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Preface to these notes

This set of lecture notes gives a brief summary of the basic ideas and principles underlying
the lectures given in the course Knowledge Representation and Reasoning. The basic idea
underlying the course is that in AI you need to be able to precisely represent knowledge in
order to explore that knowledge to solve problems. This is because, in contrast to humans,
computers can only manipulate knowledge that has a precise syntax and semantics, and even
if the requirements are somewhat loosened, there must be still some underlying language that
is precise.

Although knowledge representation can be done using different formal languages, the two
languages that have become dominant in AI in the course of time are predicate logic and
probability theory. In contrast to the usual way logic and probability theory are used in
mathematics and computing science, AI researchers have a tendency to be creative with logic
and probability theory, and play a bit with these languages in order to better understand
the problem—how to represent particular types of knowledge and to reason with it—they are
tackling. To be able to use logic and probability theory in this fashion, an AI researcher needs
a really good understand of these languages; it is not enough only being able to reproduce
simple facts about logic and probability theory. In the end, the languages are used as vehicles
to represent knowledge, and so the semantics, i.e., what one is trying to say, is of utmost
importance. Semantics is the central theme that is visible in all the lectures offered in the
course.

The structure of the lectures is as follows:

• Introduction (Chapter 1): relationship between cognitive aspects of knowledge and
formal and computer-based representation. Why are formal languages crucial in this
context and what are relevant properties?

• Logic programming en Prolog (Chapter 2): knowledge as computer programs.

• Description logics and frames (Chapter 3): relationship between knowledge representa-
tion and current world-wide efforts of making human knowledge available through the
Semantic Web.

• Model-based reasoning (Chapter 4): representation and use of models of structure and
behaviour to solve problems, in particular diagnostic problems.

• Reasoning and decision-making under uncertainty (Chapter 5): AI methods for rep-
resenting and reasoning with the uncertainty met in many real-world problems. This
includes preferences and making decisions. (Most topics here are a recap from the
previous two AI courses).

• Probabilistic logic (Chapter 6): here we are back to merging logical and probabilistic
reasoning (as in the early days of AI), but now in a single powerful and mathematically
sound framework. This chapter reflects recent advances in knowledge representation
and reasoning in AI.

• Reasoning in dynamic worlds (Chapter 7): here we take a look at how one can specify
logical models for changing information, such as for action planning. We take a look at
different ways to represent dynamics, and how to create high-level decision policies in
logic. Probability can sometimes be added in an easy way, for example using AILog.
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• Applications of (probabilistic) logic in AI (Chapter 8): logic was used much in the early
days in AI, but was sometimes neglected somewhat because (among other things) it
was hard to add probabilities or learning in many settings. The last decade we are
seeing many applications using probabilistic logic for robotics, language processing and
computer vision. In this lecture we take a look at image interpretation, or computer
vision.

Note that the lecture notes complement the slides used in the lectures. The slides often
contain other examples and sometimes also more detail. Thus, you need to study the slides
together with the lecture notes, and not only the lecture notes!

Peter Lucas, Martijn van Otterlo and Arjen Hommersom
Nijmegen, 6th November, 2012
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Chapter 1

Lecture 1 – Introduction

Knowledge representation and reasoning is about establishing a relationship be-
tween human knowledge and its representation, by means of formal languages,
within the computer.

1.1 Aims of the course

Although much human knowledge can be conveyed by natural language and by informal
diagrams, artificial intelligence (AI) researchers and practitioners wish not only to represent
knowledge, but also to automatically reason with the knowledge. Despite many attempts, in
fact especially by AI researchers, no automatic method is currently available to reason with
natural language and informal diagrams. Few people nowadays believe it will ever be possible
to develop such methods. Instead, AI researchers have focused on developing formal methods
to represent and reason with knowledge. Formal languages have a precise, i.e., mathematical,
syntax and semantics.

Since the inception of AI as a separate research discipline, researchers have proposed
many different languages. In time, logical languages have become the most dominant, mainly
because they do have a precise semantics and associated reasoning methods. Many of these
languages extend or modify standard logic. Of course, the precise nature of logical languages
makes it sometimes difficult to represent objects in the real world, also called natural kinds, as
these are often incompletely understood. However, even then logical language allow approxi-
mating what is known. There is also much AI research that focuses on the representation of
human-made artifacts, such as devices and equipment. Although representing such artifacts
is typically easier, there are many facets of machines which are also incompletely understood.
In that sense, the difference between natural kinds and human-made artifacts is smaller than
most people think. Figure 1.1 summarises the relationship between knowledge about real
objects, knowledge representation and reasoning.

Often a distinction is made between the knowledge level and symbol level of knowledge.
The knowledge level is about what the knowledge is about, i.e., its content. The symbol level
concerns the representation of knowledge using a formal language. Typically, some of the
content of the knowledge may be lost in translating the knowledge from the knowledge to the
symbol level. This need not always affect the quality of the conclusions that can be drawn
from the symbol-level representation. Although such loss of content is unavoidable in general,
one should be aware of it.

1
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Natural kind

Representation
Formal Conclusions

Reasoning

System

Artifact (e.g. Machine)

Figure 1.1: Role of formal representation.

Prolog is a logical programming language, and has characteristics that renders it very close
to knowledge representation and reasoning systems. Because of this closeness, it is relatively
easy to implement knowledge systems in Prolog. This explains why Prolog has been taken as
the primary implementation language in the course.

The aims of the course are:

• To understand the relationship between knowledge level and symbol level, which is
mainly reflected by understanding how to translate particular intuitive concepts into
logic and probability theory (directly or via intermediate languages);

• Be familiar with the most important logical and probabilistic methods to represent and
reason with knowledge;

• Being able to develop simple reasoning systems using Prolog.

1.2 Knowledge representation requirements

For a knowledge-representation language to be practical, there are particular requirements
that must be fulfilled:

• It must have a precise semantics (i.e., in terms of mathematical objects such as sets,
numbers, etc.);

• There must be information available about the relationship between expressive power,
i.e., what one can express in the language, and computational complexity in terms of
required running time and space of the associated reasoning algorithms.

For languages such as logic and probability theory, both having a precise semantics, much
is known about the relationship between expressive power and computational complexity.
Knowledge about this relationship is important, because unrestricted logical and probabilistic
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languages have very unfavourable properties in terms of decidability (whether the system is
able to produce guaranteed output in finite time), time complexity (whether the system is
able to efficiently compute a conclusion, where ‘efficient’ is normally understood as in at least
polynomial time). Many knowledge representation languages are NP hard, i.e., require in
the worst case exponential time for computing answers to queries. It appears that many AI
problems are of such generality that they share these unfavourable characteristics.

1.3 Logic as a knowledge representation language

As an example, consider standard first-order logic as a language that we use to specify a
knowledge base KB. It is known that first-order predicate logic (check your book on logic,
Appendix A, or [8]) is undecidable. However, when it is known that KB is unsatisfiable
i.e., KB � ⊥ holds, then KB ⊢ ⊥ is decidable. As a consequence, first-order logic is also
known as being ‘semi-decidable’. Propositional logic (assuming that we have a finite number
of formulae) is of course decidable: it is always possible to get an answer in a finite amount
of time on the question of whether or not a knowledge base is satisfiable. The appendix to
the lecture notes includes a summary of logic in AI you need to be familiar with. Consult
Appendix A before reading on.

1.3.1 Horn-clause logic

A Horn clause or rule is a logical implication of the following form

∀x1 · · · ∀xm((A1 ∧ · · · ∧An)→ B) (1.1)

where Ai, B are positive literals, also called atoms, of the form P (t1, . . . , tq), i.e. without a
negation sign, representing a relationship P between terms tk, which may involve one or more
universally quantified variables xj, constants and terms involving function symbols. As all
variables in rules are assumed to universally quantified, the universal quantifiers are often
omitted if this does not give rise to confusion. If n = 0, then the clause consists only of a
conclusion, which may be taken as a fact. If, on the other hand, the conclusion B is empty,
indicated by ⊥, the rule is also called a query. If the conditions of a query are satisfied, this
will give rise to a contradiction or inconsistency, denoted by � or ⊥, as the conclusion is
empty. So, an empty clause actually means inconsistency.

A popular method to reason with clauses, and Horn clauses in particular, is resolution.
Let KB be a set of rules not containing queries, and let Q ≡ (A1 ∧ · · · ∧An)→ ⊥ be a query,
then

KB ∪ {Q} ⊢ ⊥

where ⊢ means the application of resolution, implies that the conditions

∀x1 · · · ∀xm(A1 ∧ · · · ∧An)

are satisfied for some values of x1, . . . , xm. Since resolution is a sound inference rule, meaning
that it respects the logical meaning of clauses, it also holds that KB∪{Q} � ⊥, or equivalently

KB � ∃x1 · · · ∃xm(A1 ∧ · · · ∧An)
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if KB only consists of Horn clauses. This last interpretation explains why deriving incon-
sistency is normally not really the goal of using resolution; rather, the purpose is to derive
certain facts. Since resolution is only complete for deriving inconsistency, called refutation
completeness, it is only safe to ‘derive’ knowledge in this indirect manner, i.e., by deriving in-
consistency. There exist other reasoning methods which do not have this limitation. However,
resolution is a simple method that is understood in considerable depth. As a consequence,
state-of-the-art resolution-based reasoners are very efficient.

Resolution can also be used with clauses in general, which are logical expressions of the
form

(A1 ∧ · · · ∧An)→ (B1 ∨ · · · ∨Bm)

usually represented as:

¬A1 ∨ · · · ∨ ¬An ∨B1 ∨ · · · ∨Bm

Rules of the form (1.1) are particularly popular as the reasoning with propositional Horn
clauses is known to be possible in polynomial, even linear time, i.e. efficiently, whereas reason-
ing with propositions or clauses in general (where the right-hand side consists of disjunctions
of literals) is known to be NP complete, i.e., may require time exponential in the size of
the clauses. The explanation for this is that for Horn clauses there is always at most one
conclusion B and not, as in non-Horn clauses, a disjunction (B1 ∨ · · · ∨ Bm) that must be
checked. In the latter case, there are 2m possible ways to assign a truth value to the disjunc-
tion. Note that allowing negative literals at the left-hand site of a rule is equivalent to having
disjunctions at the right-hand side. Using a logical language that is more expressive than
Horn-clause logic is sometimes unavoidable, and special techniques have been introduced to
deal with their additional power.

Let KB be a knowledge base consisting of a set (conjunction) of rules, and let F be a set
of facts observed for a particular problem P, then there are generally three ways in which a
problem can be solved, yielding different types of solutions. Let P be a problem, then there
are different classes of solutions to this problem:

• Deductive solution: S is a deductive solution of a problem P with associated set of
observed findings F iff

KB ∪ F � S (1.2)

and KB ∪ F 2 ⊥, where S is a set of solution formulae.

• Abductive/inductive solution: S is an abductive solution of a problem P with
associated set of observed findings F iff the following covering condition

KB ∪ S ∪K � F (1.3)

is satisfied, where K stands for contextual knowledge. In addition, it must hold that
KB ∪ S ∪ C 2 ⊥ (consistency condition), where C is a set of logical constraints on
solutions. For the abductive case, it is assumed that the knowledge base KB contains a
logical representation of causal knowledge and S consists of facts; for the inductive case,
KB consists of background facts and S, called an inductive solution, consists of rules.
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• Consistency-based solution: S is a consistency-based solution of a problem P with
associated set of observed findings F iff

KB ∪ S ∪ F 2 ⊥ (1.4)

Note that a deductive solution is a consistent conclusion that follows from a knowledge base
KB and a set of facts, whereas an abductive solution acts as a hypothesis that explains ob-
served facts in terms of causal knowledge, i.e. cause-effect relationships. An inductive solution
also explains observed facts, but in terms of any other type of knowledge. A consistency-based
solution is the weakest kind of solution, as it is neither required to be concluded nor is it re-
quired to explain observed findings. You will encounter examples of these different ways of
solving problems in the next chapters, in particular in Chapter 4 on model-based reasoning.

1.3.2 Objects, attributes and values

Even though facts or observed findings can be represented in many different ways, in many
knowledge systems facts are represented in an object-oriented fashion. This means that facts
are described as properties, or attributes, of objects in the real world. Attributes of objects
can be either multivalued, meaning that an object may have more than one of those properties
at the same time, or singlevalued, meaning that values of attributes are mutually exclusive.

In logic, multivalued attributes are represented by predicate symbols, e.g.:

Parent(John,Ann) ∧ Parent(John,Derek)

indicates that the ‘object’ John, represented as a constant, has two parents (the attribute ‘Par-
ent’): Ann and Derek, both represented by constants. Furthermore, singlevalued attributes
are represented as function symbols, e.g.

gender(John) = male

Here, ‘gender’ is taken as a singlevalued attribute, ‘John’ is again a constant object, and
‘male’ is the value, also represented as a constant.

It is, of course, also possible to state general properties of objects. For example, the
following bi-implication:

∀x∀y∀z((Parent(x, y) ∧ Parent(y, z))↔ Grandparent(x, z))

defines the attribute ‘Grandparent’ in terms of the ‘Parent’ attribute.
Another typical example of reasoning about properties of objects is inheritance. Here one

wishes to associate properties of objects with the classes the objects belong to, mainly because
this yields a compact representation offering in addition insight into the general structure of
a problem domain. Consider, for example, the following knowledge base KB:

∀x(Vehicle(x)→ HasWheels(x))
∀x(Car(x)→ Vehicle(x)
∀x(Car(x)→ number-of-wheels(x) = 4)

Clearly, it holds that

KB ∪ {Car(Bugatti)} � number-of-wheels(Bugatti) = 4
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Vehicle HasWheels

Car number-of-wheels = 4

Bugatti

Figure 1.2: An object taxonomy.

as the third rule expresses that as a typical property of cars. However, the knowledge base
also incorporates more general properties of cars, such as:

KB ∪ {Car(Bugatti)} � Vehicle(Bugatti)

Now, given the fact that a car is a vehicle, we can now also conclude

KB ∪ {Car(Bugatti)} � HasWheels(Bugatti)

The example knowledge base discussed above can also be represented as a graph, called an
object taxonomy, and is shown in Figure 1.2. Here ellipses indicate either classes of objects
(Car and Vehicle) or specific objects (Bugatti). Solid arcs in the graph indicate that a class of
objects is a subclass of another class of objects; a dashed arc indicates that the parent object
is an element – often the term ‘instance’ is used instead – of the associated class of objects.
The term ‘inheritance’ that is associated with this type of logical reasoning derives from the
fact that the reasoning goes from the children to the parents in order to derive properties.
More about inheritance will be said in Chapter 3.

Describing the objects in a domain, usually but not always in a way resembling a taxonomy,
usually with the intention to obtain a formal description of the terminology in a domain, is
known as an ontology.

In conclusion, finding the right trade-off between expressive power and computational
complexity is one of the most important issues for (practical) knowledge representation sys-
tems in AI [1].

1.4 Reasoning with uncertainty

In the early days of knowledge systems, rule-based systems, which can be looked at as system
that represent knowledge as rules of the form A → B, were popular. Early reasoning with
uncertainty was, therefore, studied in the context of such rule-based systems with rules of the
form A→ Bx, with x some measure of uncertainty. The meaning of this rule is that when A
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is absolutely true then B is also true, but with certainty x. Of course, the actual meaning of
x depends on the theory being used.

At the end of the 1980s, rule-based systems were slowly replaced by the then new Bayesian
networks. Bayesian networks are structured joint (multivariate) probability distributions.
They allow for computing of any probability of interest. For example, if one has the joint
distribution P (X,Y ) one can compute P (X) simply by marginalising out Y :

P (X) =
∑

Y

P (X,Y )

In addition, it is straightforward to determine the effect of observations X (facts known with
certainty) on the uncertainty of any set of random variables Y by computing the conditional
probability distribution P (Y | X).

It appears to be fruitful to use probability theory as a basic framework to understand both
early, rule-based approached to uncertainty reasoning (e.g. the certainty-factor calculus), more
recent work on probabilistic graphical models (e.g. Bayesian networks), and the latest work
on probabilistic logics (e.g. Markov logic).

