptions about our KB, the formulas (1), (2), (3),
and (4) can be combined in a particularly simple and elegant way. Specifically, we
assume that our KB entails the following:

integrity of the effect axioms for every fluent :

() N ()

unique names for actions:

() = () (=) (=)
() = (), where and are distinct action names

The first assumption is merely that no action satisfies the condition to make the
fluent both true and false. The second assumption is that the only action terms
that can be equal are two identical actions with identical arguments.

With these two assumptions, it can be shown that for any fluent KB entails
that (1), (2), (3), and (4) together are logically equivalent to the following formula:

(()) () (() N ())

ΠF

F

14.2.3 Summary

:

�
9 f ^ g _
9 f ^ g _

^ 8 f 6 g

�

�

�

successor state axiom

do

i.e.

2003 R. Brachman and H. Levesque July 17, 2003

F

F

a s F a

a F F

F

x; a; s

r a r; x x

b a b b; x; s

x; s r a r; x

x a a

x a x

x a

Broken

Broken
drop Fragile
explode NextTo

Broken repair

c 287

A formula of this form is called a for the fluent because it
completely characterizes the value of fluent in the successor state resulting from
performing action in situation . Specifically, is true after doing if and only
if before doing , (the positive effect condition for) was true or both and

N (the negative effect condition for) were true. For example, for the fluent
, we have the following successor state axiom:

(())
= () ()
= () ()

() = ()

This says that an object is broken after doing action if and only if is a dropping
action and is fragile, or is a bomb exploding action when is near to the bomb,
or was already broken and is not the action of repairing it.

Note that it follows from this axiom that dropping a fragile object will break
it. Moreover, it also follows logically that talking on the phone does not affect
whether or not an object is broken (assuming unique names, talking on the
phone is distinct from any dropping, exploding, or repairing action). Thus a KB
containing this single axiom would entail all the necessary effect and frame axioms
for the fluent in question.

We have, therefore, a simple solution to the frame problem in terms of the following
axioms:

successor state axioms, one per fluent,

precondition axioms, one per action,

unique name axioms for actions.

Observe that we do not get a small number of axioms at the expense of prohibitively
long ones. The length of a successor state axiom is roughly proportional to the
number of actions that affect the value of the fluent, and, as we noted earlier, we do
not expect in general that very many of the actions would change the value of any
given fluent.

The conciseness and perspicuity of this solution to the frame problem clearly
depends on three factors:

_

� :

�

�

�

14.3 Complex actions

; s ; s

a

� ~x; s F ~x; a; s :

2003 R. Brachman and H. Levesque July 17, 2003

flipcoin
Heads Tails

Heads flipcoin Tails flipcoin

nondeterministic

do do

do

complex actions

conditionals

iterations

nondeterministic choice

define

c 288

1. the ability to quantify over actions, so that only actions changing the fluent
need to be mentioned by name;

2. the assumption that relatively few actions affect each fluent, which keeps the
successor state axioms short;

3. the completeness assumption for the effects of actions, which allows us to
conclude that actions that are not mentioned explicitly in effect axioms leave
the fluent invariant.

The solution also depends on being able to put effect axioms in the normal form used
above. This would not be possible, for example, if we had actions whose effects
were . For example, imagine an action whose effect is to
make either the fluent or the fluent true. An effect axiom like

(()) (())

cannot be put into the required normal form. In general, we need to assume that
every action is deterministic in the sense that all the given effect axioms are of
the form

() () (())

How to deal in some way with nondeterministic choice and other complex actions
is the topic of the next section.

So far, in our treatment of the situation calculus, we have assumed that there are
only primitive actions, with effects and preconditions independent of each other.
We have no way of handling , that is to say, actions that have other
actions as components. Examples of these are actions like the following:

: if the car is in the driveway then drive and otherwise walk;

: while there are blocks on the table, remove one;

: pick a red block up off the table and put it on the
floor;

and others, as described below. What we would like to do is to such actions in
terms of their primitive components in such a way that we can inherit their solution
to the frame problem. To do this, we need a compositional treatment of the frame
problem for complex actions. This is precisely what we will provide, and we will
see that it results in a novel kind of programming language.

5 � s s �

x

x; s

def

def

def

Broken
Broken

1 1

1

1

1 1

1 1

1

1

1

5

^

^
^

_
:
^
^

^

9 ^

^ _ : ^

14.3.1 The Do formula

Do

Do

Do

Do Do Do

Do

Do Do

0

0

0

0

0

0

0 0

0 00 00 00 0

0

0 0

2003 R. Brachman and H. Levesque July 17, 2003

if then else

Poss
do

Poss do
do do

do
Poss do

do do

Poss do

if then else

if then else

A

A; s; s A s

s

s :

b b :

s s ;

b ; s

; b ; s

b ; b ; s

s b ; b ; s

; b ; s

; b ; s

s ; b ; s

A

A; s; s A; s s A; s

A B A B

A B ; s; s s : A; s; s B; s ; s

� � A B

� A B ; s; s

� s A; s; s � s B; s; s

pickup InRoom kitchen putaway goto kitchen

pickup
InRoom kitchen pickup

putaway pickup
putaway pickup

InRoom kitchen pickup
goto kitchen pickup

goto kitchen pickup

If () is a formula of the situation calculus with a free variable , then is that formula with the
situation argument suppressed. For example, in a complex action we would use the test ()
instead of ().

c 289

To handle complex actions in general, it is sufficient to show that for each complex
action we care about, there is a formula of the situation calculus, which we call

(), that says that action when started in situation can terminate legally
in situation . Because complex actions can be nondeterministic, there may be
more than one such Consider, for example, the complex action

[() ; () () ()]

For this action to start in situation and terminate legally in the following sen-
tence must be true:

(())
[(((()))

(() (()))
= (() (())))

(((()))
(() (()))

= (() (())))]

In general, we define the formula recursively on the structure of the complex
action as follows:

1. For any primitive action , we have

() = () = ().

2. For the sequential composition of complex actions and , [;], we
have

([;]) = () ().

3. For a conditional involving a test of the form [], we have

([]) =
[() ()] [() ()].

0

6

7

P

s s

P

0 0

0 0 0

0 0

0 0

golog

golog

14.3.2 GOLOG

def

def

def

def

Do

Do Do Do

Do Do

Do

Do

6

1 1 1 1

1 2 3 1 1 2 2 3 1 3

7

while do

while do

etc.