1.5 Conclusions

The field of knowledge representation and reasoning has seen a development from practical
systems that solved actual problems at the end of the 1970s and the beginning of the 1980s,
such as the MYCIN system that was developed to assist clinicians in the diagnosis and
treatment of infectious diseases, to the development of the underlying theory in the 1980s and
1990s. In particular many different ways to use logic as a language for the development of AI
systems has attracted much attention in the 1980s and 1990s, and we will look at examples
of such research during the course. Finally the development of reasoning of uncertainty from
rule-based reasoning to network models and, recently, to probabilistic logic is an interesting
example of progress in AI research. This last development, which explains the subtitle of
the course, will be considered as well. The book by Van Harmelen et al. [2] offers a detailed
account of all of these developments.
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Chapter 2

Lecture 2-4 – Logic Programming

Logic programming and the associated programming language Prolog are conve-
nient vehicles for this course on knowledge representation and reasoning, because
of the dominant role played by logic and logical reasoning in the area.

2.1 Introduction

Prolog is a simple, yet powerful programming language, based on the principles of first-order
predicate logic. The name of the language is an acronym for the French ‘PROgrammation
en LOGique’. About 1970, Prolog was designed by A. Colmerauer and P. Roussel at the
University of Marseille, influenced by the ideas of R.A. Kowalski concerning programming in
the Horn clause subset of first-order predicate logic. The name of Prolog has since then been
connected with a new programming style, known as logic programming.

Until the end of the seventies, the use of Prolog was limited to the academic world. Only
after the development of an efficient Prolog interpreter and compiler by D.H.D. Warren and
F.C.N. Pereira at the University of Edinburgh, the language entered the world outside the
research institutes. The interest in the language has increased steadily. However, Prolog is
still mainly used by researchers, even though it allows for the development of serious and
extensive programs in a fraction of the time needed to develop a C or Java program with
similar functionality. The only explanation is that people like waisting their precious time.
Nevertheless, there are a large number of fields in which Prolog has been applied successfully.
The main applications of the language can be found in the area of Artificial Intelligence; but
Prolog is being used in other areas in which symbol manipulation is of prime importance as
well. Some application areas are:

• Natural-language processing;

• Compiler construction;

• The development of knowledge systems;

• Work in the area of computer algebra;

• The development of (parallel) computer architectures;

• Database systems.

9
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Prolog is particularly strong in solving problems characterised by requiring complex symbolic
computations. As conventional imperative programs for solving this type of problems tend
to be large and impenetrable, equivalent Prolog programs are often much shorter and easier
to grasp. The language in principle enables a programmer to give a formal specification of a
program; the result is then almost directly suitable for execution on the computer. Moreover,
Prolog supports stepwise refinement in developing programs because of its modular nature.
These characteristics render Prolog a suitable language for the development of prototype
systems.

There are several dialects of Prolog in use, such as for example, C-Prolog, SWI-Prolog,
Sicstus-Prolog, LPA-Prolog. C-Prolog, also called Edinburgh Prolog, was taken as a basis for
the ISO standard. C-Prolog itself is now no longer in use.

The language definition of C-Prolog is derived from an interpreter developed by D.H.D.
Warren, D.L. Bowen, L. Byrd, F.C.N. Pereira, and L.M. Pereira, written in the C program-
ming language for the UNIX operating system. Most dialects only have minor syntactical
and semantical differences with the standard language. However, there are a small number
of dialects which change the character of the language in a significant way, for example by
the necessity of adding data-type information to a program. A typical example is offered by
the version of the Prolog language supported by Visual Prolog. In recent versions of Prolog,
several features have been added to the ISO standard. Modern Prolog versions provide a
module concept and extensive interfaces to the operating system, as well as tools for the
development of graphical user interfaces. As these have not been standardised, we will not
pay attention to them here.

2.2 Logic programming

In more conventional, imperative languages such as C++ and Java a program is a specification
of a sequence of instructions to be executed one after the other by a target machine, to solve
the problem concerned. The description of the problem is incorporated implicitly in this
specification, and usually it is not possible to clearly distinguish between the description of
the problem, and the method used for its solution. In logic programming, the description
of the problem and the method for solving it are explicitly separated from each other. This
separation has been expressed by R.A. Kowalski in the following equation:

algorithm = logic + control

The term ‘logic’ in this equation indicates the descriptive component of the algorithm, that
is, the description of the problem; the term ‘control’ indicates the component that tries to
find a solution, taking the description of the problem as a point of departure. So, the logic
component defines what the algorithm is supposed to do; the control component indicates
how it should be done.

A specific problem is described in terms of relevant objects and relations between objects,
which are then represented in the clausal form of logic, a restricted form of first-order predicate
logic. The logic component for a specific problem is generally called a logic program. The
control component employs logical deduction or reasoning for deriving new facts from the logic
program, thus solving the given problem; one speaks of the deduction or reasoning method.
The deduction method is assumed to be quite general, in the sense that it is capable of dealing
with any logic program respecting the clausal form syntax.
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The splitting of an algorithm into a logic component and a control component has a
number of advantages:

• The two components may be developed separately from each other. For example, when
describing the problem we do not have to be familiar with how the control compo-
nent operates on the resulting description; knowledge of the declarative reading of the
problem specification suffices.

• A logic component may be developed using a method of stepwise refinement; we have
only to watch over the correctness of the specification.

• Changes to the control component affect (under certain conditions) only the efficiency
of the algorithm; they do not influence the solutions produced.

An environment for logic programming offers the programmer a reasoning method, so that
only the logic program has to be developed for the problem at hand. The reasoning method
of logic programming is known as SLD resolution.

2.3 SLD resolution: a special form of resolution

For details about predicate logic, clausal form, resolution and unification, you are referred to
Appendix A. You are expected to understand resolution before continuing reading.

SLD resolution is the reasoning method used to reason with logic programs. It operates
on Horn clauses, which are logical implications taking the following form:

B ← A1, . . . , An

where B, A1, . . . , An, n ≥ 0, are atomic formulas. The commas ‘,’ here have the meaning of
a conjunction ∧, whereas ← is the reverse logical implication symbol. Thus, outside the area
of logical programming, a Horn clause is denoted as follows:

∀x1 · · · ∀xm((A1 ∧ · · · ∧An)→ B)

SLD resolution is a form of linear resolution: in every resolution step the last generated
resolvent is taken as a one of the two parent clauses. The other parent clause is either a
clause from the original set of clauses or a resolvent that has been generated before. With
SLD resolution, each resolution step, with the exception of the first one, is carried out on
the last generated resolvent and a clause from the original set of clauses. The former clauses
are called goal clauses; the latter clauses are called input clauses or program clauses. SLD
resolution also includes a selection rule which determines at every step which literal from the
goal clause is selected for resolution.

An SLD derivation is defined as follows:

Definition 2.1 Let {Ci} be a set of Horn clauses with

Ci = B ← B1, . . . , Bp

where p ≥ 0, and let G0 be a goal clause of the form

G0 = ← A1, . . . , Aq
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G0 C1, θ1

G1

Gn−1 Cn, θn

Gn

Figure 2.1: Derivation tree of SLD resolution.

where q ≥ 0. An SLD derivation is a finite or infinite sequence G0, G1, . . . of goal clauses,
a sequence C1, C2, . . . of variants of input clauses and a sequence θ1, θ2, . . . of most general
unifiers, such that each Gi+1 is derived from Gi = ← A1, . . . , Ak and Ci+1 using θi+1 if the
following conditions hold:

(1) Aj is the atom in the goal clause Gi chosen by the selection rule to be resolved upon,
and

(2) Ci+1 is an input clause of the form

Ci+1 = B ← B1, . . . , Bp

(in which variables have been renamed, if necessary), such that Ajθi+1 = Bθi+1, where
θi+1 is a most general unifier of Aj and B.

(3) Gi + 1 is the clause

Gi+1 = ← (A1, . . . , Aj−1, B1, . . . , Bp, Aj+1, . . . , Ak)θi+1

If for some n ≥ 0, Gn = �, then the derivation is called an SLD refutation and the
number n is called the length of the refutation.

Note that a new goal clause Gi+1 is the resolvent of the last computed resolvent Gi and (a
variant of) an input clause Ci+1. Figure 2.1 shows the general form of a derivation tree by
SLD resolution. In this figure the sequence of successive goal clauses (resolvents) G0, G1, . . .
has been indicated.

EXAMPLE 2.1

Consider the following set of Horn clauses:

{R(g(x))← T (x, y, f(x)), T (a, b, f(a)), P (v,w) ← R(v)}
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← P (u, b) P (v,w)← R(v), {u/v, b/w}

← R(u) R(g(x))← T (x, y, f(x)), {g(x)/u}

← T (x, y, f(x)) T (a, b, f(a)), {a/x, b/y}

�

Figure 2.2: An SLD refutation.

Furthermore, let the following goal clause be given:

← P (u, b)

The clause set obtained by adding the goal clause to the original set of clauses is un-
satisfiable. This can be proven using SLD resolution. Figure 2.2 depicts this proof by
SLD refutation as a derivation tree.

SLD resolution is both sound and complete for Horn clauses. It furthermore is similar to
the set-of-support strategy in the sense that it is also a resolution strategy controlled by
a set of goals. So, SLD resolution is a form of top-down inference as well. In general it
is advantageous to restrict applying the resolution principle to clauses satisfying the Horn
clause format: various resolution algorithms for propositional Horn clause logic are known to
have a worst-case time complexity almost linear in the number of literals. When applying
some resolution strategy suitable for the clausal form of logic in general, we always have to
face the danger of a combinatorial explosion. Moreover, for systems based on SLD resolution
many efficient implementation techniques have been developed by now, one of which will
be discussed in the next section. But there definitely are problems for which a resolution
strategy applying some form of bottom-up inference turns out to be more efficient than SLD
resolution.

Before introducing the notion of a search space for SLD resolution, we give another ex-
ample.

EXAMPLE 2.2

Consider the following set of Horn clauses:

C1 = P (x)← P (f(x))

C2 = P (f(f(a)))←

If these clauses are ‘tried’ in the order in which they are specified, then for the goal
clause ← P (a) no refutation is found in a finite number of steps, although the resulting
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← P (a) P (x)← P (f(x)), {a/x}

← P (f(a)) P (x)← P (f(x)), {f(a)/x}

← P (f(f(a))) P (x)← P (f(x)), {f(f(a))/x}

← P (f(f(f(a))))

Figure 2.3: Infinite derivation tree by SLD resolution.

← P (a) P (x)← P (f(x)), {a/x}

← P (f(a)) P (x)← P (f(x)), {f(a)/x}

← P (f(f(a))) P (f(f(a))), ǫ

�

Figure 2.4: Refutation by SLD resolution.

set of clauses obviously is unsatisfiable. The corresponding derivation tree is shown in
Figure 2.3. However, if the clauses C1 and C2 are processed in the reverse order C2, C1,
then a refutation will be found in finite time: the resulting refutation tree is shown in
Figure 2.4.

Now let the search space for SLD resolution for a given goal on a set of clauses be a graph
in which every possible SLD derivation is shown. Such a search space is often called an SLD
tree. The branches of the tree terminating in the empty clause � are called success branches.
Branches corresponding to infinite derivations are called infinite branches, and the branches
representing derivations which have not been successful and cannot be pursued any further
are called failure branches. The level of a vertex in an SLD tree is obtained by assigning the
number 0 to the root of the tree; the level of each other vertex of the tree is obtained by
incrementing the level of its parent vertex by 1.
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← P (a)

← P (f(a))

← P (f(f(a)))

. . . �

C1

C1

C1 C2

Figure 2.5: An SLD tree.

EXAMPLE 2.3

Figure 2.5 shows the SLD tree corresponding to SLD resolution on the set of clauses from
the previous example. The right branch of the tree is a success branch and corresponds
to the refutation depicted in Figure 2.4; the left branch is an example of a failure branch.

It can easily be seen that a specific, fixed order in choosing parent clauses for resolution such
as in the previous example, corresponds to a depth-first search in the search space. Note that
such a depth-first search defines an incomplete resolution procedure, whereas a breadth-first
search strategy defines a complete one. Although SLD resolution is both sound and complete
for Horn clauses, in practical realisations for reasons of efficiency, variants of the algorithm
are used that are neither sound nor complete. First of all, in many implementations the
‘expensive’ occur check has been left out from the unification algorithm, thus destroying the
soundness; the lack of the occur check might lead to circular variable bindings and yield
‘resolvents’ that are no logical consequences of the set of clauses. Furthermore, often the
original clauses are ‘tried’ in some specific order, such as for example the order in which the
clauses have been specified; the next input clause is only examined after the previous one has
been fully explored. As a consequence, the algorithm might not be able to find a proof of a
given theorem: due to an inappropriate choice of the order in which the clauses are processed,
an infinite derivation tree can be created. This way, completeness of SLD resolution will be
lost.

We have mentioned before that SLD resolution is of major interest because of its relation
with the programming language Prolog. In Prolog, the control strategy employed is roughly
an implementation of SLD resolution; the variant used however, is neither sound nor complete.
In most (standard) Prolog systems, the selection rule picks the leftmost atom from a goal for
resolution. A depth-first strategy for searching the SLD tree is used: most Prolog systems
‘try’ the clauses in the order in which they have been specified. Furthermore, in many Prolog
systems, for efficiency reasons, the occur check has been left out from the implementation.

The Horn clause subset of logic is not as expressive as the full clausal form of logic is. As
is shown in the following example, this might lead to problems when translating the logical
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formulas into the Horn clause subset.

EXAMPLE 2.4

In Section A.2 we defined the following predicates with their associated intended mean-
ing:

Car = ‘is a car’
Fast = ‘is a fast car’
Vehicle = ‘is a vehicle’
FourWheels = ‘has four wheels’
Exception = ‘is an exception’

The formula ∀x(Car(x) → Vehicle(x)) represents the knowledge that every car is a
vehicle. This formula is logically equivalent to ∀x(¬Car(x)∨Vehicle(x)) and results in
the following Horn clause:

Vehicle(x)← Car(x)

The knowledge that a Bugatti is a fast car, is represented as a Horn clause representing
a single fact:

Fast(bugatti)←

The implication

∀x((Car(x) ∧ ¬Exception(x))→ FourWheels(x))

stating that almost every car, except for instance a Bugatti, has four wheels. This
formula is equivalent to

∀x(¬(Car(x) ∧ ¬Exception(x)) ∨ FourWheels(x))

and to the formula

∀x(¬Car(x) ∨ Exception(x) ∨ FourWheels(x))

in disjunctive normal form. Unfortunately, it is not possible to translate this formula
directly into logic programming representation, since the clause contains two positive
literals instead of at most one, and, thus, is not a Horn clause. However, it is possible
to represent the knowledge expressed by the clause in logic programming, by means of
the rather special programming trick offered by the meaning of the standard predicate
‘not’, which will be discussed below. The logic programming clause we arrive at is the
following:

Fourwheels(x)← Car(x),not(Exception(x))

This this is essentially a Horn clause with an extra predicate: ‘not’. Note that in the
analogous example in Section A.2 it was necessary to specify that an alfa-romeo is not an
exception to the general rule that cars have four wheels. In fact, for a correct behaviour
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of a proof procedure it was necessary to specify for each artery explicitly whether or
not it is an exception to the rule. In most applications however, it is unreasonable
to expect users to explicitly express all negative information relevant to the employed
proof procedure. This problem can be handled by considering a ground literal not(P )
proven if an attempt to prove P using SLD resolution has not succeeded. So, in the
particular case of the example, it is assumed that the goal clause

← not(Exception(alfa-romeo))

is proved.

The inference rule that a negative literal is assumed proven when the attempt to prove the
complementary literal has failed is called negation as failure. Negation as failure is similar
to the so-called closed-world assumption which is quite common in database applications. In
Prolog, an even stronger assumption, known as negation as finite failure, is made by taking
not(P ) proven, or satisfied, only if proving P using SLD resolution has failed in a finite number
of steps. Also Prolog includes this predicate not is the implementation of this negation as
finite failure and therefore should not be taken as the ordinary negation: it is an extra-logical
feature of Prolog.