^

j

j _

9

8 f� � � � g

8 : �
8 ^ ^ �

second-order quantification

Algol in logic

2003 R. Brachman and H. Levesque July 17, 2003

� �

� ; s; s � s s s

A B A B

A B ; s; s A; s; s B; s; s

x �x:A

�x:A ; s; s x: A; s; s

� A

� A ; s; s P P s; s

s : � s P s ; s

s ; s ; s : � s A; s ; s P s ; s P s ; s

The rule for iteration involves : the in this formula is a quantified
predicate variable. The definition says that an iteration takes you from to iff the smallest relation

satisfying certain conditions does so. The details are not of concern here.
The name comes from “ ,” after one of the original and influential programming

languages.

c 290

4. For a test action, [?], determining if a condition currently holds, we have

([?]) = () = .

5. For a nondeterministic branch to action or action , [], we have

([]) = () ().

6. For a nondeterministic choice of a value for variable , [], we have

([]) = ().

7. For an iteration of the form [], we have

([]) = ()

where the ellipsis is an abbreviation for the conjunction of

() ()
() () () ()

Similar rules can be given for recursive procedures, and even constructs involv-
ing concurrency and interrupts. The main point is that what it means to perform
these complex actions can be fully specified in the language of the situation cal-
culus. What we are giving, in effect, is a purely logical semantics for many of the
constructs of traditional programming languages.

What we end up with, then, is a programming language, called , that gener-
alizes conventional imperative programming languages. It includes the usual im-
perative constructs (sequence, iteration,), as well as nondeterminism and other
features. The main difference, however, is that the primitive statements of
are not operations on internal states, like assignment statements or pointer updates,
but rather primitive actions in the world, such as picking up a block. Moreover,

Do 0 0

0

golog

� � 8 :

� �

� �

14.3.3 An example

do

if then else

Poss

Poss

Poss

2003 R. Brachman and H. Levesque July 17, 2003

A

~a A; S ; ~a; S

~a

S

A x B C :

B C x; s

A

x x

x

x; s x; s

x; s

x ; s z: z; s

x ; s x; s

x ; s x; s

Holding

Holding

pickup putonfloor
putontable

Holding OnFloor
OnTable

pickup Holding

putonfloor Holding

putontable Holding

c 291

what these primitive actions are supposed to do is not fixed in advance by the lan-
guage designer, but is specified by the user separately by precondition and successor
state axioms.

Given that the primitive actions are not fixed in advance or executed internally,
it is not immediately obvious what it should mean to execute a program .
There are two steps:

1. find a sequence of primitive actions such that (()) is en-
tailed by the KB;

2. pass the sequence of actions to a robot or simulator for actual execution in
the world.

In other words, to execute a program we must first find a sequence of actions that
would take us to a legal terminating situation for the program starting in the initial
situation , and then run that sequence.

Note that to find such a sequence, it will be necessary to reason using the given
precondition and effect axioms, performing projection and legality testing. For
example, suppose we have the program

[; ()]

To decide between and , we need to determine whether or not ()
would be true in the situation that results from performing action .

To see how this would work, consider a simple example in a robotics domain involv-
ing three primitive actions, () (picking up a block), () (putting
a block on the floor), and () (putting a block on the table), and three
fluents () (the robot is holding a block), () (a block is on the
floor), and () (a block is on the table).

The precondition axioms are the following:

(()) ();

(()) ();

(()) ().

The successor state axioms are the following:

Do

golog

0

0 1 2

1 2

0

0

2 2

1 1 0

0

1 1 2 2

1

2

� � _
^ 6 ^ 6

� � _
^ 6

� � _
^ 6

� :

� � _

�

� 9

j 9

h i

do

do

do

proc

proc while do

do

do do
do do

2003 R. Brachman and H. Levesque July 17, 2003

x; a; s a x

x; s a x a x

x; a; s a x

x; s a x

x; a; s a x

x; s a x

x; S

x; S x b x b :

b b

x x x

x: x

�x x x

~a; S ~a

s: ; S ; s :

s

s b ; b

b ; b ; S

S

b ; b ; b ; b :

b

b

Holding pickup
Holding putonfloor putontable

OnFloor putonfloor
OnFloor pickup

OnTable putontable
OnTable pickup

Holding

OnTable

RemoveBlock pickup putonfloor

ClearTable OnTable
OnTable RemoveBlock

ClearTable

ClearTable

putonfloor pickup
putonfloor pickup

pickup putonfloor pickup putonfloor

c 292

(()) = ()
() = () = ();

(()) = ()
() = ();

(()) = ()
() = ().

We might also have the following facts about the initial situation:

();

() (=) (=)

So initially, the robot is not holding anything, and and are the only blocks on
the table. Finally, we can consider two complex actions, removing a block, and
clearing the table:

() : [() ; ()];

: ()
[()? ; ()].

This completes the specification of the example.
To execute the program , it is necessary to first find an appro-

priate terminating situation, (), which determines the actions to perform.
To find this situation, we can use Resolution theorem-proving with answer extrac-
tion for the query

KB = ()

We omit the details of this derivation, but the result will yield a value for like

= (() (()
(() (()))))

from which the desired sequence starting from is

() () () ()

In a more general setting, an answer predicate could be necessary. In fact, in some
cases, it may not be possible to obtain a definite sequence of actions. This happens,
for example, if what is known about the initial situation is that either block or
block is on the table.

Do 0

0

0 0

Pots of water:

A; s; s

p; w; s p

w s:

p

p p; p

p p p p

golog

prolog

prolog

prolog

prolog

Contains, Contains

empty
transfer

14.4 Bibliographic notes

14.5 Exercises

2003 R. Brachman and H. Levesque July 17, 2003

/* for primitive actions */

/* for sequences */

/* for while loops (test false) */

/* for while loops (test true) */

do(A,S1,S2) :-
prim action(A), poss(A,S1), S2=do(A,S1).

do(seq(A,B),S1,S2) :-
do(A,S1,S3), do(B,S3,S2).

do(while(F,A),S1,S2) :-
not holds(F,S1), S2=S1.

do(while(F,A),S1,S2) :-
holds(F,S1), do(seq(A,while(F,A)),S1,S2).

?- do(clear table,s0,S).

c 293

Observe that if what is known about the initial situation and the actions can be
expressed as Horn clauses, the evaluation of programs can be done directly
in . Instead of expanding () into a long formula of the situation
calculus and then using Resolution, we write clauses such as

and so on. Then the goal

would return the binding for the final situation.
This idea of using Resolution with answer extraction to derive a sequence of

actions to perform will be taken up again in the next chapter on planning. When
the problem can be reduced to , we get a convenient and efficient way of
generating a sequence of actions. This has proven to be an effective method of
providing high-level control for a robot.