2.4 Programming in Prolog

The programming language Prolog can be considered to be a first step towards the practical
realisation of logic programming; as we will see in below, however, the separation between logic
and control has not been completely realised in this language. Figure 2.6 shows the relation
between Prolog and the idea of logic programming discussed above. In addition, predicates
in Prolog always start with a lower-case letter, e.g., ‘car(bugatti)’ rather than ‘Car(bugatti)’.
Variables, which as in logical programming are implicitly universally quantified, always start
with an upper-case letter or underscore, e.g., ‘X’ rather than ‘x’. Combined with a predicate
we get ‘car(X)’ instead of the ‘Car(x)’ we used earlier. A Prolog system consists of two
components: a Prolog database and a Prolog interpreter.

A Prolog program, essentially a logic program consisting of Horn clauses (which however
may contain some directives for controlling the inference method), is entered into the Prolog
database by the programmer. As mentioned above, the Prolog interpreter offers a reasoning
method based on SLD resolution.

Solving a problem in Prolog starts with discerning the objects that are relevant to the
particular problem, and the relationships that exist between them.

EXAMPLE 2.5

In a problem concerning sets, we for instance take constants as separate objects and
the set as a whole as another object; a relevant relation between constants and sets is
the membership relation.

When we have identified all relevant objects and relations, it must be specified which facts
and rules hold for the objects and their interrelationships.

EXAMPLE 2.6
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algorithm = logic + control

what how

Horn
clauses

resolution

Prolog
database

Prolog
interpreter

Figure 2.6: The relationship between Prolog and logic programming.

Suppose that we are given a problem concerning sets. We may for example have the
fact that a certain constant a is a member of a specific set S. The statement ‘the set X
is a subset of the set Y , if each member of X is a member of Y ’ is a rule that generally
holds in set theory.

When all facts and rules have been identified, then a specific problem may be looked upon as
a query concerning the objects and their interrelationships. To summarise, specifying a logic
program amounts to:

• Specifying the facts concerning the objects and relations between objects relevant to
the problem at hand;

• Specifying the rules concerning the objects and their interrelationships;

• Posing queries concerning the objects and relations.

2.4.1 The declarative semantics

As mentioned above, knowledge (facts, rules, and queries) is represented in Prolog using the
formalism of Horn clause logic. A Horn clause takes the following form:

B ← A1, . . . , An

where B, A1, . . . , An, n ≥ 0, are atomic formulas. Instead of the (reverse) implication symbol,
in Prolog usually the symbol :- is used, and clauses are terminated by a dot. An atomic
formula is an expression of the following form:

P (t1, . . . , tm)
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Formal Name In Prolog Name

A← unit clause A. fact
← B1, . . . , Bn goal clause ?- B1, . . . , Bn. query
A← B1, . . . , Bn clause A:-B1, . . . , Bn. rule

Table 2.1: Horn clauses and Prolog.

where P is a predicate having m arguments, m ≥ 0, and t1, . . . , tm are terms. A term
is either a constant, a variable, or a function of terms. In Prolog two types of constants
are distinguished: numeric constants, called numbers, and symbolic constants, called atoms.
(Note that the word atom is used here in a meaning differing from that of atomic formula,
thus deviating from the standard terminology of predicate logic.) Because of the syntactic
similarity of predicates and functions, both are called functors in Prolog. The terms of a
functor are called its arguments. The arguments of a functor are enclosed in parentheses, and
separated by commas.

Seen in the light of the discussion from the previous section, the predicate P in the atomic
formula P (t1, . . . , tm) is interpreted as the name of the relationship that holds between the
objects t1, . . . , tm which occur as the arguments of P . So, in a Horn clause B :- A1, . . . , An,
the atomic formulas B, A1, . . . , An, denote relations between objects. A Horn clause now is
interpreted as stating:

‘B (is true) if A1 and A2 and . . . and An (are true)’

A1, . . . , An are called the conditions of the clause, and B its conclusion. The commas between
the conditions are interpreted as the logical ∧, and the :- symbol as the (reverse) logical
implication ←.

If n = 0, that is, if conditions Ai are lacking in the clause, then there are no conditions
for the conclusion to be satisfied, and the clause is said to be a fact. In case the clause is a
fact, the :- sign is replaced by a dot.

Both terminology and notation in Prolog differ slightly from those employed in logic
programming. Table 2.1 summarises the differences and similarities. The use of the various
syntactic forms of Horn clauses in Prolog will now be introduced by means of examples.

EXAMPLE 2.7

The Prolog clause

/*1*/ member(X,[X|_]).

is an example of a fact concerning the relation with the name member. This relation
concerns the objects X and [X|_] (their meaning will be discussed shortly). The clause is
preceded by a comment; in Prolog, comments have to be specified between the delimiters
/* and */.

If a clause contains one or more conditions as well as a conclusion, it is called a rule.

EXAMPLE 2.8

Consider the Prolog clause
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/*2*/ member(X,[_|Y]) :- member(X,Y).

which is a rule concerning the relation with the name member. The conclusion member(X,[_|Y])

is only subjected to one condition: member(X,Y).

If the conclusion is missing from a clause, then the clause is considered to be a query to the
logic program. In case a clause is a query, the sign :- is usually replaced by the sign ?-.

EXAMPLE 2.9

The Prolog clause

/*3*/ ?- member(a,[a,b,c]).

is a typical example of a query.

A symbolic constant is denoted in Prolog by a name starting with a lower-case letter. Names
starting with an upper-case letter, or an underscore sign, _, indicate variables in Prolog.
A relation between objects is denoted by means of a functor having a name starting with
a lower-case letter (or a special character, such as &, not having a predefined meaning in
Prolog), followed by a number of arguments, that is the objects between which the relation
holds. Recall that arguments are terms, that is, they may be either constants, variables, or
functions of terms.

EXAMPLE 2.10

Consider the three clauses from the preceding examples once more. member is a functor
having two arguments. The names a, b, and c in clause 3 denote symbolic constants; X
and Y are variables.

In Prolog, a collection of elements enclosed in square brackets denotes a list. It is possible
to explicitly decompose a list into its first element, the head of the list, and the remaining
elements, the tail of the list. In the notation [X|Y], the part in front of the bar is the head
of the list; X is a single element. The part following the bar denotes its tail; Y itself is a list.

EXAMPLE 2.11

Consider the list [a,b,c]. Now, [a|[b,c]] is another notation for the same list; in
this notation, the head and the tail of the list are distinguished explicitly. Note that
the tail again is a list.

Each clause represents a separate piece of knowledge. So, in theory, the meaning of a set of
clauses can be specified in terms of the meanings of each of the separate clauses. The meaning
of a clause is called the declarative semantics of the clause. Knowledge of the declarative
semantics of first-order predicate logic helps in understanding Prolog. Broadly speaking,
Prolog adheres to the semantics of first-order logic. However, there are some differences, such
as the use of negation as finite failure which will be discussed below.

EXAMPLE 2.12
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Consider the clauses 1, 2 and 3 from the preceding examples once more. Clause 1
expresses that the relation with the name member holds between a term and a list
of terms, if the head of the list equals the given term. Clause 1 is not a statement
concerning specific terms, but it is a general statement; this can be seen from the use of
the variable X which may be substituted with any term. Clause 2 represents the other
possibility that the constant occurs in the tail of the list. The last clause specifies the
query whether or not the constant a belongs to the list of constants a, b, and c.

2.4.2 The procedural semantics and the interpreter

In the preceding section we have viewed the formalism of Horn clause logic merely as a
formal language for representing knowledge. However, the Horn clause formalism can also be
looked upon as a programming language. This view of Horn clause logic is called its procedural
semantics. Essentially, the procedural interpretation is obtained through SLD resolution with
the addition of some special programming-language like terminology and some restrictions due
to the difficulty of providing a full implementation of SLD resolution.

In the procedural semantics, a set of clauses is viewed as a program. Each clause in the
program is seen as a procedure (entry). In the clause

B:-A1, . . . , An.

we look upon the conclusion B as the procedure heading, composed of a procedure name,
and a number of formal parameters; A1, . . . , An is then taken as the body of the procedure,
consisting of a sequence of procedure calls. In a program all clauses having the same predicate
in their conclusion, are viewed as various entries to the same procedure. A clause without
any conclusion, that is, a query, acts as the main program. Here no strict distinction is
made between both types of semantics; it will depend on the subject dealt with, whether the
terminology of the declarative semantics is used, or the terminology of procedural semantics
is preferred. In the remainder of this section we shall discuss the Prolog interpreter.

When a Prolog program has been entered into the Prolog database, the main program is
executed by the Prolog interpreter. The way the given Prolog clauses are manipulated, will
be demonstrated by means of some examples.

EXAMPLE 2.13

The three clauses introduced in Section 2.4.1 together constitute a complete Prolog
program:

/* 1*/ member(X,[X|_]).

/* 2*/ member(X,[_|Y]) :-

member(X,Y).

/* 3*/ ?- member(a,[a,b,c]).

Clauses 1 and 2 are entries to the same member procedure. The body of clause 2 consists
of just one procedure call. Clause 3 fulfils the role of the main program.
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Let us suppose that the Prolog database initially contains the first two clauses, and that
clause 3 is entered by the user as a query to the Prolog system. The Prolog interpreter tries
to derive an answer to the query using the information stored in the database. To this end,
the interpreter employs two fundamental techniques: matching and backtracking.

Matching of clauses

To answer a query, the Prolog interpreter starts with the first condition in the query clause,
taking it as a procedure call. The Prolog database is subsequently searched for a suitable
entry to the called procedure; the search starts with the first clause in the database, and
continues until a clause has been found which has a conclusion that can be matched with
the procedure call. A match between a conclusion and a procedure call is obtained, if there
exists a substitution for the variables occurring both in the conclusion and in the procedure
call, such that the two become (syntactically) equal after the substitution has been applied
to them. Such a match exists

• If the conclusion and the procedure call contain the same predicate, and

• If the terms in corresponding argument positions after substitution of the variables are
equal; one then also speaks of a match for argument positions.

Applying a substitution to a variable is called instantiating the variable to a term. The most
general substitution making the selected conclusion and the procedure call syntactically equal,
is called the most general unifier (mgu) of the two. The algorithmic and theoretical basis of
matching is given by unification (See Appendix A and [14] for details).

If we have obtained a match for a procedure call, the conditions of the matching clause
will be executed. In case the matching clause has no conditions, the next condition from the
calling clause is executed. The process of matching (and instantiation) can be examined by
means of the special infix predicate =, which tries to match the terms at its left-hand and
right-hand side and subsequently investigates whether the terms have become syntactically
equal.

EXAMPLE 2.14

Consider the following example of the use of the matching predicate =. The first line
representing a query has been entered by the user; the next line is the system’s output.

?- f(X) = f(a).

X = a

As can be seen, the variable X is instantiated to a, which leads to a match of the left-hand
and right-hand side of =.

On first thoughts, instantiation seems similar to the assignment statement in conventional
programming languages. However, these two notions differ considerably. An instantiation
is a binding of a variable to a value which cannot be changed, that is, it is not possible to
overwrite the value of an instantiated variable by some other value (we will see however, that
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under certain conditions it is possible to create a new instantiation). So, it is not possible to
express by instantiation a statement like

X := X + 1

which is a typical assignment statement in a language like Pascal. In fact, the ‘ordinary’
assignment which is usually viewed as a change of the state of a variable, cannot be expressed
in standard logic.

A variable in Prolog has for its lexical scope the clause in which it occurs. Outside
that clause, the variable and the instantiations to the variable have no influence. Prolog
does not have global variables. We shall see later that Prolog actually does provide some
special predicates which have a global effect on the database; the meanings of such predicates,
however, cannot be accounted for in first-order logic. Variables having a name only consisting
of a single underscore character, have a special meaning in Prolog. These variables, called
don’t-care variables, match with any possible term. However, such a match does not lead to
an instantiation to the variable, that is, past the argument position of the match a don’t care
variable looses its ‘binding’. A don’t care variable is usually employed at argument positions
which are not referred to later in some other position in the clause.

EXAMPLE 2.15

In our member example, the interpreter tries to obtain a match for the following query:

/*3*/ ?- member(a,[a,b,c]).

The first clause in the database specifying the predicate member in its conclusion, is
clause 1:

/*1*/ member(X,[X|_]).

The query contains at its first argument position the constant a. In clause 1 the vari-
able X occurs at the same argument position. If the constant a is substituted for the
variable X, then we have obtained a match for the first argument positions. So, X will
be instantiated to the constant a. As a consequence, the variable X at the second argu-
ment position of the conclusion of clause 1 has the value a as well, since this X is the
same variable as at the first argument position of the same clause. We now have to
investigate the respective second argument positions, that is, we have to compare the
lists [a,b,c] and [a| ]. Note that the list [a,b,c] can be written as [a|[b,c]]; it is
easily seen that we succeed in finding a match for the second argument positions, since
the don’t care variable will match with the list [b,c]. So, we have obtained a match
with respect to the predicate name as well as to all argument positions. Since clause 1
does not contain any conditions, the interpreter answers the original query by printing
yes:

/*3*/ ?- member(a,[a,b,c]).

yes
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EXAMPLE 2.16

Consider again the clauses 1 and 2 from the preceding example. Suppose that, instead
of the previous query, the following query is entered:

/*3*/ ?- member(a,[b,a,c]).

Then again, the interpreter first tries to find a match with clause 1:

/*1*/ member(X,[X|_]).

Again we have that the variable X will be instantiated to the constant a. In the second
argument position of clause 1, the variable X also has the value a. We therefore have to
compare the lists [b,a,c] and [a| ]: this time, we are not able to find a match for the
second argument positions. Since the only possible instantiation of X is to a, we will
never find a match for the query with clause 1. The interpreter now turns its attention
to the following entry of the member procedure, being clause 2:

/*2*/ member(X,[_|Y]) :-

member(X,Y).

When comparing the first argument positions of the query and the conclusion of clause
2 respectively, we infer that the variable X will again be instantiated to the constant a.
For the second argument positions we have to compare the lists [b,a,c] and [ |Y]. We
obtain a match for the second argument positions by instantiating the variable Y to the
list [a,c]. We have now obtained a complete match for the query with the conclusion
of clause 2. Note that all occurrences of the variables X and Y within the scope of clause
2 will have been instantiated to a and [a,c], respectively. So, after instantiation we
have

member(a,[_|[a,c]]) :-

member(a,[a,c]).

Since, clause 2 contains a condition, its conclusion may be drawn only if the specified
condition is fulfilled. The interpreter treats this condition as a new query:

?- member(a,[a,c]).

This query matches with clause 1 in the same way as has been described in the previous
example; the interpreter returns success. Subsequently, the conclusion of clause 2 is
drawn, and the interpreter prints the answer yes to the original query.
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a

b c

d e

Figure 2.7: A binary tree.

Backtracking

When after the creation of a number of instantiations and matches the system does not
succeed in obtaining the next match, it systematically tries alternatives for the instantiations
and matches arrived at so far. This process of finding alternatives by undoing previous work,
is called backtracking. The following example demonstrates the process of backtracking.

EXAMPLE 2.17

Consider the following Prolog program:

/*1*/ branch(a,b).

/*2*/ branch(a,c).

/*3*/ branch(c,d).

/*4*/ branch(c,e).

/*5*/ path(X,X).

/*6*/ path(X,Y) :-

branch(X,Z),

path(Z,Y).

The clauses 1–4 inclusive represent a specific binary tree by means of the predicate
branch; the tree is depicted in Figure 2.7. The symbolic constants a, b, c, d and e

denote the vertices of the tree. The predicate branch in branch(a,b) has the following
intended meaning: ‘there exists a branch from vertex a to vertex b’.

The clauses 5 and 6 for path specify under which conditions there exists a path between
two vertices. The notion of a path has been defined recursively: the definition of a path
makes use of the notion of a path again.

A recursive definition of a relation generally consists of two parts: one or more termi-
nation criteria, usually defining the basic states for which the relation holds, and the
actual recursion describing how to proceed from a state in which the relation holds to
a new, simpler state concerning the relation.

The termination criterion of the recursive definition of the path relation is expressed
above in clause 5; the actual recursion is defined in clause 6. Note that the definition
of the member relation in the preceding examples is also a recursive definition.

Now, suppose that after the above given program is entered into the Prolog database,
we enter the following query:
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/*7*/ ?- path(a,d).

The interpreter first tries to obtain a match with clause 5, the first clause in the database
specifying the predicate path in its conclusion:

/*5*/ path(X,X).

For a match for the respective first argument positions, the variable X will be instan-
tiated to the constant a. Matching the second argument positions fails, since a, the
instantiation of X, and the constant d are different from each other. The interpreter
therefore tries the next clause for path, which is clause 6:

/*6*/ path(X,Y) :- branch(X,Z),path(Z,Y).

It will now find a match for the query: the variable X occurring in the first argument
position of the conclusion of clause 6 is instantiated to the constant a from the first
argument position of the query, and the variable Y is instantiated to the constant d.
These instantiations again pertain to the entire matching clause; in fact, clause 6 may
now be looked upon as having the following instantiated form:

path(a,d) :- branch(a,Z),path(Z,d).

Before we may draw the conclusion of clause 6, we have to fulfil the two conditions
branch(a,Z) and path(Z,d). The interpreter deals with these new queries from left to
right. For the query

?- branch(a,Z).

the interpreter finds a match with clause 1

/*1*/ branch(a,b).

by instantiating the variable Z to b. Again, this instantiation affects all occurrences of
the variable Z in the entire clause containing the query; so, we have:

path(a,d) :- branch(a,b),path(b,d).

The next procedure call to be handled by the interpreter therefore is

?- path(b,d)

No match is found for this query with clause 5. The query however matches with the
conclusion of clause 6:

/*6*/ path(X,Y) :- branch(X,Z),path(Z,Y).

The interpreter instantiates the variable X to b, and the variable Y to d, yielding the
following instance of clause 6:
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path(b,d) :- branch(b,Z),path(Z,d).

Note that these instantiations for the variables X and Y are allowed; the earlier instantia-
tions for variables X and Y concerned different variables since they occurred in a different
clause and therefore within a different scope. Again, before the query path(b,d) may
be answered in the affirmative, we have to check the two conditions of the instance of
clause 6 obtained. Unfortunately, the first condition

?- branch(b,Z).

does not match with any clause in the Prolog program (as can be seen in Figure 2.7,
there is no outgoing branch from the vertex b).

The Prolog interpreter now cancels the last match and its corresponding instantia-
tions, and tries to find a new match for the originating query. The match of the query
path(b,d) with the conclusion of clause 6 was the last match found, so the correspond-
ing instantiations to X and Y in clause 6 are cancelled. The interpreter now has to try to
find a new match for the query path(b,d). However, since clause 6 is the last clause in
the program having the predicate path in its conclusion, there is no alternative match
possible. The interpreter therefore goes yet another step further back.

The match of branch(a,Z) with clause 1 will now be undone by cancelling the instan-
tiation of the variable Z to b. For the query

?- branch(a,Z).

the interpreter is able to find an alternative match, namely with clause 2:

/*2*/ branch(a,c).

It instantiates the variable Z to c. Recall that the query branch(a,Z) came from the
match of the query path(a,d) with clause 6:

path(a,d) :- branch(a,Z),path(Z,d).

The undoing of the instantiation to Z, and the subsequent creation of a new instantiation
again influences the entire calling clause:

path(a,d) :- branch(a,c),path(c,d).

Instead of the condition path(b,d)we therefore have to consider the condition path(c,d).
By means of successive matches with the clauses 6, 3 and 5, the interpreter derives the
answer yes to the query path(c,d). Both conditions to the match with the original
query path(a,d) are now fulfilled. The interpreter therefore answers the original query
in the affirmative.
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This example illustrates the modus operandi of the Prolog interpreter, and, among other
things, it was demonstrated that the Prolog interpreter examines clauses in the order in which
they have been specified in the database. According to the principles of logic programming,
a logic program is viewed as a set of clauses; so, their respective order is of no consequence to
the derived results. As can be seen from the previous example, however, the order in which
clauses have been specified in the Prolog database may be important. This is a substantial
difference between a logic program and a Prolog program: whereas logic programs are purely
declarative in nature, Prolog programs tend to be much more procedural. As a consequence,
the programmer must bear in mind properties of the Prolog interpreter when developing a
Prolog program. For example, when imposing some order on the clauses in the database, it is
usually necessary that the clauses acting as a termination criterion for a recursive definition,
or having some other special function, are specified before the clauses expressing the general
rule.

2.5 Overview of the Prolog language

Until now, all predicates discussed in the examples have been defined on purpose. However,
every Prolog system offers a number of predefined predicates, which the programmer may
utilise in programs as desired. Such predicates are usually called standard predicates or built-
in predicates to distinguish them from the predicates defined by the programmer.

In this section, we shall discuss several standard predicates and their use. Only frequently
applied predicates will be dealt with here. A complete overview is usually included in the
documentation concerning the particular Prolog system. This discussion is based on SWI-
Prolog.

2.5.1 Reading in programs

By means of the predicate consult programs can be read from file and inserted into the
Prolog database. The predicate consult takes one argument which has to be instantiated to
the name of a file before execution.

EXAMPLE 2.18

The query

?- consult(file).

instructs the interpreter to read a Prolog program from the file with the name file.

It is also possible to insert into the database several programs from different files. This may
be achieved by entering the following clause:

?- consult(file1),. . .,consult(filen).

Prolog offers an abbreviation for such a clause; the required file names may be specified in a
list:

?- [file1,. . .,filen].
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2.5.2 Input and output

Printing text on the screen can be done by means of the predicate write which takes a
single argument. Before execution of the procedure call write(X), the variable X must be
instantiated to the term to be printed.

EXAMPLE 2.19

The clause

?- write(output).

prints the term output on the screen. Execution of the call

?- write(’This is output.’).

results in

This is output.

When the clause

?- create(Output),write(Output).

is executed, the value to which Output is instantiated by a call to some user-defined
predicate create will be printed on the screen. If the variable Output is instantiated
to a term containing uninstantiated variables, then (the internal representation of) the
variables will be shown as part of the output.

The predicate nl just prints a new line, causing output to start at the beginning of the next
line. nl takes no arguments.

We also have some means for input. The predicate read reads terms entered from the
keyboard. The predicate read takes only one argument. Before executing the call read(X),
the variable X has to be uninstantiated; after execution of the read predicate, X will be
instantiated to the term that has been entered. A term entered from the keyboard has to end
with a dot, followed by a carriage return.

2.5.3 Arithmetical predicates

Prolog provides a number of arithmetical predicates. These predicates take as arguments
arithmetical expressions; arithmetical expressions are constructed as in usual mathematical
practice, that is, by means of infix operators, such as +, -, * and /, for addition, subtraction,
multiplication, and division, respectively. Generally, before executing an arithmetical predi-
cate all variables in the expressions in its left-hand and right-hand side have to be instantiated
to terms only containing numbers and operators; the arguments will be evaluated before the
test specified by means of the predicate is performed. For example, in a condition X < Y

both X and Y have to be instantiated to terms which upon evaluation yield numeric constants,
before the comparison is carried out. The following arithmetical relational predicates are the
ones most frequently used:
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X > Y.

X < Y.

X >= Y.

X =< Y.

X =:= Y.

X =\= Y.

The last two predicates express equality and inequality, respectively. Note that the earlier
mentioned matching predicate = is not an arithmetical predicate; it is a more general predicate
the use of which is not restricted to arithmetical expressions. Furthermore, the predicate =

does not force evaluation of its arguments.
Besides the six arithmetical relational predicates shown above, we also have in Prolog an

infix predicate with the name is. Before executing

?- X is Y.

only the right-hand side Y has to be instantiated to an arithmetical expression. Note that the
is predicate differs from =:= as well as from the matching predicate =; in case of =:= both X

and Y have to be instantiated to arithmetical expressions, and in case of the matching predicate
neither X nor Y has to be instantiated. If in the query shown above X is an uninstantiated
variable, it will after execution of the query be instantiated to the value of Y. The values of
both left-hand and right-hand side are subsequently examined upon equality; it is obvious
that this test will always succeed. If, on the other hand, the variable X is instantiated to a
number (or the left-hand side itself is a number), then the condition succeeds if the result of
evaluating the right-hand side of is equals the left-hand side, and it fails otherwise. All other
uses of the predicate is lead to a syntax error.

EXAMPLE 2.20

Consider the following queries and answers which illustrate the differences and similar-
ities between the predicates =, =:=, and is:

?- 3 = 2+1.

no

?- 3 is 2+1.

yes

?- 3 =:= 2+1.

yes

?- 3+1 = 3+1.

yes

?- 3+1 =:= 3+1.

yes

?- 3+1 is 3+1.

no
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?- 1+3 = 3+1.

no

?- 1+3 =:= 3+1.

yes

The following examples illustrate the behaviour of these predicates in case the left-hand
side is an uninstantiated variable. Prolog returns by showing the computed instantia-
tion:

?- X is 2+1.

X = 3

?- X = 2+1.

X = 2+1

We have left out the example ?- X =:= 2+1, since it is not permitted to have an
uninstantiated variable as an argument to =:=.

The predicates =:= and is may only be applied to arithmetical arguments. The predicate =

however, also applies to non-arithmetical arguments, as has been shown in Section 2.4.2.

EXAMPLE 2.21

Execution of the query

?- X = [a,b].

leads to the instantiation of the variable X to the list [a,b]. In case the predicate =:=

or the predicate is would have been used, the Prolog interpreter would have signalled
an error.

2.5.4 Examining instantiations

A number of predicates is provided which can be used to examine a variable and its possible
instantiation. The predicate var taking one argument, investigates whether or not its argu-
ment has been instantiated. The condition var(X) is fulfilled if X at the time of execution
is uninstantiated; otherwise, the condition fails. The predicate nonvar has a complementary
meaning.

By means of the predicate atom, also taking one argument, it can be checked whether the
argument is instantiated to a symbolic constant. The predicate atomic, which also takes a
single argument, investigates whether its argument is instantiated to a symbolic or numeric
constant. The one-argument predicate integer tests if its argument is instantiated to an
integer.
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EXAMPLE 2.22

Consider the following queries specifying the predicates mentioned above, and answers
of the Prolog interpreter:

?- atomic([a]).

no

?- atomic(3).

yes

?- atom(3).

no

?- atom(a).

yes

?- integer(a).

no

2.5.5 Controlling backtracking

Prolog offers the programmer a number of predicates for explicitly controlling the backtracking
behaviour of the interpreter. Note that here Prolog deviates from the logic programming idea.

The predicate call takes one argument, which before execution has to be instantiated to
a procedure call; call takes care of its argument being handled like a procedure call by the
Prolog interpreter in the usual way. Note that the use of the call predicate allows for ‘filling
in’ the program during run-time.

The predicate true takes no arguments; the condition true always succeeds. The predi-
cate fail also has no arguments; the condition fail never succeeds. The general application
of the predicate fail is to enforce backtracking, as shown in the following example.

EXAMPLE 2.23

Consider the following clause:

a(X) :- b(X),fail.

When the query a(X) is entered, the Prolog interpreter first tries to find a match for
b(X). Let us suppose that such a match is found, and that the variable X is instantiated
to some term. Then, in the next step fail, as a consequence of its failure, enforces the
interpreter to look for an alternative instantiation to X. If it succeeds in finding another
instantiation for X, then again fail will be executed. This entire process is repeated
until no further instantiations can be found. This way all possible instantiations for X

will be found. Note that if no side-effects are employed to record the instantiations of X
in some way, the successive instantiations leave no trace. It will be evident that in the
end the query a(X) will be answered by no.
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The predicate not takes a procedure call as its argument. The condition not(P) succeeds if
the procedure call to which P is instantiated fails, and vice versa. Contrary to what one would
expect in case of the ordinary logical negation, Prolog does not look for facts not(P) in the
database (these are not even allowed in Prolog). Instead, negation is handled by confirming
failed procedure calls. This form of negation is known as negation as (finite) failure; for a
more detailed discussion of this notion the reader is referred to [13].

The cut, denoted by !, is a predicate without any arguments. It is used as a condition
which can be confirmed only once by the Prolog interpreter: on backtracking it is not possible
to confirm a cut for the second time. Moreover, the cut has a significant side effect on
the remainder of the backtracking process: it enforces the interpreter to reject the clause
containing the cut, and also to ignore all other alternatives for the procedure call which led
to the execution of the particular clause.

EXAMPLE 2.24

Consider the following clauses:

/* 1 */ a :- b,c,d.

/* 2 */ c :- p,q,!,r,s.

/* 3 */ c.

Suppose that upon executing the call a, the successive procedure calls b, p, q, the
cut and r have succeeded (the cut by definition always succeeds on first encounter).
Furthermore, assume that no match can be found for the procedure call s. Then as
usual, the interpreter tries to find an alternative match for the procedure call r. For each
alternative match for r, it again tries to find a match for condition s. If no alternatives
for r can be found, or similarly if all alternative matches have been tried, the interpreter
normally would try to find an alternative match for q. However, since we have specified
a cut between the procedure calls q and r, the interpreter will not look for alternative
matches for the procedure calls preceding r in the specific clause. In addition, the
interpreter will not try any alternatives for the procedure call c; so, clause 3 is ignored.
Its first action after encountering the cut during backtracking is to look for alternative
matches for the condition preceding the call c, that is, for b.

There are several circumstances in which specification of the cut is useful for efficiency or
even necessary for correctness. In the first place, the cut may be used to indicate that the
selected clause is the only one that can be applied to solve the (sub)problem at hand, that
is, it may be used to indicate ‘mutually exclusive’ clauses.

EXAMPLE 2.25

Suppose that the condition b in the following clause has been confirmed:

a :- b,c.

and that we know that this clause is the only one in the collection of clauses having
a as a conclusion, which is applicable in the situation in which b has been confirmed.
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When the condition c cannot be confirmed, there is no reason to try any other clause
concerning a: we already know that a will never succeed. This unnecessary searching
can be prevented by specifying the cut following the critical condition:

a :- b,!,c.

Furthermore, the cut is used to indicate that a particular procedure call may never lead to
success if some condition has been fulfilled, that is, it is used to identify exceptional cases to a
general rule. In this case, the cut is used in combination with the earlier mentioned predicate
fail.

EXAMPLE 2.26

Suppose that the conclusion a definitely may not be drawn if the condition b succeeds.
In the clause

a :- b,!,fail.

we have used the cut in conjunction with fail to prevent the interpreter to look for
alternative matches for b, or to try any other clause concerning a.

We have already remarked that the Prolog programmer has to be familiar with the workings
of the Prolog interpreter. Since the cut has a strong influence on the backtracking process, it
should be applied with great care. The following example illustrates to what errors a careless
use of the cut may lead.

EXAMPLE 2.27

Consider the following three clauses, specifying the number of parents of a person;
everybody has two of them, except Adam and Eve, who have none:

/* 1 */ number_of_parents(adam,0) :- !.

/* 2 */ number_of_parents(eve,0) :- !.

/* 3 */ number_of_parents(X,2).

Now, the query

?- number_of_parents(eve,2).

is answered by the interpreter in the affirmative. Although this is somewhat unexpected,
after due consideration the reader will be able to figure out why yes instead of no has
been derived.

For convenience, we summarise the side-effects of the cut:

• If in a clause a cut has been specified, then we have normal backtracking over the
conditions preceding the cut.
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• As soon as the cut has been ‘used’, the interpreter has committed itself to the choice for
that particular clause, and for everything done after calling that clause; the interpreter
will not reconsider these choices.

• We have normal backtracking over the conditions following the cut.

• When on backtracking a cut is met, the interpreter ‘remembers’ its commitments, and
traces back to the originating query containing the call which led to a match with the
clause concerned.

We have seen that all procedure calls in a Prolog clause will be executed successively, until
backtracking emerges. The procedure calls, that is, the conditions are connected by commas,
which have the declarative semantics of the logical ∧. However, it is also allowed to specify a
logical ∨ in a clause. This is done by a semicolon, ;, indicating a choice between conditions.
All conditions connected by ; are evaluated from left to right until one is found that succeeds.
The remaining conditions will then be ignored. The semicolon has higher precedence than
the comma.