In the exercises below, and in the follow-up exercises of Chapter 15, we consider
three application domains where we would like to be able to reason about action
and change:

Consider a world with pots that may contain water. There is a sin-
gle fluent, where () is intended to say that a pot
contains litres of water in situation There are only two possible actions,
which can always be executed: () which discards all the water con-
tained in the pot , and (), which pours as much water as possible
without spilling from pot to , with no change when = . To simplify

-

�

1 2 1

2

locations tiles

Poss

15 puzzle:

Blocks world:

t; l

t l;

t; s

t s

l ; l l

l :

t; l; s

t; s l

move

loc loc

Adjacent

Adjacent

Loc
loc

2003 R. Brachman and H. Levesque July 17, 2003c 294

Figure 14.1: The 15-puzzle

goal stateinitial state

4321

8765

1211109

1514139 14 11 12

13 5 4

10 2 7 15

1 6 3 8

the formalization, we assume that the usual arithmetic constants, functions
and predicates are also available. (You may assume that axioms for these
have already been provided or built-in.)

The 15-puzzle consists of 15 consecutively numbered tiles located in a
4 4 grid. The object of the puzzle is to move the tiles within the grid so
that each tile ends up at its correct location, as shown in Figure 14.1. The do-
main consists of , numbered 1 to 16, , numbered 1 to 15, and of
course, actions and situations. There will be a single action () whose
effect is to move tile to location when possible. We will also assume a
single fluent, which is a function , where () refers to the location
of tile in situation . The only other non-logical terms we will use is the
situation calculus predicate and, to simplify the formalization, a pred-
icate () which holds when location is one move away from
location For example, location 5 is adjacent only to locations 1, 6, and 9.
(You may assume that axioms for have already been provided.)

Note that in the text we concentrated on fluents that were predicates. Here
we have a fluent that is a function. Instead of writing (), you will be
writing () = .

Imagine that we have a collection of blocks on a table, and that
we have a robot arm that is capable of picking up blocks and putting them
elsewhere as shown in Figure 14.2

We assume that the robot arm can hold at most one block at a time. We
also assume that the robot can only pick up a block if there is no other

� �
C

D

F

A

B E

x; y x

y x x

x; y; s x y

x; s x

puton
putonTable

On
OnTable

2003 R. Brachman and H. Levesque July 17, 2003c 295

Figure 14.2: The blocks word

block on top of it. Finally, we assume that a block can only support or
be supported by at most one other block, but that the table surface is large
enough that all blocks can be directly on the table. There are only two ac-
tions available: () which picks up block and moves it onto block

, and () which moves block onto the table. Similarly, we have
only two fluents: () which holds when block is on block , and

() which holds when block is on the table.

For each application, the questions are the same:

1. Write the precondition axioms for the actions.

2. Write the effect axioms for the actions.

3. Show how successor state axioms for the fluents would be derived from these
effect axioms. Argue that the successor state axioms are not logically entailed
by the effect axioms, by briefly describing an interpretation where the effect
axioms are satisfied but the successor state ones are not.

4. Show how frame axioms are logically entailed by the successor state axioms.

Planning

Chapter 15

planning
goal

plan

When we explored reasoning about action in Chapter 14, we considered how a
system could figure out what to do, given a complex nondeterministic action to
execute, by using what it knows about the world and the primitive actions at its
disposal. In this chapter, we consider a related but more fundamental reasoning
problem: how to figure out what to do to make some arbitrary condition true. This
type of reasoning is usually called . The condition that we want to achieve
is called the , and the sequence of actions we seek that will make the goal true
is called a .

Planning is one of the most useful ways that an intelligent agent can take ad-
vantage of the knowledge it has and its ability to reason about actions and their
consequences. If we think of Artificial Intelligence as the study of intelligent be-
havior achieved through computational means, then planning is central to this study
since it is concerned precisely with generating intelligent behavior, and in partic-
ular, with using what is known to find a course of action that will achieve some
goal. The knowledge in this case involves information about the world, about how
actions affect the world, about potentially complex sequences of events, and about
interacting actions and entities, including other agents.

In the real world, because our actions are not totally guaranteed to have certain
effects, and because we simply cannot know everything there is to know about
a situation, planning is usually an uncertain enterprise, and it requires attention
to many of the issues we have covered in earlier chapters, such as defaults and
reasoning under uncertainty. Moreover, planning in the real world involves trying
to determine what future states of the world will be like, but also observing the
world as plans are being executed, and replanning as necessary. Nonetheless, the
basic capabilities needed to begin considering planning are already available to us.

V �

�

n

n n
n
i i i

h i

j ^

h i

j 9 ^

1

0 0

0 1 1 0

0 =1 1 1 0

0

15.1.1 An example

15.1 Planning in the situation calculus

2003 R. Brachman and H. Levesque July 17, 2003

Goal

Goal do Legal do

do do do do
Legal do Poss do

Goal Legal

do

s

s ~a a ; a

~a; S ~a; S

~a; S a ; a ; ; a ; S ;

~a; S a ; a ; a ; S :

s: s s :

~a; S ~a

c 298

Given its appropriateness for representing dynamically changing worlds, the situa-
tion calculus is an obvious candidate to support planning. We can use it to represent
what is known about the current state of the world and the available actions.

The planning task can be formulated in the language of the situation calculus
as follows:

Given a formula, (), of the situation calculus with a single free
variable , find a sequence of actions = . . . , such that

KB = (()) (())

where () abbreviates ((. . . () . . .)) and
(()) abbreviates ((. . .))

In other words, given a goal formula, we wish to find a sequence of actions such
that it follows from what is known that

1. the goal formula will hold in the situation that results from executing the
actions in sequence starting in the initial state, and

2. it is possible to execute each action in the appropriate situation (that is, each
action’s preconditions are satisfied).

Note that this definition says nothing about the structure of the KB—for example,
whether or not it represents complete knowledge about the initial situation.

Having formulated the task this way, to do the planning, we can use Resolution
theorem-proving with answer extraction for the following query:

KB = () ()

As with the execution of complex actions in Chapter 14, if the extracted answer is
of the form (), then is a correct plan. But as we will see in Section 15.4.2,
there can be cases where the existential is entailed, but where the planning task
is impossible because of incomplete knowledge. In other words, the goal can be
achieved, but we can’t find a specific way that is guaranteed to achieve it.

Let us examine how this version of planning might work in the simple world de-
picted in Figure 15.1. A robot can roll from room to room, possibly pushing ob-
jects through doorways between the rooms. In such a world, there are two actions:

Π Π0 0

���� f f

Poss

Poss

do

�
^

�
^ ^

� _ ^ :9

1 2

1 2 1 2

1 2

1 2 1

2

1 2

1 2

1 2 1

1 2

1 2 1 1

2003 R. Brachman and H. Levesque July 17, 2003

supplies

closet

office

robot

box1

box2

doorA

doorB

x; d; r ; r x d

r r d; r ; r d

r r d

r r r

r

x r r

d; r ; r ; s

d; r ; r ; r ; s

x; d; r ; r ; s

d; r ; r ; r ; s x; r ; s

x; r; s

x; r; a; s r x; r; s r : r

pushThru
goThru

pushThru

goThru
Connected InRoom robot

pushThru
Connected InRoom robot InRoom

InRoom

InRoom InRoom

c 299

Figure 15.1: A simple robot world

(), in which the robot pushes object through doorway from
room to , and (), in which the robot rolls through doorway
from room to . To be able to execute either action, must be the doorway con-
necting and , and the robot must be located in . After successfully completing
either action, the robot ends up in room . In addition, for the action ,
the object must be located initially in room , and will also end up in room .

We can formalize these properties of the world in the situation calculus using
the following two precondition axioms:

(())
() ();

(())
() () ().

In this formulation, we use a single fluent, (), with the following suc-
cessor state axiom:

(()) () (() ()),

i i

0

0

Π

Π

do
do

do

do

do

15.1.2 Using Resolution

^ 9 9
_ ^ 9 9 9
_ 9 9

9 ^

�

6 6
6 6
6
:

:

1 1

1 1

1 1

1 2 2

1 2 2

1 2 2

0 1 2

3 4 5 6 7 8 9

2003 R. Brachman and H. Levesque July 17, 2003

r

x d r : a d; r ; r

x d r y: a y; d; r ; r

d r : a x; d; r ; r :

r

r r

r

r r

r r

x: x x; ; s :

x ; a d; r ; r ; x; r ; a; s

x ; a y; d; r ; r ; x; r ; a; s

a x; d; r ; r ; x; r ; a; s

x; r; s ; x ; a x; t ; t ; t ;

x; r; a; s

x; r; s ; a t ; t ; t ; a t ; t ; t ; t ;

x; r; a; s :

t f x; r; a; s

r :

robot goThru
robot pushThru

pushThru

goThru pushThru
goThru pushThru

pushThru
pushThru

goThru pushThru

Box InRoom office

robot goThru InRoom
robot pushThru InRoom
pushThru InRoom

InRoom robot pushThru
InRoom

InRoom goThru pushThru
InRoom

c 300

where () is the formula

= = ()
= = ()

= ()

In other words, the robot is in room after an action if that action was either a
or a to , or the robot was already in , and the action was not a
or a to some other . For any other object, the object is in room

after an action if that action was a to for that object, or the object was
already in , and the action was not a to some other for that object.

Our KB should also contain facts about the specific initial situation depicted
in Figure 15.1: there are three rooms, an office, a supply room, and a closet, two
doors, two boxes, and the robot, with their locations as depicted. Finally, the KB
needs to state that the robot and boxes are distinct objects and, for the solution to
the frame problem presented in Chapter 14, that and are distinct
actions.

Now suppose that we want to get some box into the office—that is, the goal we
would like to achieve is

() ()

To use Resolution to find a plan to achieve this goal, we must first convert the KB
to CNF. Most of this is straightforward, except for the successor state axiom, which
expands to a set of clauses that includes the following (for one direction of the
formula only):

[= = () (())]
[= = () (())]
[= () (())]
[() = = ()

(())]
[() = () = ()

(())]

The here are Skolem terms of the form () arising from the existentials
in the subformula ()

9 9 ^ ^ Legals x: x x; ; s s :

do

do

do

do

do

do

Box InRoom office

HHH

HHH

HHH

HHH

HHH

HHH

HHH

HHH

HHH

HHH

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

:

:

:

6

6

:

:

:

6

:

: :

:

: :

:

:

:

:

: :

:

: :

: :

: :

: :

: : :

2003 R. Brachman and H. Levesque July 17, 2003

0

1 2 1 2

1

0

0 1 2

1 2 2

1 1 2

1

1 2

1 2 2

0

1

1 1 0

1 0

3 0

3 3

1 3

1 3

1 3

3

2 1 3

2 2

2

1

1 1 2

1 2 2

1 2 2

1 1 2

1 1

1 1

= =

=
=

=

doorA, office

(goThru(, ,supplies),)

doorA, supplies

(pushThru(box1, , ,office),)

box1

1 1 1

successor state axiom

precondition axiom

successor state axiom

successor state axiom

initial state

precondition axiom

initial state

S

d r r x d r r s

r s

S

x r s x r a s

x a x t t t

a d r r x r a s

x

x r s x d r r s

r s

d r r

a x d r r x r a s

S

d= r =

d r r S

d r S

s =S

s s

d r s

d r s

d r s

s

s = d r s

s s

s

d= r =

d r r s

r s s

d r s s

s = d r s

s s

x=

x x s s

c 301

Figure 15.2: Planning using Resolution

The Resolution proof tree for this planning problem is sketched in Figure 15.2.
The formulas on the left are taken from the KB, while those on the right start with
the negation of the formula to be proved:

() () ()

[InRoom(robot,office,)]

[Connected(doorA,office,supplies)]

[Connected(, ,), Poss(goThru(, , ,),),
InRoom(robot, ,)]

[InRoom(box1,supplies,)]

[InRoom(, ,), InRoom(, , (,)),
robot, pushThru(, , ,)]

[goThru(, ,), InRoom(, , (,)),
robot]

[Connected(doorA,supplies,office)]

[InRoom(, ,), Poss(pushThru(, , ,),),
InRoom(robot, ,),
Connected(, ,)]

[pushThru(, , ,), InRoom(, , (,))]

[Box(box1)]

[]

[InRoom(robot,office,)]

[Connected(, ,supplies), InRoom(robot, ,)]

[Poss(goThru(, ,supplies),)]

[InRoom(box1,supplies,), Legal(),
Poss(goThru(, ,supplies),)]

[InRoom(box1,supplies, (goThru(, ,supplies),)),
Poss(goThru(, ,supplies),),
Legal()]

[InRoom(robot,supplies,), Legal(),
InRoom(box1,supplies,)]

[Connected(, ,office), InRoom(robot, ,),
InRoom(box1, ,), Legal()]

[Poss(pushThru(box1, , ,office),), Legal()]

[InRoom(box1,office,), Legal()]

[Box(), InRoom(,office,), Legal()]

:

: : :

0

1 2

1 2 2

1

0

prolog

prolog

S

s ; s

s ; s s :

s

; ; ; ;

; ; ; S :

2003 R. Brachman and H. Levesque July 17, 2003

Legal
Poss Legal

do
Legal Poss Legal

do
do

Legal

pushThru box1 doorA supplies office
goThru doorA office supplies

goThru pushThru

?- box(X), inRoom(X,office,S), legal(S).

X = box1
S = do(pushThru(box1,doorA,supplies,office),

do(goThru(doorA,office,supplies),s0))

c 302

Notice that whenever a literal is derived, it is expanded to a clause contain-
ing , or to the empty clause in the case of (). For example, in the
second step of the derivation, is replaced by a term of the form (. . .), and
so () expands to a clause containing (. . .) and () Also
observe that the successor state axioms in the KB use equality, which would require
some additional machinery (as explained in Chapter 4), and which we have omitted
from the diagram here for simplicity.