2.5.6 Manipulation of the database

Any Prolog system offers the programmer means for modifying the content of the database
during run-time. It is possible to add clauses to the database by means of the predicates
asserta and assertz. Both predicates take one argument. If this argument has been in-
stantiated to a term before the procedure call is executed, asserta adds its argument as a
clause to the database before all (possibly) present clauses that specify the same functor in
their conclusions. On the other hand, assertz adds its argument as a clause to the database
just after all other clauses concerning the functor.

EXAMPLE 2.28

Consider the Prolog database containing the following clauses:

fact(a).

fact(b).

yet_another_fact(c).

and_another_fact(d).

We enter the following query to the system:

?- asserta(yet_another_fact(e)).

After execution of the query the database will have been modified as follows:

fact(a).

fact(b).

yet_another_fact(e).

yet_another_fact(c).

and_another_fact(d).

Execution of the procedure call
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?- assertz(fact(f)).

modifies the contents of the database as follows:

fact(a).

fact(b).

fact(f).

yet_another_fact(e).

yet_another_fact(c).

and_another_fact(d).

By means of the one-placed predicate retract, the first clause having both conclusion and
conditions matching with the argument, is removed from the database.

2.5.7 Manipulation of terms

Terms are used in Prolog much in the same way as records are in Pascal, and structures
in C. In these languages, various operations are available to a programmer for the selection
and modification of parts of these data structures. Prolog provides similar facilities for ma-
nipulating terms. The predicates arg, functor and =.. (pronounced as ‘univ’) define such
operations.

The predicate arg can be applied for selecting a specific argument of a functor. It takes
three arguments:

arg(I,T,A).

Before execution, the variable I has to be instantiated to an integer, and the variable T must
be instantiated to a term. The interpreter will instantiate the variable A to the value of the
I-th argument of the term T.

EXAMPLE 2.29

The procedure call:

arg(2,employee(john,mccarthy),A)

leads to instantiation of the variable A to the value mccarthy.

The predicate functor can be used for selecting the left-most functor in a given term. The
predicate functor takes three arguments:

functor(T,F,N).

If the variable T is instantiated to a term, then the variable F will be instantiated to the
functor of the term, and the variable N to the number of arguments of the functor.

EXAMPLE 2.30

The procedure call
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functor(employee(john,mccarthy),F,N).

leads to instantiation of the variable F to the constant employee. The variable N will
be instantiated to the integer 2.

The predicate functor may also be applied in a ‘reverse mode’: it can be employed for
constructing a term with a given functor F and a prespecified number of arguments N. All
arguments of the constructed term will be variables.

The predicate =.. also has a dual function. It may be applied for selecting information
from a term, or for constructing a new term. If in the procedure call

X =.. L.

X has been instantiated to a term, then after execution the variable L will be instantiated to
a list, the first element of which is the functor of X; the remaining elements are the successive
arguments of the functor.

EXAMPLE 2.31

Consider the following procedure call:

employee(john,mccarthy,[salary=10000]) =.. L.

This call leads to instantiation of the variable L to the list

[employee,john,mccarthy,[salary=10000]]

The predicate =.. may also be used to organize information into a term. This is achieved
by instantiating the variable L to a list. Upon execution of the call X =.. L, the variable X

will be instantiated to a term having a functor which is the first element from the list; the
remaining elements of the list will be taken as the arguments of the functor.

EXAMPLE 2.32

The procedure call

X =.. [employee,john,mccarthy,[salary=10000]].

leads to instantiation of the variable X to the term

employee(john,mccarthy,[salary=10000]).

Note that, contrary to the case of the predicate functor, in case of the predicate =.. pre-
specified arguments may be inserted into the new term.

To conclude this section, we consider the predicate clause, which can be used for inspect-
ing the contents of the database. The predicate clause takes two arguments:

clause(Head,Body).

The first argument, Head, must be sufficiently instantiated for the interpreter to be able
to find a match with the conclusion of a clause; the second argument, Body, will then be
instantiated to the conditions of the selected clause. If the selected clause is a fact, Body will
be instantiated to true.
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2.6 Suggested reading and available resources

Readers interested in the theoretical foundation of Prolog and logic programming should
consult Lloyd’s Foundations of Logic Programming [13]. Prolog is one of the few programming
language with a simple formal semantics. This is mainly due to the declarative nature of the
language. Students of computing science should know at least something of this semantics.
A good starting point for the study of this semantics is knowledge of logical deduction in
predicate logic [14].

An excellent introductory book to programming in Prolog, with an emphasis on Artificial
Intelligence applications, is [10].

The Prolog community has its own Usenet newsgroup: comp.lang.prolog. There are
quite a number of Prolog programs in the public domain which researchers can use in their
own research. SWI-Prolog is a good complete Prolog interpreter and compiler, which is freely
available for Linux, MacOS, and Windows at:

http://www.swi-prolog.org



Chapter 3

Lecture 5 – Description Logics and

Frames

An important and popular application of knowledge representation and reasoning
is the description of the objects or things that exist in the real world. Much of this
research drives new developments around the World Wide Web, in particular the
development of the Semantic Web.

3.1 Introduction

Research on description logics drives most of the work on large-scale knowledge representation,
such as for the World Wide Web. The main current application area for this research is
biomedicine, as there is now so much known about biomolecules and their interaction that
there is a strong need by biomedical scientists of having computer systems available for
representing and reasoning with this knowledge. Description logics are related to so-called
frame languages, a collection of earlier formalisms for the representation and reasoning with
objects in the world also coming from AI. Both formalisms are covered in the lectures. A
knowledge base containing a representation of a problem domain by means of a description
logic or frame language is usually called an ontology. We start with description logics and
subsequently discuss frames and the relationship between frames and description logics.

3.2 Description logics

During the last couple of years, in particular ongoing work on the Semantic Web has had an
enormous impetus on the development these languages, as description logics and frames act
as the basis for it. OWL (Web Ontology Language) DL is the specific description logic that
has been developed by the WWW Consortium. The language is XML based, but for the rest
very similar to the description logic ALC (Attribute concept Language with Complement)
discussed during the course.

3.2.1 Knowledge servers

There are currently a number of implementations available of reasoning engines for descrip-
tion logics, and these are often remotely accessible on the Internet. Usually, the implemen-

39
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Figure 3.1: Web interface used by OpenCyc.

tations come with extensive knowledge bases built using the specific description logic as a
language. The reasoning engine, knowledge bases, and user interfaces offered in this way are
together called knowledge servers. A well-known example of a knowledge server is OpenCyc
(www.opencyc.com); Figure 3.1 shows the web interface used by OpenCyc.

3.2.2 Basics of description logics

There are descriptions logics with varying expressive power. For example, a description
logic that offers concepts, roles (attributes), negation (complement) is called ALC (Attribute
concept Language with Complement. One of the main design considerations of description
logics is to make sure that the resulting language is decidable, i.e., one always get an answer
to a query (although it may take a long while). Recall that first-order predicate logic is
undecidable in general, and is thus less suitable as a language for use by non-experts.

The basic ingredients of expressions in ALC are:

• concepts, the entities in the domain of concern;

• roles, relationships between concepts;

• Boolean operators, which allow combining concepts.

Consider the following phrase:

“A man is married to a doctor, and all of whose children are either doctors or
professors”



3.2. Description logics 41

In ACL, this phrase looks as follows:

Human ⊓ ¬Female ⊓ ∃married.Doctor) ⊓ (∀hasChild.(Doctor ⊔ Professor))

In the following we explain how such an expression should be read. Syntactically, ‘married’
and ‘hasChild’ are examples of roles, whereas all other symbols, such as ‘Human’ and ‘Doctor’
are concepts.

There are two primary ways in which knowledge is being described using ALC:

1. by combining concepts using Boolean operators, such as ⊓ (conjunction), and ⊔ (dis-
junction);

2. by defining relationships between concepts (whether primitive or obtained by combin-
ing primitive concepts) using the subsumption relation ⊑ (also called general concept
inclusion – GCI).

Thus, a concept description is constructed from

• primitive concepts C, e.g., Human, ⊤ (most general), ⊥ (empty);

• primitive roles r, e.g., hasChild;

• conjunctions ⊓, e.g., SmartHuman ⊓ Student;

• disjunctions ⊔, e.g., Truck ⊔ Car;

• a complement ¬, e.g., ¬Human;

• a value restriction ∀r.C, e.g., ∀hasChild.Doctor;

• an existential restriction ∃r.C, e.g., ∃happyChild.Parent.

All understood in terms of (groups of) individuals and properties of individuals.

EXAMPLE 3.1

For example, by

Student ⊔ Professor

we have combined two concepts, but we have not established how they are related to
each other. By writing:

Student ⊑ Person

we have established a relationship between the concepts ‘Student’ and ‘Person’, where
the first is less or equally general than the latter. By combining two subsumption
relations, it is possible to define a new concept:

Father ⊑ ¬Female ⊓ ∃hasChild.Human

and

¬Female ⊓ ∃hasChild.Human ⊑ Father

is abbreviated to

Father ≡ ¬Female ⊓ ∃hasChild.Human
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Note that an expression such as ∃hasChild.Human is also a concept: the role hasChild estab-
lishes a relationship between an instance of the concept Human (the child) and all concepts
that participate in the role, which are then intersected with the concept ‘Man’, represented
as ¬Female, yielding a definition of ‘Father’.

General descriptions of a domain form, what is called, the TBox (Terminology Box). In a
sense, the TBox restricts the terminology we are allowed to use when describing a domain. The
actual domain is described by means of assertions, which together form the ABox (Assertion
Box). For example,

Allen : Person

asserts that the Allen is a person, i.e., an instance of the concept ‘Person’. Similarly, instances
of roles can be used to establish relationships between instances (see slides). Thus, a knowledge
base KB is defined as the pair KB = (TBox,ABox).

3.2.3 Meaning of description logics

The notations used in description logic look very similar to set theory. It, therefore, does not
come as a surprise that the semantics of description logic is indeed defined in terms of set
theory.

The general idea is to start with the entire collection of objects with respect to which
one wishes to interpret the description-logic formulae, denoted by ∆. Each concept is then
interpreted by associating with it a subset from ∆. For example, the concept P ⊑ Person
may at first sight be unclear, but if we now define

∆ = {Pieter,Peter, John},

with P I = {Pieter,Peter} ⊆ ∆, then it is clear that, according to the interpretation I, the
concept P stands for all persons, whose name start with the letter ‘P’.

As roles r stand for binary relations between concepts, it also should not come as a surprise
that the meaning of a role is defined as rI ⊆ ∆×∆.

To summarise, let I = (∆, .) be an interpretation, then

• ⊤I = ∆, and ⊥I = ∅;

• each concept CI ⊆ ∆;

• each role rI ⊆ ∆×∆;

• (C ⊓D)I = CI ∩DI ;

• (C ⊔D)I = CI ∪DI ;

• (∃r.C)I = {c ∈ ∆ | ∃d ∈ CI with (c, d) ∈ rI};

• (∀r.C)I = {c ∈ ∆ | ∀d ∈ ∆, if (c, d) ∈ rI then d ∈ CI},
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where CI and rI are interpretations of C and r as sets. See the slides for examples. Note
that the result of the existential restriction formula ∃r.C is all elements of ∆ for which there
exists a concept d that takes part in the role r. A similar interpretation is obtained for value
restriction formulae ∀r.C.

EXAMPLE 3.2

The formula

∃happyChild.Parent

the ‘happyChild’ expresses a binary relationship between all children (or any other more
general concept, as the actual concept is not indicated in the expression) and at least
one parent (this is the concept to which the existential quantifier ∃ applies). Thus, this
expression yields all children (concepts) that have at least one parent, and are happy
children according to the role ‘happyChild’.

As the meaning of predicate logic is usually also defined in terms of set theory (see Appendix
A, Definitions A.10–A.12 and Example A.15), it is also possible to use predicate logic to better
understand the meaning of description logics. Such a translation could also be used to save
time and to use a standard reasoning engine for predicate logic for the translated formulae in
description logic, rather than implementing a special-purpose reasoning engine for description
logics. For example, a predicate P in predicate logic plays the role of a relation in set theory.
So, when the predicate is unary, i.e., takes only one argument, then this relation corresponds
to a unary relation, that is, a set. Hence, where the concept ‘Person’ in description logic
is interpreted as a set (of persons), in predicate logic, the representation Person(x) is used,
where the free variable x stands for an actual person. This explains the translation rule:

τx(C) = C(x)

where τx is the translation from description logic to predicate logic used in the slides.
Furthermore, the Boolean operators, such as ⊓ (conjunction), have a natural interpretation

in predicate logic. For example, ⊓ is interpreted as ∧, thus:

τx(C ⊓D) = (τx(C) ∧ τx(D))

and as a consequence of the rule for concepts, we get:

τx(C ⊓D) = (C(x) ∧D(x))

See the slides for the interpretation of the other operators and of subsumption ⊑.

3.2.4 Reasoning

As mentioned above, one way to reason with a description logic knowledge base is to translate
the formulae into predicate logic, and next to use one of the many reasoning engines available
for predicate logic. Note that if one wishes to use resolution as the basic inference rules, the
description logic formulae need to be translated into clausal form and one uses refutation in
order to derive a formula. Thus, rather than

τ(KB) � ϕ
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one tries to derive an inconsistency by adding the negation of ϕ to KB, i.e.,

τ(KB) ∧ ¬ϕ � ⊥

where τ(KB) is the translation of the description logic knowledge base KB into clausal form.
Usually, special purpose inference methods are used, as only then is it possible to take

into account the restricted nature of most description logics. This has a positive effect on
computational complexity and decidability.

An example of such an algorithm is the completion forest algorithm. The basic idea
underlying the algorithm is to reason about individual cases, i.e., instances. A similar way
of reasoning is often carried out in the context of predicate logic. Suppose, for example, that
we have the following formulae in predicate logic:

∀x(P (x)→ Q(x))

(P (a) ∧ ¬Q(a))

One simple way to prove inconsistency for these formulae is to first assume that P (a) is true
(which follows directly), and then to derive Q(a) from the logical implication and P (a). Next
assuming that ¬Q(a) is true, the inconsistency follows from (Q(a)∧¬Q(a)). Thus, reasoning
from individual instances is often effective in proving inconsistency. Similarly, the completion
forest algorithm starts with the instances from the ABox, and relates these to other instances
using instances of roles in the ABox. It then using reasoning from the Boolean operators,
such as ⊓, to derive properties for individual instances of concepts, which, as in the example
above for predicate logic, may give rise to a clash (inconsistency), if the concepts C and ¬C
are members of the same node label. This way of reasoning is another example of reasoning
by refutation, as in resolution.

3.3 Frames

Similar to description logics, the frame formalism has been introduced in AI in order to
represent and reason about objects in the real world. The frame formalism is more restrictive
than most description logics, and is, in addition, characterised by a specific reasoning method,
called inheritance.

3.3.1 Definition

A frame is a statement having the following form:

〈frame〉 ::= 〈class〉 | 〈instance〉

〈class〉 ::= class 〈class-name〉 is
superclass 〈super-specification〉;
〈class-attributes〉

end

〈instance〉 ::= instance 〈instance-name〉 is
instance-of 〈super-specification〉;
〈instance-attributes〉



3.3. Frames 45

end

〈super-specification〉 ::= 〈class-name〉 | nil

〈class-attributes〉 ::= 〈declaration〉 {; 〈declaration〉}∗ | 〈empty〉

〈instance-attributes〉 ::= 〈attribute-value-pair〉 {; 〈attribute-value-pair〉}∗ | 〈empty〉

〈declaration〉 ::= 〈attribute-value-pair〉

〈attribute-value-pair〉 ::= 〈attribute-name〉 = 〈value〉

〈value〉 ::= 〈elementary-constant〉 | 〈instance-name〉

〈empty〉 ::=

A 〈super-specification〉 equal to the special symbol nil is used to indicate that the frame
concerned is the root of the tree-shaped taxonomy. As a type, a 〈set〉 consists of elementary
constants and instance names, separated by comma’s and enclosed in curly brackets. An
elementary constant is either a real or integer constant, or a string of non-blank characters,
that is, an instance of one of the predefined (or standard) classes real, int, and string. The
〈instance-name〉 value of an attribute refers to a uniquely defined instance in the taxonomy.