To keep the diagram simple, we have also not included an answer predicate in
this derivation. Looking at the bindings on the right side, it can be seen that the
correct substitution for is

(()
(()))

and so the plan is to first perform the action and then the one.
All but one of the facts in this derivation (including a definition of) can

be expressed as Horn clauses. The final use of the successor state axiom has two
positive equality literals. However, by using negation as failure to deal with the
inequalities, we can use a program directly to generate a plan, as shown
in Figure 15.3. The goal would be

and result of the computation would then be

as it was above. Using in this way is very delicate, however. A small
change in the ordering of clauses or literals can easily cause the depth-first search
strategy to go down an infinite branch.

In fact, more generally, using Resolution theorem-proving over the situation
calculus for planning is rarely practical for two principal reasons. First of all, we
are required to explicitly draw conclusions about what is not changed by doing
actions. We saw this in the derivation above (in the final use of the successor state
axiom), where we concluded that the robot moving from the office to the supply
room did not change the location of the box (and so the box was still ready to
be pushed into the office). In this case, there was only one action and one box to
worry about; in a larger setting, we may have to reason about the properties of many
objects remaining unaffected after the performance of many actions.

x

box1

prolog

2003 R. Brachman and H. Levesque July 17, 2003c 303

Figure 15.3: Planning using Prolog

Secondly, and more seriously, the search for a sequence of actions using Res-
olution (or the variant) is completely unstructured. Notice, for example,
that in the derivation above, the first important choice that was made was to bind
the to . If your goal is to get some box into the office, it is silly to first decide
on a box and then search for a sequence of actions that will work for that box. Much
better would be to decide on the box opportunistically based on the current situation
and what else needs doing. In some cases the search should work backwards from
the goal; in others, it should work forward from the current state. Of course, all of

inRoom(robot,office,s0).
box(box1). inRoom(box1,supplies,s0).
box(box2). inRoom(box2,closet,s0).

connected(doorA,office,supplies).
connected(doorA,supplies,office).
connected(doorB,closet,supplies).
connected(doorB,supplies,closet).

poss(goThru(D,R1,R2),S) :-
connected(D,R1,R2), inRoom(robot,R1,S).

poss(pushThru(X,D,R1,R2),S) :-
connected(D,R1,R2), inRoom(robot,R1,S),
inRoom(X,R1,S).

inRoom(X,R2,do(A,S)) :-
X=robot, A=goThru(D,R1,R2).

inRoom(X,R2,do(A,S)) :-
X=robot, A=pushThru(Y,D,R1,R2).

inRoom(X,R2,do(A,S)) :-
A=pushThru(X,D,R1,R2).

inRoom(X,R,do(A,S)) :- inRoom(X,R,S),
not (X=robot),
not (A=pushThru(X,T0,T1,T2)).

inRoom(X,R,do(A,S)) :- inRoom(X,R,S),
not (A=goThru(T3,T4,T5)),
not (A=pushThru(T6,T7,T8,T9)).

legal(s0).
legal(do(A,S)) :- poss(A,S), legal(S).

0

�

�

�

world model

15.2 The STRIPS Representation

Strips

strips

strips

strips

strips

planner

2003 R. Brachman and H. Levesque July 17, 2003

InRoom(box1,supplies) Box(box1)
InRoom(box2,closet) Box(box2)
InRoom(robot,office)
Connected(doorA,office,supplies) Connected(doorA,supplies,office)
Connected(doorB,closet,supplies) Connected(doorA,supplies,closet)

InRoom
Box

c 304

this search should be quite separate from the search that is needed to reason about
what does or does not hold in any given state.

In the next section, we deal with the first of these issues. We deal with searching
for a plan effectively in Section 15.3.

is an alternative representation to the pure situation calculus for planning.
It derives from work on a mobile robot (called “Shakey”) at SRI International in
the 1960’s. In , we assume that the world we are trying to deal with satisfies
the following:

only one action can occur at a time;

actions are effectively instantaneous;

nothing changes except as the result of planned actions.

In this context, the above has been called the “ assumption,” but it clearly ap-
plies just as well to our version of the situation calculus. What really distinguishes

from the situation calculus is that knowledge about the initial state of the
world is required to be complete, and knowledge about the effects and non-effects
of actions is required to be in a specific form. In what follows, we use a very simple
version of the representation, although many of the advantages we claim for it hold
more generally.

In , we do not represent histories of the world like we do in the situation
calculus, but rather we deal with a single world state at a time. The world state
is represented by what is called a , which is a set of ground atomic
formulas, similar to a database of facts in the system of Chapter 6, and the
working memory of a production system of Chapter 7. These facts can be thought
of as ground fluents (with the situation argument suppressed) under closed-world,
unique-name, and domain-closure assumptions (as in Chapter 11). For the example
depicted in Figure 15.1, we would have the following initial world model, DB :

In this case there is no need to distinguish between a fluent (like) and a
predicate that is unaffected by any action (like).

n n

h i

h i

h i

1 2

1 1 1 2

1 1

2 2

1 2

1 1 2

1

2

0

0

1 1

strips

Strips

strips

strips

2003 R. Brachman and H. Levesque July 17, 2003

x; d; r ; r

; r ; x; r ; d; r ; r

; r ; x; r

; r ; x; r

d; r ; r

; r ; d; r ; r

; r

; r

; ;

; ; ;

� ; ; �

pushThru
InRoom robot InRoom Connected
InRoom robot InRoom
InRoom robot InRoom

goThru
InRoom robot Connected
InRoom robot
InRoom robot

operators

delete list
add list

Precondition:
Delete list:
Add list:

Precondition:
Delete list:
Add list:

Operators Goal
Goal
Operators

Act Pre Add Del Act Pre Add Del

Act Act

c 305

Further, in , actions are not represented explicitly as part of the world
model, which means that we cannot reason about them directly. Instead, actions are
thought of as , which syntactically transform world models. An operator
takes the world model database for some state, and transforms it into a database
representing the successor state. The main benefit of this way of representing and
reasoning about plans is that it avoids frame axioms: an operator will change what
it needs to in the database, and thereby leave the rest unaffected.

operators are specified by pre- and postconditions. The preconditions
are sets of atomic formulas of the language that need to hold before the operator
can apply. The postconditions come in two parts: a , which is a set of
atomic formulas to be removed from the database; and an , which is a set of
atomic formulas to be added to the database. The delete list represents properties
of the world state that no longer hold after the operator is applied, and the add
list represents new properties of the world state that will hold after the operator is
applied. For the example above, we would have the following two operators:

()
() () ()
() ()
() ()

()
() ()
()
()

Note that the arguments of operators are variables that can appear in the the pre-
and postcondition formulas.

A problem, then, is represented by an initial world model database, a set
of operators, and a goal formula. A solution to the problem is a set of operators that
can be applied in sequence starting with the initial world model without violating
any of the preconditions, and which results in a world model that satisfies the goal
formula.

More precisely, a problem is characterized by DB
where DB is a list of ground atoms, is a list of atoms (whose free vari-
ables are understood existentially), and is a list of operators of the form

where is the name of the operator, and , , and
are lists of atoms. A solution is a sequence

. . .

1

1

0

0

0

�

�

strips

Input:
Output:

i i i i

i

i i i i i i

i i i

n

; ; ;

;

�

i n � �

i n �

� �

x ; x; ;

�
h i �

�

6 �

� � � �

� � � �

� �

�

15.2.1 Progressive planning

2003 R. Brachman and H. Levesque July 17, 2003

fail

fail

fail

Box InRoom office

goThru doorA office supplies

Goal
Goal

Act Pre Add Del Pre
Add Del

Plan Goal
Plan Act Plan

Act Pre Add Del

Add Del

Pre

Goal

progressive

c 306

Figure 15.4: A depth-first progressive planner

a world model and a goal formula
a plan or

ProgPlan[DB,] =
If DB then return the empty plan
For each operator such that DB do

Let DB = DB +
Let = ProgPlan[DB]
If = then return

end for
Return

where is the name of an operator in the list (with , , and as the
other corresponding components) and is a substitution of constants for the vari-
ables in that operator, and where the sequence satisfies the following:

for all 1 , DB = DB + ;

for all 1 , DB ;

for some , DB .

The + and in this definition refer to the union and difference of lists respectively.

The characterization of a solution to the planning problem above imme-
diately suggests the planning procedure shown in Figure 15.4. For simplicity, we
have left out the details concerning the substitutions of variables. This type of plan-
ner is called a planner, since it works by progressing the initial world
model forward until we obtain a world model that satisfies the goal formula.

Consider once again the planning problem in Figure 15.1. If called with the
initial world model above (DB), and goal

() ()

the progressive planner would first confirm that the goal is not yet satisfied, and
then within the loop, eventually get to the operator (, ,)

1

x

1

x ; x; ;

goal regression

15.2.2 Regressive planning

2003 R. Brachman and H. Levesque July 17, 2003

As before, we are omitting details about variable bindings. A more realistic version would cer-
tainly leave the in the goal unbound at this point, for example.

InRoom(box1,supplies) Box(box1)
InRoom(box2,closet) Box(box2)
InRoom(robot,supplies)
Connected(doorA,office,supplies) Connected(doorA,supplies,office)
Connected(doorB,closet,supplies) Connected(doorA,supplies,closet)

pushThru box1 doorA supplies office

InRoom(box1,office) Box(box1)
InRoom(box2,closet) Box(box2)
InRoom(robot,office)
Connected(doorA,office,supplies) Connected(doorA,supplies,office)
Connected(doorB,closet,supplies) Connected(doorA,supplies,closet)

Box InRoom office

pushThru box1 doorA supplies office

c 307

whose precondition is satisfied in the DB. It then would call itself recursively with
the following progressed world model:

The goal is still not satisfied, and the procedure then continues and gets to the op-
erator (, , ,) whose precondition is satisfied in the
progressed DB. It would then call itself recursively with a new world model:

At this point, the goal formula is satisfied, and the procedure unwinds successfully
and produces the expected plan.

In some applications, it may be advantageous to use a planner that works backwards
from the goal rather than forward from the initial state. The process of working
backwards, repeatedly simplifying the goal until we obtain one that is satisfied in the
initial state is called . A regressive planner is shown in Figure 15.5.
In this case, the first operator we consider is the last one in the plan. This operator
obviously must not delete any atomic formula that appears in the goal. Furthermore,
to be able to use this operator, we must ensure that its preconditions will be satisfied;
so they become part of the next goal. However, the formulas in the add list of
the operator we are considering will be handled by that operator, so they can be
removed from the goal as we regress it.

If called with the initial world model from Figure 15.1 and goal

() ()

the regressive planner would first confirm that the goal is not yet satisfied, and
then within the loop, eventually get to (, , ,) whose
delete list does not intersect with the goal. It then would call itself recursively with

0

0

�
h i \ fg

�

6 �

strips

strips

Input:
Output:

; ; ;

;

; ; ; ; ;

; ; :

; ; ; ; ;

; ; ; ; ; :

15.3 Planning as a reasoning task

2003 R. Brachman and H. Levesque July 17, 2003

Goal
Goal

Act Pre Add Del Del Goal
Goal Goal Pre Add
Plan Goal

Plan Plan Act

fail

fail

fail

Box box1 InRoom robot supplies InRoom box1 supplies
Connected doorA supplies office

goThru doorA office supplies

Box box1 InRoom robot office InRoom box1 supplies
Connected doorA supplies office Connected doorA office supplies

c 308

Figure 15.5: A depth-first regressive planner

a world model and a goal formula
a plan, or

RegrPlan[DB,] =
If DB then return the empty plan
For each operator such that = do

Let = +
Let = RegrPlan[DB]
If = then return

end for
Return

the following regressed goal:

() () ()
()

The goal is still not satisfied in the initial world model, so the procedure continues
and within the loop, eventually gets to the operator (, ,)
whose delete list does not intersect with the current goal. It would then call itself
recursively with a new regressed goal:

() () ()
() ()

At this point, the goal formula is satisfied in the initial world model, and the proce-
dure unwinds successfully and produces the expected plan.

While the two planners above (or their breadth-first variants) work much better
in practice than the Resolution-based planner considered earlier, neither of them
works very well on large problems. This is not too surprising since it can be shown
that the planning task is NP-hard, even for the simple version of we have
considered, and even when the operators have no variables. It is therefore

2

2

15.3.1 Avoiding redundant search

box1
box2 box1 box2

goThru
pushThru

any

nonlinear

partial-order
planner

2003 R. Brachman and H. Levesque July 17, 2003

One popular planning method involves encoding the task directly as a satisfiability problem, and
using satisfiability procedures to find a plan.

c 309

extremely unlikely that there is procedure that will work well in all cases, as
this would immediately lead to a corresponding procedure for satisfiability.

As with deductive reasoning, there are essentially two options we can consider:
we can do our best to make the search as effective as possible, especially by avoid-
ing redundancy in the search, or we can make the planning problem easier by al-
lowing the user to provide control information.