EXAMPLE 3.3

Consider the following example: the aorta is an artery having a diameter of 2.5 cm.
Using our frame formalism, this information may be represented as follows

instance aorta is
instance-of artery;
diameter = 2.5

end

The information that an artery is a blood vessel having a muscular wall is represented
in the following class frame:

class artery is
superclass blood-vessel;
wall = muscular

end

3.3.2 Semantics

The semantics of first-order predicate logic can be exploited to define a semantics for the frame
formalism. Under the assumption that each attribute only occurs once in the taxonomy, we
may ascribe a meaning based on first-order predicate logic to the set of frames of this taxonomy
using the following general translation scheme:
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class C is
superclass S; ∀x(C(x)→ S(x))
a1 = b1; ⇒ ∀x(C(x)→ a1(x) = b1)
...

...
an = bn ∀x(C(x)→ an(x) = bn)

end

instance I is
instance-of C; C(I)
a1 = b1; ⇒ a1(I) = b1
...

...
an = bn an(I) = bn

end

Note that there is a (slight) difference between the semantics of frames and the predicate logic
translation. When two classes are inconsistent according inheritance with exceptions using
the definition of a conclusion set C(ΩT ), the predicate logic representation may be consistent.

EXAMPLE 3.4

Suppose that we have the following taxonomy T :

class C is
superclass nil;
a = 1

end

class D is
superclass C;
a = 2

end

The corresponding formulae in predicate logic are as follows:

∀x(C(x)→ a(x) = 1)

∀x(D(x)→ a(x) = 2)

∀x(D(x)→ C(x))

Using inheritance chains (see slides and below), we would be able to compute the
following conclusion set C(ΩT ) = {C[a = 1],D[a = 1],D[a = 2]} from the taxonomy
T , which would be inconsistent, as 1 and 2 are different values for the same attribute
a of class D. However, the formulae in predicate logic above are consistent. (Using
resolution, we would be able to derive ¬C(x)∨¬D(x) by cancelling the literals a(x) = 1
and a(x) = 2, and subsequently from ¬C(x) ∨ ¬D(x) and ¬D(x) ∨ C(x) (obtained by
translating ∀x(D(x)→ C(x)) into clausal form), we derive ¬D(x). However, as soon as
we add an instance of class D we also get inconsistency. For example, let us add to T :

instance I is
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instance-of D
end

Which corresponds to the formula D(I) in predicate logic, we get an inconsistence with
¬D(x) just derived.

Thus, the semantics of frames is as if there is always at least one instance available for each
class, even if this is not the case in reality. This semantics is from a practical point of view
better than that of predicate logic, as one will to meet unexpected inconsistencies by adding
instances in frame theory, which in predicate logic may occur. This example also shows that
it is useful to think afresh about semantics of formal languages rather than simply accepting
that others have already made a choice, as in predicate logic.

3.3.3 Relationship with description logic

As frames and description logic are related in the way they are used, one may wonder whether
it is possible to establish a relationship between the two formalisms. One way to answer this
question is by translating both to predicate logic and to compare the resulting formulae.
However, one would also expect it to be possible to translate frames directly into description
logic, as description logics are in general more expressive than frame languages. However, it
appears that this is only possible after making a slight addition to the syntax of the description
logics discussed so far.

Consider the following translation table for classes, which will give elements in the TBox
of a knowledge base:

TBox:
class C is C ⊑ S

superclass S;
a1 = b1; C ⊑ ∃a1.{b1}

...
...

an = bn C ⊑ ∃an.{bn}
end

To make the translation possible it is necessary to introduce concepts that only include a
single element; these are indicates by the notation {bk} with an existential quantifier ∃, i.e.,
∃ak.bk, which does nothing in this case, as the concept contains exactly one element which
thus always exists.

The translation for instances yields elements for the ABox of a knowledge base. The
resulting table is the following:

ABox:
instance i is i : C

instance-of C;
d1 = e1; (i, e1) : d1

...
...

dm = em (i, em) : dm

end
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Here (i, ek) : dk indicate instances (i, ek) of roles dk.

EXAMPLE 3.5

The instance:

instance aorta is
instance-of artery;
diameter = 2.5

end

would yield the following ABox:

{aorta : artery , (aorta , 2) : diameter}

3.3.4 Reasoning — inheritance

Basically, inheritance is nothing but reasoning from classes to superclasses, and collecting all
attributes with associated value for the class where the reasoning started. In principle, this
form of reasoning is straightforward. However, problems arise when there are inconsistencies
between values that may be inherited by attributes of a class. For example, an attribute a
may inherit values 1 and 2 (assuming that the attribute is single valued, i.e., takes only a
single elementary value). Then, either an inconsistency must be signalled or a choice must
be made between the two values. The algorithm of inheritance with exceptions is an example
of an algorithm that is able to make such choices based on the relative position of a class in
the frame taxonomy.

In single inheritance with exceptions the taxonomy has the shape of a tree and the problem
is, therefore, easily solved. Start with the class for which one wishes to infer all relevant
attribute-value pairs, and collect all information travelling on the path from the class to the
root of the tree-shaped taxonomy. If one meets another value for an attribute for which
already a value has been obtained, it is simply ignored (see the slides for the algorithm of
single inheritance with exceptions).

The algorithm for multiple inheritance with exceptions is more difficult, as in this case the
taxonomy does not have the shape of a tree. To establish the relative position of a class in the
frame taxonomy with respect to all the other classes, the idea to use a representation of the
paths from the class to the other classes, including the root, are used. These representations
are called inheritance chains. Basically, an inheritance chain is a potential way for inheritance
of attribute values. Of course, the mathematics of inheritance chains should also work for
single inheritance withe exceptions, even though, strictly speaking, it is not needed.

From here to the end of chapter 3, reading is optional, as this material was

not fully covered in the lectures.

Formally, the definition is as follows. Let T = (N,Θ,≪,≤) be a taxonomy, where N =
(I,K,A,C) is the set of instances I, classes K, attributes A, and constants C; ≪ is the
instance-of function and ≤ the subclass relation.

Definition 3.1 Let F be the set of frames such that F = I∪K, where I is the set of instance
frames in F , and K the set of class frames in F . Let A be a fixed set of attribute names and
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let C be a fixed set of constants. Then, a triple (x, a, c) ∈ F × A × C, denoted by x[a = c],
is called an attribute-value specification. An attribute-value relation Θ is a ternary relation
on F , A and C, that is, Θ ⊆ F ×A× C.

We give an example of the frame formalism we have just defined and its relation with the
frame formalism introduced above.

EXAMPLE 3.6

Consider the information specified in the following three classes:

class blood-vessel is
superclass nil;
contains = blood-fluid

end

class artery is
superclass blood-vessel;
blood = oxygen-rich;
wall = muscular

end

class vein is
superclass blood-vessel;
wall = fibrous

end

instance aorta is
instance-of artery;
diameter = 2.5

end

In the specified taxonomy, we have that I = {aorta} is the set of instance frames and
that K = {artery, vein, blood-vessel} is the set of classes. Furthermore, we have that A =
{contains, blood,wall, diameter}, and C = {blood-fluid, oxygen-rich,muscular,fibrous, 2.5}.
We have the following set of attribute-value specifications:

Θ = {blood-vessel[contains = blood-fluid],
artery[blood = oxygen-rich],
artery[wall = muscular],
vein[wall = fibrous],
aorta[diameter = 2.5]}

The function ≪ and the relation ≤ are defined by

aorta≪ artery
artery ≤ blood-vessel
vein ≤ blood-vessel
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Now, T = (N,Θ,≪,≤) is the taxonomy shown above, this time represented using our
new formalism.

A taxonomy T = (N,Θ,≪,≤) can be represented graphically by means of a graph in
which the vertices represent the frames in I and K, and the arcs represent the relation ≤
and the function≪. A vertex is assumed to have an internal structure representing the
collection of attribute-value specifications associated with the frame by the relation Θ.
In the graphical representation, an attribute-value specification is depicted next to the
vertex it belongs to; only the attribute and constant of an attribute-value specification
are shown. We indicate the relation ≤ by means of a pulled arrow; and the function ≪
will be depicted by means of a dashed arrow. Figure 3.2 shows the taxonomy from the
previous example.

An inheritance chain in T is an expression having one of the following forms:

y1 ≤ . . . ≤ yn

y1 ≤ . . . ≤ yn[a = c]

where yi ∈ K are class frames, and yn[a = c] ∈ Θ is an attribute-value specification.
The set ΩT of inheritance chains in T is inductively defined as the smallest set such that:

• For each y ∈ K, we have y ∈ ΩT .

• For each y[a = c] ∈ Θ where y ∈ K, we have y[a = c] ∈ ΩT .

• For each pair (y1, y2) ∈ ≤ we have y1 ≤ y2 ∈ ΩT .

• For each y1 ≤ . . . ≤ yk ∈ ΩT and yk ≤ . . . ≤ yn ∈ ΩT , with yi ∈ K for each i, we have
that y1 ≤ . . . ≤ yn ∈ ΩT .

• For each y1 ≤ . . . ≤ yn ∈ ΩT and yn[a = c] ∈ ΩT , where yi ∈ K, for each i, we have
that y1 ≤ . . . ≤ yn[a = c] ∈ ΩT .

The conclusion c(ω) of an inheritance chain ω ∈ ΩT is defined as follows:

• For each ω ≡ y1 ≤ . . . ≤ yn[a = c], we have that c(ω) = y1[a = c].

• For all other ω, we have that c(ω) is not defined.

blood-vessel [contains = blood-fluid]

vein artery
[blood = oxygen-rich]

[wall = muscular]

aorta [diameter = 2.5]

[wall = fibrous]

Figure 3.2: A taxonomy consisting of three classes and one instance.
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The conclusion set C(ΩT ) of ΩT is defined as the set of conclusions of all elements from ΩT ,
that is,

C(ΩT ) = {c(ω) | ω ∈ ΩT }

Of course the concept of conclusion set ignores the whole idea that we can make use of the
order information represented in inheritance chains to decide about whether or not a value
should be inherited for an attribute of a class. Inheritance with exceptions requires the notion
of preclusion. This is then used to define the inheritable conclusion set.

For cancelling inheritance chains, we shall exploit the notion of an intermediary, which is
introduced in the following definition.

Definition 3.2 Let T = (N,Θ,≪,≤) be a taxonomy where N = (I,K,A,C). Let ΩT be the
set of inheritance chains in T . A class y ∈ K is called an intermediary to an inheritance
chain y1 ≤ . . . ≤ yn ∈ ΩT , yi ∈ K, if one of the following conditions is satisfied:

• We have y = yi for some i.

• There exists a chain y1 ≤ . . . ≤ yp ≤ z1 ≤ . . . ≤ zm ≤ yq ∈ ΩT , for some p, q, where
zj 6= yi, zj ∈ K, such that y = zk, for some k.

EXAMPLE 3.7

Consider the taxonomy T = (N,Θ,≪,≤), where I = ∅, K = {blood-vessel, artery,
oxygen-poor-artery, pulmonary-artery}, Θ is empty, and the relation ≤ is defined by

pulmonary-artery ≤ oxygen-poor-artery
pulmonary-artery ≤ artery
artery ≤ blood-vessel
oxygen-poor-artery ≤ artery

The graphical representation of the taxonomy is shown in Figure 3.3. The set of inher-
itance chains in T contains, among other ones, the following two chains:

pulmonary-artery ≤ artery ≤ blood-vessel
pulmonary-artery ≤ oxygen-poor-artery ≤ artery

It will be evident that the class oxygen-poor-artery is an intermediary to both chains.

Figure 3.3 introduced in the foregoing example is useful for gaining some intuitive feeling
concerning the notion of an intermediary.

We shall see that intermediaries may be applied for solving part of the problem of multiple
inheritance with exceptions. We take a closer look at the figure. It seems as if the arc between
the vertices pulmonary-artery and artery, an arc resulting from the transitivity property of
the subclass relation, is redundant, since all attribute-value specification from the classes
artery and blood-vessel can be inherited for pulmonary-artery via the vertex oxygen-poor-
artery. Therefore, the removal of this arc from the taxonomy should not have any influence
on the result of multiple inheritance. Whether or not this is true is, of course, dependent on
our formalization of multiple inheritance. Therefore, let us investigate whether the notion of
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pulmonary-
artery

oxygen-poor-
artery

artery

blood-vessel

Figure 3.3: A taxonomy with an intermediary.

conclusion set defined in the foregoing renders a suitable means for dealing with exceptions.
We do so by means of an example.

EXAMPLE 3.8

Consider Figure 3.3 once more. Figure 3.4 shows the taxonomy from Figure 3.3 after
removal of the seemingly redundant arc. Now, suppose that the following attribute-value
specifications are given:

oxygen-poor-artery[blood = oxygen-poor]
artery[blood = oxygen-rich]

Furthermore, suppose that no attribute-value specifications have been given for pulmonary-
artery. In the taxonomy shown in Figure 3.4, the frame pulmonary-artery inherits only
the value oxygen-poor for the attribute blood; note that this is a consequence of the way
exceptions are handled in tree-shaped taxonomies. However, in Figure 3.3 the frame
pulmonary-artery inherits both values oxygen-poor and oxygen-rich for the attribute
blood, leading to an inconsistent conclusion set. The conclusion set of the taxonomy in
Figure 3.3 therefore differs from the one obtained for the taxonomy shown in Figure
3.4, using the algorithm for single inheritance with exceptions discussed in the slides.

It turns out that a conclusion set only reveals the presence of exceptions in a taxonomy.
We shall see that the notion of an intermediary is more useful in dealing with exceptions in
multiple inheritance. In Figure 3.3 we have that the class oxygen-poor-artery lies in between
the classes pulmonary-artery and artery, and is an intermediary to the inheritance chains in
which the class pulmonary-artery and either or both the classes artery and oxygen-poor-artery
occur. As we have suggested before, by means of intermediaries some of the inheritance chains
may be cancelled rendering a different set of conclusions of the taxonomy. Such cancellation
of inheritance chains is called preclusion and is defined more formally below.

Definition 3.3 Let T = (N,Θ,≪,≤) be a taxonomy where N = (I,K,A,C). Let ΩT be the
set of inheritance chains in T . A chain y1 ≤ . . . ≤ yn[a = c1] ∈ ΩT is said to preclude a
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pulmonary-
artery

oxygen-poor-
artery

artery

blood-vessel

Figure 3.4: The taxonomy after removal of the redundant arc.

chain y1 ≤ . . . ≤ ym[a = c2] ∈ ΩT with m 6= n, and c1, c2 ∈ C with c1 6= c2, if yn is an
intermediary to y1 ≤ . . . ≤ ym.

EXAMPLE 3.9

Consider the set ΩT of inheritance chains consisting of the following elements:

ω1: pulmonary-artery ≤ oxygen-poor-artery
ω2: pulmonary-artery ≤ artery
ω3: pulmonary-artery ≤ oxygen-poor-artery ≤ artery
ω4: pulmonary-artery ≤ oxygen-poor-artery[blood = oxygen-poor]
ω5: pulmonary-artery ≤ artery[blood = oxygen-rich]
ω6: pulmonary-artery ≤ oxygen-poor-artery ≤ artery[blood = oxygen-rich]

The reader can easily verify that the inheritance chain ω4 precludes both chains ω5 and
ω6 since oxygen-poor-artery is an intermediary to the chains ω2 and ω3.

The notion of preclusion is used for introducing a new type of conclusion set of a set of
inheritance chains.

An inheritance chain ω ∈ ΩT is said to be inheritable if there exists no other inheritance
chain ω′ ∈ ΩT which precludes ω. The set of conclusions of all inheritable chains ω ∈ ΩT is
called the inheritable conclusion set of ΩT and is denoted by H(ΩT ).

Note that we have definitions of consistency and inconsistency for both the conclusion
set and inheritable conclusion set (see the slides). A taxonomy T is said to be consistent if
H(ΩT ) is consistent; otherwise T is said to be inconsistent.

Finally, the consequences of these definition for instances of classes can be investigated.
For each instance frame x ∈ I, the set eH(x) is defined by

eH(x) = {x[a = c] | x[a = c] ∈ Θ} ∪ {x[a = c] | x≪ y, y ∈ K, y[a = c] ∈ H(ΩT )
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and for all c 6= d, x[a = d] 6∈ Θ} if H(ΩT ) is consistent; eH(x) is undefined otherwise. In
words: all attribute values already defined for x are supplemented with those inherited by
the class y of which x is an instance, i.e., x≪ y.

The inheritable extension of ΩT , denoted by EH(ΩT ), is defined by

EH(ΩT ) =
⋃

x∈I

eH(x)

if H(ΩT ) is consistent; EH(ΩT ) is undefined otherwise. See the slides for an example.
Note that inheritance with exceptions is an example of non-monotonic reasoning. One

way to get insight into the non-monotonic characteristics of inheritance is by mapping frame
taxonomies to a non-monotonic logic, such as default logic (see slides and Section 4).



Chapter 4

Lectures 6-8 – Model-based

Reasoning

The term ‘model-based reasoning’ is used to refer to the use of models, by defini-
tions abstractions of systems in the real world, to solve various problems. Usually,
such models give insight into the workings of the system under study. Sometimes,
the model includes details concerning the structure, i.e., the way it is built, as
well, again using some level of abstraction Causal knowledge is often used in the
development of model-based reasoning systems.

4.1 Introduction

Although there are many ways to use principles of model-based reasoning, in AI most of the
research has been done in the context of so-called model-based diagnosis. Diagnosis is defined
as establishing what is wrong with a system, e.g., an electronic device. Although the term
‘diagnosis’ comes from medicine, ideas around model-based diagnosis arose originally from
work on fault finding in electronic circuits, where in particular Johan de Kleer has been very
successful. Today, the majority of applications are still outside the medical fields; example
include the aerospace industry, the automotive industry, mobile networks, robotics, etc.

There are two common types of model-based diagnosis. One of the first formal theories
of diagnosis emerged from the Johan de Kleer’s early research: the theory of consistency-
based diagnosis as proposed by Ray Reiter (he was, in fact, Johan de Kleer’s PhD thesis
supervisor). Consistency-based diagnosis offers a logic-based framework to formally describe
diagnosis of abnormal behaviour in a device or system, using a model of normal structure and
functional behaviour. Basically, consistency-based diagnosis amounts to finding faulty device
components that account for a discrepancy between predicted normal device behaviour and
observed (abnormal) behaviour. The predicted behaviour is inferred from a formal model of
normal structure and behaviour of the device.

Where consistency-based diagnosis traditionally employs a model of normal behaviour,
abduction has been the principal model-based technique for describing and analysing diagnosis
using a model of abnormal behaviour in terms of cause-effect relationships. Early work on
abduction has been done by Harry Pople and David Poole.

55
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4.2 Concistency-based diagnosis

The logical specification of knowledge concerning structure and behaviour in Reiter’s theory
is a triple SYS = (SD,COMPS), called a system, where

• SD denotes a finite set of formulae in first-order predicate logic, specifying normal
structure and behaviour, called the system description;

• COMPS denotes a finite set of constants (nullary function symbols) in first-order logic,
denoting the components of the system.

A diagnostic problem DP is defined as a pair DP = (SYS,OBS), where

• SYS is a system, and

• OBS denotes a finite set of formulae in first-order predicate logic, denoting observations,
i.e. observed findings.

It is, in principle, possible to specify normal as well as abnormal (faulty) behaviour within a
system description SD, but originally SD was designed to comprise a logical specification of
normal behaviour of the modelled system only.

The essential part of a formal model of normal structure and behaviour of a system consists
of logical axioms of the form

∀x((COMP(x) ∧ ¬Ab(x))→ o(x)norm )

where the predicate ‘COMP’ refers to a specific class of components, for example NAND gates,
x ∈ COMPS must belong to this specific class, and o(x)norm denotes a finding that may be
observed if the component x is normal, i.e. is nondefective. The observable findings o(x)norm

need not be unique. Axioms of the above form are provided for each class of component in
COMPS. For example, if COMPS = {A1, A2, O1, O2}, where A1 and A2 are AND gates, and
O1, O2 are two OR gates, then one would get the following two formulae as part of SD:

∀x((AND(x) ∧ ¬Ab(x))→ (out(x) = (in1 (x) and in2 (x)))))

∀x((OR(x) ∧ ¬Ab(x))→ (out(x) = (in1 (x) or in2 (x)))))

together with the formulae (just facts in SD) {AND(A1),AND(A2),OR(O1),OR(O2)}. One
can then derive, using ordinary logical reasoning with reasoning with equality (=) and Boolean
operators (and, or), that:

SD ∪ ¬Ab(O1) ∪ {in1 (O1) = 1, in2 (O1) = 0} ⊢ out(O1) = 1

The equality and Boolean extension to logical reasoning is needed to derive from out(O1) =
(in1 (O1) or in2 (O1)) and {in1 (O1) = 1, in2 (O1) = 0} that out(O1) = 1. It is a technical
issue, not unimportant for those wishing to implement model-based reasoning. Adopting
the definition from De Kleer a diagnosis in the theory of consistency-based diagnosis can be
defined as follows.

Definition 4.1 (consistency-based diagnosis) Let SYS = (SD,COMPS) be a system and
DP = (SYS,OBS) be a diagnostic problem with set of observations OBS. Let

HP = {Ab(c) | c ∈ COMPS}
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Figure 4.1: Full adder.

be the set of all positive ‘Ab’ literals, and

HN = {¬Ab(c) | c ∈ COMPS}

be the set of all negative ‘Ab’ literals. Furthermore, let H ⊆ HP ∪ HN be a set, called a
hypothesis, such that

H = {Ab(c) | c ∈ D} ∪ {¬Ab(c) | COMPS−D}

for some D ⊆ COMPS. Then, the D is a (consistency-based) diagnosis of DP if the following
condition, called the consistency condition, holds:

SD ∪H ∪OBS 2 ⊥ (4.1)

i.e. SD ∪H ∪OBS is consistent.

In some definitions H, instead of D, is called the diagnosis. For this lecture we use the simpler
definition where D is taken to be the diagnosis.

EXAMPLE 4.1

Consider the logical circuit depicted in Figure 4.1, which represents a full adder, i.e. a
circuit that can be used for the addition of two bits with carry-in and carry-out bits.
The components X1 and X2 represent exclusive-or gates, A1 and A2 represent and

gates, and R1 represents an or gate.

The system description consists of the following axioms:

∀x(ANDG(x) ∧ ¬Ab(x) → out(x) = and(in1 (x), in2 (x)))

∀x(XORG(x) ∧ ¬Ab(x) → out(x) = xor (in1 (x), in2 (x)))

∀x(ORG(x) ∧ ¬Ab(x) → out(x) = or (in1 (x), in2 (x)))
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which describe the (normal) behaviour of each individual component (gate), and

out(X1) = in2 (A2)

out(X1) = in1 (X2)

out(A2) = in1 (R1)

in1 (A2) = in2 (X2)

in1 (X1) = in1 (A1)

in2 (X1) = in2 (A1)

out(A1) = in2 (R1)

which gives information about the connections between the components, i.e. information
about the normal structure, including some electrical relationships. Finally, the various
gates are defined:

ANDG(A1)
ANDG(A2)
XORG(X1)
XORG(X2)
ORG(R1)

Appropriate axioms for a Boolean algebra are also assumed to be available.

Now, let us assume that

OBS = {in1 (X1) = 1, in2 (X1) = 0, in1 (A2) = 1, out(X2) = 0, out(R1) = 0}

Note that out(R1) = 1 is predicted using the model of normal structure and behaviour
in Figure 4.1, which is in contrast with the observed output out(R1) = 0. Assuming
that H = {¬Ab(c) | c ∈ COMPS}, it follows that

SD ∪H ∪OBS

is inconsistent. This confirms that some of the output signals observed differ from
those expected under the assumption that the circuit is functioning normally. Using
Formula (4.1), a possible hypothesis is, for instance,

H ′ = {Ab(X1),¬Ab(X2),¬Ab(A1),¬Ab(A2),¬Ab(R1)}

since

SD ∪H ′ ∪OBS

is consistent. In terms of our definition, the corresponding diagnosis would be D′ =
{X1}. Note that, given the diagnosis D′, no output is predicted for the circuit; the
assumption Ab(X1) completely blocks transforming input into output by the modelled
circuit, because

SD ∪H ′ ∪OBS\{out(X2) = 0} 2 out(X2) = 0

In a sense, this is too much, because there was no discrepancy between the predicted and
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observed output of gate X2. Nevertheless, D′ is a diagnosis according to Definition 4.1.

Reiter has also given an analysis of consistency-based diagnosis in terms of default logic (see
below and slides). A system description SD and a set of observations OBS are supplemented
with default rules of the form

: ¬Ab(c)

¬Ab(c)

for each component c, yielding a default theory. A default rule as above expresses that ¬Ab(c)
may be assumed for component c, if assuming ¬Ab(c) does not give rise to inconsistency.
Hence, in computing an extension of the resulting default theory, these default rules will only
be applied under the condition that they do not violate consistency, which is precisely the
effect of the consistency condition (4.1).

4.3 Abductive diagnosis

Abductive diagnosis uses cause-effect relationships to explain observed effects in terms of
assumed causes. A diagnosis is, thus, interpreted as an explanation of those observed effects.
In the scientific literature, there are two different approaches to formalise abductive diagnosis:
(1) a logical approach, described in the next section, and (2) a set-theoretical approach, which
is described in Section 4.3.2.

4.3.1 Logical abduction

As in consistency-based diagnosis, abductive diagnosis starts by considering of how to rep-
resent knowledge about systems, in this case in terms of cause-effect relationships. Much of
the theory comes from Pietro Torasso and Luca Console from the University of Turin (where
you find the Fiat factory, where model-based diagnosis has been one of the research topics).

How to model cause-effect relationships in logic is a non-trivial question (the question
could even be whether it is possible to model causality in logic). The first step in answering
this question is to consider the axioms that must be fulfilled (see slide about causality and
implication). Most people would agree that at least transitivity, if a causes b and b causes c,
then a causes c, should be fulfilled, but even in this case, transitivity may not always hold
(consider, e.g., weak causality mentioned below).

In the following, it shall be assumed that axioms are of the following two forms:

d1 ∧ · · · ∧ dn → f (4.2)

d1 ∧ · · · ∧ dn → d (4.3)

where d, di, i = 1, . . . , n, represent defects, disorders, etc.
Console and Torasso also provide a mechanism in their logical formalisation to weaken

the causality relation. To this end, literals α are introduced into the premises of the axioms
of the form (4.2) and (4.3), which can be used to block the deduction of an observable finding
f or defect d if the defects di, i = 1, . . . , n, hold true, by assuming the literal α to be false.
The weakened axioms have the following form:

d1 ∧ · · · ∧ dn ∧ αf → f (4.4)

d1 ∧ · · · ∧ dn ∧ αd → d (4.5)
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The literals α are called incompleteness-assumption literals, abbreviated to assumption liter-
als. Axioms of the form (4.2) – (4.5) are now taken as the (abnormality) axioms.

In the following, let Σ = (∆,Φ,R) stand for a causal specification in the theory of diagnosis
by Console and Torasso, where:

• ∆ denotes a set of possible defect and assumption literals;

• Φ denotes a set of possible (positive and negative) observable finding literals;

• R (‘Causal Model’) stands for a set of logical (abnormality) axioms of the form (4.2) –
(4.5).

Subsets of the set ∆ will be called hypotheses.
A causal specification can then be employed for the prediction of observable findings. Let

Σ = (∆,Φ,R) be a causal specification. Then, a hypothesis V ⊆ ∆ is called a prediction for
a set of observable findings E ⊆ Φ if

(1) R ∪ V � E, and

(2) R ∪ V is consistent.

See the slides for examples of how this idea is used.
An abductive diagnostic problem P is now defined as a pair P = (Σ, F ), where F ⊆ Φ is

called a set of observed findings.
Formally, a solution to an abductive diagnostic problem P can be defined as follows.

Definition 4.2 (abductive diagnosis) Let P = (Σ, F ) be an abductive diagnostic problem,
where Σ = (∆,Φ,R) is a causal specification with R a set of abnormality axioms of the
form (4.2) – (4.5), and E ⊆ Φ a set of observed findings. A hypothesis D ⊆ ∆ is called an
abductive diagnosis of P if:

(1) R ∪D � F (covering condition);

(2) R ∪D ∪ C 2 ⊥ (consistency condition)

where C, the set of constraints, is defined by:

C = {¬f ∈ Φ | f ∈ Φ, f 6∈ F, f is a positive literal} (4.6)

Note that the sets F and C are disjoint, and that if f ∈ F then ¬f 6∈ C. The set C stands
for findings assumed to be false, because they have not been observed (and are therefore
assumed to be absent). However, other definitions are possible.

EXAMPLE 4.2

Consider the causal specification Σ = (∆,Φ,R), with

∆ = {fever , influenza , sport , α1, α2}

and

Φ = {chills , thirst ,myalgia ,¬chills ,¬thirst ,¬myalgia}

‘Myalgia’ means painful muscles. The following set of logical formulae R, represent-
ing medical knowledge concerning influenza and sport, both ‘disorders’ with frequent
occurrence, is given:
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feverinfluenza chills

thirst

myalgia
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α1

α2

Figure 4.2: A knowledge base with causal relations.

fever ∧ α1 → chills
influenza→ fever
fever→ thirst
influenza ∧ α2 → myalgia
sport → myalgia

For example, influenza ∧ α2 → myalgia means that influenza may cause myalgia;
influenza → fever means that influenza always causes fever. For illustrative purposes,
a causal knowledge base as given above is often depicted as a labelled, directed graph
G, which is called a causal net, as shown in Figure 4.2. Suppose that the abductive
diagnostic problem P = (Σ, F ) must be solved, where the set of observed findings
F = {thirst ,myalgia}. Then, C = {¬chills}. There are several solutions to this abduc-
tive diagnostic problem (for which the consistency and covering conditions are fulfilled):

D1 = {influenza, α2}
D2 = {influenza, sport}
D3 = {fever, sport}
D4 = {fever, influenza , α2}
D5 = {influenza, α2, sport}
D6 = {fever, influenza , sport}
D7 = {fever, influenza , α2, sport}

Finally, note that, for example, the hypothesis D = {α1, α2, fever , influenza} is incom-
patible with the consistency condition.

Several researchers have noted a close correspondence between abduction and the predicate
completion of a logical theory, as originally proposed in connection with negation as finite
failure in logic programming, i.e., the not predicate. Consider the following example.

EXAMPLE 4.3

Suppose that sport and influenza are two ‘disorders’; this may be expressed in predicate
logic as follows:

Disorder (sport)
Disorder (influenza)
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The following logical implication is equivalent to the conjunction of the two literals
above:

∀x((x = sport ∨ x = influenza)→ Disorder(x))

assuming the presence of the logical axioms for equality, and also assuming that con-
stants with different names are not equal. Suppose that sport and influenza are the only
possible disorders. This can be expressed by adding the following logical implication:

∀x(Disorder(x)→ (x = sport ∨ x = influenza)) (4.7)

to the implication above. For example, adding Disorder(asthma) to logical implication
(4.7) yields an inconsistency, because asthma is neither equal to sport nor equal to
influenza: the conclusion

asthma = sport ∨ asthma = influenza

cannot be satisfied. Now, suppose that the literal Disorder(asthma) is removed, but
that ‘asthma’ remains a valid constant symbol. Then, ¬Disorder(asthma) is a logical
consequence of formula (4.7); this formula ‘completes’ the logical theory by stating that
disorders not explicitly mentioned are assumed to be false. Formula (4.7) is called a
completion formula.

The characterisation of abduction as deduction in a completed logical theory is natural,
because computation of the predicate completion of a logical theory amounts to adding the
only-if parts of the formulae to the theory, i.e. it ‘reverses the arrow’ which is exactly what
happens when abduction is applied to derive conclusions. After all, abductive reasoning
is reasoning in a direction reverse to logical implication. In an intuitive sense, predicate
completion expresses that the only possible causes (defects) for observed findings are those
appearing in the abnormality axioms; assumption literals are taken as implicit causes. Where
the characterisation of abduction by means of the covering and consistency conditions may
be viewed as a meta-level description of abductive diagnosis, the predicate completion can be
taken as the object-level characterisation, i.e. in terms of the original axioms in R. However,
in contrast to the predicate completion in logic programming, predicate completion should
only pertain to literals appearing as a consequence of the logical axioms in R, i.e. finding
literals and defect literals that can be derived from other defects and assumption literals.
This set of defects and observable findings is called the set of non-abducible literals, denoted
by A; the set ∆\A is then called the set of abducible literals.