One major source of redundancy is the fact that actions in a plan tend to be inde-
pendent and can be performed in different orders. If the goal is to get both
and into the office, we can push first or push first. The problem is
that when searching for a sequence of actions (either progressing a world model or
regressing a goal), we consider totally ordered sequence of actions. Before we can
rule out a collection of actions as inappropriate for some goal, we end up consider-
ing many permutations of those same actions.

To deal with this issue, let us consider a new type of plan, which is a finite
set of actions that are only partially ordered. Because such a plan is not a linear
sequence of actions, it is sometimes called a plan. In searching for such
a plan, we order one action before another only if we are required to do so. For
getting the two boxes into the office, for example, we would want a plan with two
parallel branches, one for each box. Within each branch, however, the moving
actions(s) of the robot to the appropriate room would need to occur strictly before
the corresponding pushing action(s).

To generate this type of plan, a different sort of planner, called a
, is often used. In a partial order planner, we start with an incomplete plan,

consisting of the initial world model at one end and the goal at the other end. At
each step, we insert new actions into the plan, and new constraints on when that
action needs to take place relative to the other actions in the plan, until we have
filled all the gaps from one end to the other. It is worth noting, however, that the
efficacy of this approach to planning is still somewhat controversial because of the
amount of extra bookkeeping it appears to require.

A second source of redundancy concerns applying sequence of actions repeat-
edly. Consider, for example, getting a box into the office. This always involves
the same operators: some number of actions followed by a corresponding
number of actions. Furthermore, this sequence as a whole has a fixed

: f g�a: a :

a

a

s s

strips

strips golog

golog

golog

15.3.2 Application-dependent control

suggesting

first
only then

while Goal do

Goal

2003 R. Brachman and H. Levesque July 17, 2003c 310

precondition and postcondition that can calculated once and for all from the com-
ponent operators. The authors of considered an approach to the reuse of
such sequences of actions, and created a set of macro-operators, or “MACROPS,”
which were parameterized and abstracted sequences of operators. While adding
macro-operators to a planning problem means that a larger number of operators
will need to be considered, if they are chosen wisely, the resulting plans can be
much shorter. Indeed, many of the practical planning systems work primarily by
assembling precompiled plan fragments from a library of macro-operators.

Even with careful attention to redundancy in the search, planning remains imprac-
tical for many applications. Often the only way to make planning effective is to
make the problem easier, for example, by giving the planner explicit guidance on
how to search for a solution. We can think of the macro-operators, for example, as

to the planner a sequence to use to get a box into a room. But in some
cases, we can be more definite. Suppose, for example, we wish to reorganize all of
the boxes in a certain distant room. We might tell the planner that it should handle
this by planning on getting to the distant room (ignoring any action dealing
with the boxes) and planning on reorganizing the boxes (ignoring any ac-
tion involving motion to other rooms). As with the procedural control of Chapter 6,
constraints of this sort clearly simplify the search by ruling out various sequences
of action.

In fact, we can imagine two extreme versions of this guidance. At one extreme,
we let the planner search for any sequence of actions, with no constraints; at the
other extreme, the guidance we give to a planner would specify a complete sequence
of actions, where no search would be required at all. This idea does not require us
to use , of course, and the situation calculus, augmented with the
programming language, provides a convenient notation for expressing application-
dependent search strategies.

Consider the following highly nondeterministic program:

The body of the loop says that we should pick an action nondeterministically,
and then do . To execute the entire program, we need to find a sequence of actions
corresponding to performing the loop body repeatedly, ending up in a final situation

where () is true. But this is no more and no less than the planning task. So
using , we can represent guidance to a planner at various levels of specificity.

0

0 0

golog

f
g

: f g

� ^
_ : ^

j f � g

j f g

2003 R. Brachman and H. Levesque July 17, 2003

; ;

; ; ;

a

�a: a a :

a; s

a; s ; ; s a

; ; s a ;

n

n > �a a a n

n ; n

m; n m m < n m ; n

forward filtering

while Goal do Acceptable

Acceptable

Acceptable

Acceptable

proc
Goal Acceptable

proc

proc

iterative deepening

goThru doorA office supplies
pushThru box1 doorA supplies office

InRoom robot closet BlockAction
InRoom robot closet MoveAction

BlockAction MoveAction

DFPlan

DFPlan
DFPlan

IDPlan IDPlan

IDPlan DFPlan IDPlan

IDPlan
DFPlan

c 311

The program above provides no guidance at all; on the other hand, the deterministic
program

() ;
()

requires no search at all. In between, however, we would like to provide some
application-dependent guidance, leaving a more manageable search problem.

One convenient way to control the search process during planning is by using
what is called . The idea is to modify very slightly the above pro-
gram so that not every action whose precondition is satisfied can be selected as
the next action to perform in the sequence, but only those actions that also satisfy
some application-dependent criterion:

()? ;

The intent is that the fluent () should be defined by the user to filter
out actions which may be legal but are not useful at this point in the plan. For
example, if we want to tell the planner that it first needs to get to the closet and only
then consider moving any boxes, we might have the something like the following
in the KB:

() () ()
() ()

for some suitable and predicates. Of course, defining
properly for any particular application is not easy, and requires a deep

understanding of how to solve planning problems in that application.
We can use the idea of forward filtering to define a complete progressive plan-

ner in . The procedure below is a recursive variant of the loop
above that takes as an argument a bound on the length of the action sequence it will
consider. It then does a depth-first search for a plan of that length or shorter:

() :
? (0)? ; (()? ;) ; (1)

Of course, the plan it finds need not be the shortest one that works. To get the
shortest plan, it would be necessary to first look for plans of a certain length, and
only then look for longer ones:

() : (0)

() : () ()? ; (+ 1)

The procedure does a form of search called . It uses
depth-first search (that is,) at ever larger depths as a way of providing many
of the advantages of breadth-first search.

strips abstrips

abstraction space

15.4 Beyond the basics

pushThru

office closet
box1

2003 R. Brachman and H. Levesque July 17, 2003

15.4.1 Hierarchical planning

15.4.2 Conditional planning

c 312

In this final section, we briefly consider a small number of more advanced topics in
planning.

The basic mechanisms of planning that we have covered so far, even including at-
tempts to simplify the process with macro-operators, still preserve all detail needed
to solve a problem all the way through the process. In reality, attention to too much
detail can derail a planner to the point of uselessness. It would be much better, if
possible, to first search through an , where unimportant details
were suppressed. Once a solution in the abstraction space were found, then all we
would have to do would be to account for the details of the linkup of the steps.

In an attempt to separate levels of abstraction of the problem in the planning
process, the team invented the approach. The details are not im-
portant here, but we can note a few of the elements of this approach. First, precondi-
tions in the abstraction space have fewer literals than those in the ground space, thus
they should be less taxing on the planner. For example, in the case of ,
at the highest level of abstraction, the operator is applicable whenever an object
is pushable and a door exists; without those basic conditions, the operator is not
even worth considering. At a lower level of abstraction, like the one we used in
our earlier example, the robot and object have to be in the same room, which must
be connected by a door to the target room. At an even finer-grained level of detail,
it would be important to ascertain whether or not the door was open (and attempt
to open it if not). But that is really not relevant until we have a plan that involves
going through the door with the object. Finally, in the least abstract representation,
it would be important to get the robot right next to the object, and both the robot
and object right next to the doorway, so that they could move through it.

In very many applications, there may not be enough information available to plan
a full course of action to achieve some goal. For example in our robot domain,
imagine that each box has a printed label on it that says either or , and
suppose our goal is to get into the room printed on its label. With no further
information, the full, advance planning task is impossible since we have no way of
knowing where the box should end up. However, we do know that there exists a
sequence of actions that will achieve the goal, namely, to go into the supply room,

0

. . .

strips

� 9 9 ^
^ ^

S a; s p; s

p

; s x r: ; r; s

x x; r; s x;

p; s

15.4.3 “Even the best-laid plans ”

2003 R. Brachman and H. Levesque July 17, 2003

conditional plan
conditional planner

do cdo

cdo
efficiently

office

office
box1 box1

Fires sensor1 InRoom robot
Box InRoom Label office

c 313

and push the box either to the office or to the closet. If we were to use Resolution
with answer extraction for this example, the existential query would succeed, but
we would end up with a clause with two answer literals, corresponding to the two
possible sequences of action.

But now imagine that our robot is equipped with a sensor of some sort that
tells it whether or not there is a box located in the same room, with a label on it
that says . In this case, we would now like to say that the planning task, or a
generalization of it, is possible. The plan that we expect, however, is not a linear
sequence of actions, but is tree-structured, based on the outcome of sensors: go to
the supply room, and if the sensor indicates the presence of a box labeled ,
then push into the office, and otherwise push into the closet. This type
of branching plan is a called a , and a planner that can generate one
is called a .

There are various ways of making this notion precise, but perhaps the simplest
is to extend the language of situation calculus so that instead of just having terms

and () denoting situations, we also have terms of the form (), where
is a tree-structured conditional plan of some sort. The situation denoted by this

term would depend on the outcome of the sensors involved, which of course would
need to be specified. To describe, for example, the sensor mentioned above, we
might state something like the following:

() ()
() () ()

With terms like () in the language, we could once again use Resolution with
answer extraction to do planning. How to do conditional planning , on
the other hand, is a much more difficult question.

Situation calculus representations, and especially , make many restrictive
assumptions. As we discussed in our section on complex actions, there are many
aspects of action that bear investigation and may potentially impact the ability of
an AI agent to reason appropriately about the world. Among the many issues in
real-world planning that are currently under active investigation we find things like
simultaneous interacting actions (e.g., lifting a piano, opening a doorlatch where
the key must be turned and knob turned at the same time), external events, nonde-
terministic actions or those with probabilistic outcomes, non-instantaneous actions,
non-static predicates, plans that explicitly include time, and reasoning about termi-
nation.

0
0 0do

9s:�

e S

a; e a e

e

Pots of water:

15 puzzle:

Blocks world:

15.5 Bibliographic notes

15.6 Exercises

2003 R. Brachman and H. Levesque July 17, 2003c 314

An even more fundamental challenge for planning is the suggestion made by
some that explicit, symbolic production of formal plans is something to be avoided
altogether. This is generally a reaction to the computational complexity of the un-
derlying planning task. Some advocate instead the idea of a more “reactive” system,
which observes conditions and just “reacts” by deciding—or looking up—what to
do next. This one-step-at-a-time-like process is more robust in the face of unex-
pected changes in the environment. A reactive system could be implemented with
a kind of “universal plan”—a large lookup table (or boolean circuit) that tells you
exactly what to do based on conditions. In some cases where they have been tried,
reactive systems have had impressive performance on certain low-level problems,
like learning to walk; they have even appeared intelligent in their behavior. At the
current time, though, it is very unclear how far one can go with such an approach
and what its intrinsic limitations are.

The exercises below are continuations of the exercises from Chapter 14. For each
application, we consider a planning problem involving an initial setup and a goal.

Imagine that in the initial situation, we have two pots, a 5-litre one
filled with water, and an empty 2-litre one. Our goal is to obtain 1 litre of
water in the 2-litre pot.

Assume that every tile is initially placed in its correct position, except
for tile 9 which is in location 13, tile 13 in location 14, tile 14 in location
15, and tile 15 in location 16. The goal, of course, is to get every tile placed
correctly.

In the initial situation, the blocks are arranged as in Figure 14.2 of
Chapter 14. The goal is to get them arranged as in Figure 15.6.

For each application, the questions are the same:

1. Write a sentence of the situation calculus of the form which asserts the
existence of the final goal situation.

2. Write a ground situation term (that is, a term that is either or of the form
() where is a ground action term and is itself a ground situation

term) such that denotes the desired goal situation.

� �

�

C

D

E

A

B F

strips

strips

strips

(Do not attempt
to write down a derivation!)

2003 R. Brachman and H. Levesque July 17, 2003c 315

Figure 15.6: The blocks word goal

3. Explain how you could use Resolution to automatically solve the problem
for any initial state: how would you generate the clauses, and assuming the
process stops, how would you extract the necessary moves?

Explain why you need to use the successor state
axioms, and not just effect axioms.

4. Suppose we were interested in formalizing the problem using a repre-
sentation. Decide what the operators should be, and then write the precondi-
tion, add list, and delete list for each operator. You may change the language
as necessary.

5. Consider the database corresponding to the initial state of the problem. For
each operator, and each binding of its variables such that the precon-
dition is satisfied, state what the database progressed through this operator
would be.

6. Consider the final goal state of the problem. For each operator, de-
scribe the bindings of its variables for which the operator can be the final
action of a plan, and in those cases, what the goal regressed through the op-
erator would be.

7. Without any additional guidance, a very large amount of search is usually
required to solve planning problems. There are often, however, application-
dependent heuristics that can be used to reduce the amount of search. For
example,

for the 15-puzzle, we should get the first row and first column of tiles
into their correct positions (tiles 1, 2, 3, 4, 5, 9, 13); then recursively
solve the remaining 8-puzzle without disturbing these outside tiles;

�
x

x x

x y x y y

golog

golog

final
position

2003 R. Brachman and H. Levesque July 17, 2003c 316

for the blocks world, we should never move a block that is in its
, where a block is considered to be in its final position iff

either (a) is on the table and will be on the table in the goal state or
(b) is on another block , will be on in the goal state, and is also
in its final position.

Explain how the complex actions of from Chapter 14 can be used
to define a more restricted search problem which incorporates heuristics like
these. Sketch briefly what the program would look like.