Let us denote the axiom set R by

R = {ϕ1,1 → a1, . . . , ϕ1,n1 → a1,
...

ϕm,1 → am, . . . , ϕm,nm
→ am}

where A = {ai | 1 ≤ i ≤ m} is the set of non-abducible (finding or defect) literals and
each ϕi,j denotes a conjunction of defect literals, possibly including an assumption literal.
The predicate completion of R with respect to the non-abducible literals A, denoted by
COMP[R;A] is defined as follows:
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COMP[R;A] = R∪ {a1 → ϕ1,1∨ · · · ∨ ϕ1,n1 ,
...

am → ϕm,1∨ · · · ∨ ϕm,nm
}

The predicate completion of R makes explicit the fact that the only causes of non-abducible
literals (findings and possibly also defects) are the defects and assumption literals given as a
disjunct in the consequent. For example,

fab → d1 ∨ · · · ∨ dn

indicates that only the defects from the set {d1, . . . , dn} can be used to explain the observed
finding fab .

Predicate completion of abnormality axioms with respect to a set of non-abducible literals
can now be used to characterise diagnosis. Let ψ and ψ′ be two logical formulae. It is said that
ψ is more specific than ψ′ iff ψ � ψ′. Using the predicate completion of a set of abnormality
axioms R, we now have the following definition.

Definition 4.3 (solution formula) Let P = (Σ, F ) be an abductive diagnostic problem and
let COMP[R;A] be the predicate completion of R with respect to A, the set of non-abducible
literals in P. A solution formula S for P is defined as the most specific formula consisting
only of abducible literals, such that

COMP[R;A] ∪ F ∪ C � S

where C is defined as in Equation (4.6).

Hence, abductive solutions become deductive solutions (cf. Section 1.3.1). A solution formula
is obtained by applying the set of equivalences in COMP[R;A] to a set of observed findings
F , augmented with those findings not observed, C, yielding a logical formula that includes
all possible solutions according Equation (4.2), given the equivalences in COMP[R;A]. The
following theorem reveals an important relationship between the meta-level characterisation
of abductive diagnosis, as presented in Definition (4.2), and the object-level characterisation
of diagnosis in Definition 4.3.

THEOREM 4.1 Let P = (Σ, F ) be an abductive diagnostic problem, where Σ = (∆,Φ,R)
is a causal specification. Let C be defined as in Definition 4.2, and let S be a solution formula
for P. Let H ⊆ ∆ be a set of abducible literals, and let I be an interpretation of P, such that
for each abducible literal a ∈ ∆: �I a iff a ∈ H. Then, H is a solution to P iff �I S.

Proof: (⇒): The set of defect and assumption literals H is a solution to P, hence, for
each f ∈ F : R ∪ H � f , and for each f ′ ∈ C: R ∪ H 2 ¬f ′. The solution formula S
is the result of rewriting observed findings in E and non-observed findings in C using the
equivalences in COMP[R;A] to a formula merely consisting of abducibles. Assume that S is
in conjunctive normal form. Conjuncts in S are equivalent to observed findings f ∈ F , that
are logically entailed by R∪H, or to non-observed findings ¬f ∈ C that are consistent with
R ∪ H. Hence, an interpretation I for which �I H, that falsifies each abducible in ∆\H,
satisfying every f ∈ F and each ¬f ∈ C that has been rewritten, must satisfy this collection
of conjuncts, i.e. S.
(⇐): If S is in conjunctive normal form, S must be the result of rewriting observed findings f ∈
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F and non-observed findings in C to (negative or positive) abducibles, using the equivalences
in COMP[R;A]. Since an interpretation I that satisfies H and S must also satisfy each finding
f ∈ F and those ¬f ∈ C that have been rewritten to S, it follows that I can be chosen such
that �I C, i.e. H must be a solution to P. ♦

This theorem reveals an important property of the abductive theory of diagnosis. Sometimes,
a solution to an abductive diagnostic problem is capable of satisfying a solution formula in
the technical, logical sense.

EXAMPLE 4.4

Reconsider the set of logical axioms given in Example 4.2. The predicate completion of
R is equal to

COMP[R; {chills , thirst ,myalgia , fever}]

= R ∪ {chills→ fever ∧ α1,
fever→ influenza,
thirst → fever ,
myalgia → (influenza ∧ α2) ∨ sport}

= {chills ↔ fever ∧ α1,
fever ↔ influenza,
thirst ↔ fever,
myalgia ↔ (influenza ∧ α2) ∨ sport}

Note that

COMP[R; {chills , thirst ,myalgia , fever}] ∪ F ∪ C �

(influenza ∧ α2) ∨ (influenza ∧ sport)

given that F = {thirst ,myalgia} and C = {¬chills}. Although

COMP[R; {chills , thirst ,myalgia , fever}] ∪ F ∪ C � ¬(fever ∧ α1)

the formula ¬(fever∧α1), which is a logical consequence of ¬chills and chills ↔ (fever∧
α1), is not part of the solution formula S ≡ (influenza∧α2)∨(influenza∧sport), because
the literal fever is non-abducible. It holds, in accordance with Theorem 4.1, that

�I Hi ⇒ �I (influenza ∧ α2) ∨ (influenza ∧ sport )

for i = 1, 2, 5, where Hi is a solution given in Example 4.2 consisting only of abducible
literals, for suitable interpretations I. Here, it even holds that Hi � S, because S does
not contain any negative defects or assumption literals entailed by non-observed findings
in C.

David Poole’s, a Canadian researcher located in Vancouver, Prolog-based system AILog
offers a general-purpose environment to experiment with hypothetical reasoning, and is also
suitable as a basis for abductive and consistency-based diagnostic systems. See Section 4.5
for details.
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4.3.2 Set-covering theory of diagnosis

Instead of choosing logic as the language for abductive diagnosis, as discussed above, others
have adopted set theory as their formal language. This approach to the formalisation of
diagnosis is referred to as the set-covering theory of diagnosis, or parsimonious covering theory.
The treatment of the set-covering theory of diagnosis in the literature deals only with the
modelling of restricted forms of abnormal behaviour of a system.

The specification of the knowledge involved in diagnostic problem solving consists of the
enumeration of all findings that may be present (and observed) given the presence of each
individual defect distinguished in the domain; the association between each defect and its
associated set of observable findings is interpreted as an uncertain causal relation between
the defect and each of the findings in the set of observable findings. Instead of the terms
‘defect’ and ‘finding’ the terms ‘disorder’ and ‘manifestation’ are employed in descriptions of
the set-covering theory of diagnosis. In the following, we have chosen to uniformly employ
the terms ‘defect’ and ‘finding’ instead. The basic idea of the theory with respect to diagnosis
is that each finding in the set of observed findings in a given diagnostic situation must be
causally related to at least one present defect; the collected set of present defects thus obtained
can be taken as a diagnosis. As with the theory of diagnosis by Console and Torasso, this
reasoning method is usually viewed as being abductive in nature, because the reasoning goes
from findings to defects, using causal knowledge from defects to findings.

More formally, the triple N = (∆,Φ, C) is called a causal net in the set-covering theory
of diagnosis, where

• ∆ is a set of possible defects,

• Φ is a set of elements called observable findings, and

• C is a binary relation

C ⊆ ∆× Φ

called the causation relation.

A diagnostic problem in the set-covering theory of diagnosis is then defined as a pair D =
(N , E), where E ⊆ Φ is a set of observed findings. It is assumed that all defects d ∈ ∆
are potentially present in a diagnostic problem, and all findings f ∈ Φ will be observed
when present. In addition, all defects d ∈ ∆ have a causally related observable findings
f ∈ Φ, and vice versa, i.e. ∀d ∈ ∆ ∃f ∈ Φ : (d, f) ∈ C, and ∀f ∈ Φ ∃d ∈ ∆ : (d, f) ∈ C.
No explicit distinction is made in the theory between positive (present), negative (absent)
and unknown defects, and positive (present), negative (absent) and unknown findings. The
causation relation is often depicted by means of a labelled, directed acyclic graph, which, as
N , is called a causal net.

Let ℘(X) denote the power set of the set X. It is convenient to write the binary causation
relation C as two functions. Since in the next section, such functions are intensively employed,
we adopt a notation that slightly generalises the notation originally proposed.1 The first

1In the original definition of set-covering diagnosis, function e for singleton sets is called effects, and is
defined for elements only. They also define an associated function Effects, which is defined on sets of defects,
in terms of the effects function. This function is identical to our function e. Hence, the effects function is
superfluous. Similarly, the functions corresponding to the function c are called causes and Causes.
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function

e : ℘(∆)→ ℘(Φ)

called the effects function, is defined as follows; for each D ⊆ ∆:

e(D) =
⋃

d∈D

e({d}) (4.8)

where

e({d}) = {f | (d, f) ∈ C}

and the second function

c : ℘(Φ)→ ℘(∆)

called the causes function, is defined as follows; for each E ⊆ Φ:

c(E) =
⋃

f∈E

c({f})

where

c({f}) = {d | (d, f) ∈ C}

Hence, knowledge concerning combinations of findings and defects is taken as being composed
of knowledge concerning individual defects or findings, which is not acceptable in general. This
is a strong assumption, because it assumes that no interaction occurs between defects.

A causal net can now be redefined, in terms of the effects function e above, as a triple
N = (∆,Φ, e).

Given a set of observed findings, diagnostic problem solving amounts to determining sets
of defects – technically the term cover is employed – that account for all observed findings.
Formally, a diagnosis is defined as follows.

Definition 4.4 (set-covering diagnosis) Let D = (N , E) be a diagnostic problem, where N =
(∆,Φ, e) is a causal net and E denotes a set of observed findings. Then, a (set-covering)
diagnosis of D is a set of defects D ⊆ ∆, such that:

e(D) ⊇ E (4.9)

In the set-covering theory of diagnosis the technical term ‘cover’ is employed instead of ‘di-
agnosis’; ‘diagnosis’ will be the name adopted in the lecture notes. Due to the similarity of
condition (4.9) with the covering condition in the abductive theory of diagnosis, this condition
is called the covering condition in the set-covering theory of diagnosis. Actually, set-covering
diagnosis can be mapped to abductive diagnosis in a straightforward way, thus revealing that
set-covering diagnosis is more restrictive than abductive diagnosis. Just by mapping each
function value

e({d}) = {f1, . . . , fn}
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to a collection of logical implications, taken as abnormality axioms R of a causal specification
Σ = (∆,Φ,R), of the following form:

d ∧ αf1 → f1

d ∧ αf2 → f2

...

d ∧ αfn
→ fn

abductive diagnosis for such restricted causal specifications and set-covering diagnosis coin-
cide.

Since it is assumed that e(∆) = Φ is satisfied, i.e. any finding f ∈ Φ is a possible causal
effect of at least one defect d ∈ ∆, there exists a diagnosis for any set of observed findings E,
because

e(∆) ⊇ E

always holds (explanation existence theorem).
A set of defects D is said to be an explanation of a diagnostic problem D = (N , E), with

E a set of observed findings, if D is a diagnosis of E and D satisfies some additional criteria.
Various criteria, in particular so-called criteria of parsimony, sometimes called Occam’s razor
after the medieval, English Franciscan friar William of Ockam who formulated this in his
work, are in use. The basic idea is that among the various diagnoses of a set of observable
findings, those that satisfy certain criteria of parsimony are more likely than others. Let
D = (N , E) be a diagnostic problem, then some of the criteria are:

• Minimal cardinality : a diagnosis D of E is an explanation of D iff it contains the
minimum number of elements among all diagnoses of E;

• Irredundancy : a diagnosis D of E is an explanation of D iff no proper subset of D is a
diagnosis of E;

• Relevance: a diagnosis D of E is an explanation of D iff D ⊆ c(E);

• Most probable diagnosis: a diagnosis D of E is an explanation of D iff P (D|E) ≥
P (D′|E) for any diagnosis D′ of E.

In addition, some researchers define the concept of minimal-cost diagnosis. A diagnosis D of
a set of observed findings E is called a minimal-cost explanation of D iff

∑

d∈D

cost(d) ≤
∑

d∈D′

cost(d)

for each diagnosis D′ of E, where cost is a function associating real values with defects d ∈ ∆.
The cost of a diagnosis may be anything, varying from financial costs to some subjective
feeling of importance expressed by numbers. Interestingly, interpreting a cost function as the
negative logarithm of probabilities, a minimal-cost diagnosis is identical to a most probable
diagnosis in terms of probability theory.

Although not every diagnosis is an explanation, any diagnosis may be seen as a solution to
a diagnostic problem, where diagnoses which represent explanations conform to more strict
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conditions than diagnoses that do not. The term ‘explanation’ refers to the fact that a
diagnosis in the set-covering theory of diagnosis can be stated, and thus be explained, in
terms of cause-effect relationships. A better choice, in our opinion, would have been the
adoption of the term ‘explanation’ for what is now called ‘cover’ in the theory, and to refer
to what are now called ‘explanations’ by the name of ‘parsimonious explanations’. To avoid
confusion, the term ‘explanation’ will not be used in the sequel. Instead, we shall speak of a
‘minimal-cardinality diagnosis’, an ‘irredundant diagnosis’, a ‘minimal-cost diagnosis’ and so
on.

For minimal cardinality, a diagnosis which consists of the smallest number of defects
among all diagnoses is considered the most plausible diagnosis. Minimal cardinality is a
suitable parsimony criterion in domains in which large combinations of defects are unlikely
to occur. For example, in medicine, it is generally more likely that a patient has a single
disorder than more than one disorder. Irredundancy expresses that it is not possible to leave
out a defect from an explanation without losing the capability of explaining the complete set
of observed findings, i.e.

e(D) 6⊇ E

for each D ⊂ D′, where D′ is an irredundant diagnosis. The relevance criterion states that
every defect in an explanation has at least one observable finding in common with the set
of observed findings. This seems an obvious criterion, but note that the notion of uncertain
causal relation employed in the set-covering theory of diagnosis does not preclude situations
in which a defect is present, although none of its causally related observable findings have
been observed. These three definitions of the notion of explanation are based on general set-
theoretical considerations. In contrast, the most probable diagnosis embodies some knowledge
of the domain, in particular with respect to the strengths of the causal relationships. We shall
not deal with such probabilistic extensions of the set-covering theory of diagnosis any further.

EXAMPLE 4.5

Consider the causal net N = (∆,Φ, C), where the effects function e is defined by the
causation relation C, i.e.

e(D) =
⋃

d∈D

e({d})

where

e({d}) =







{cough, fever , sneezing} if d = influenza
{cough, sneezing} if d = common cold
{fever , dyspnoea} if d = pneumonia

It states, for example, that a patient with influenza will be coughing, sneezing and have
a fever; a patient with a common cold will show the same findings, except fever, and
a patient with pneumonia will have a fever and dyspnoea (shortness of breath). The
associated graph representation GC of C is shown in Figure 4.3. It holds, among others,
that

e({influenza, common cold}) = {cough, fever , sneezing}
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influenza

common cold

pneumonia

cough

dyspnoea

fever

sneezing

Figure 4.3: Causal net.

Based on the causal net C, the following causes function c is obtained:

c(E) =
⋃

o∈E

c({o})

with

c({f}) =















{influenza , common cold} if f = cough
{influenza , pneumonia} if f = fever
{influenza , common cold} if f = sneezing
{pneumonia} if f = dyspnoea

Suppose D = (N , E) is a diagnostic problem, with E = {cough, fever} a set of observed
findings, then a diagnosis of D is

D1 = {influenza}

but

D2 = {influenza, common cold}
D3 = {common cold , pneumonia}

and D4 = {influenza, common cold , pneumonia} are also diagnoses for E. All of these
diagnoses are relevant diagnoses, because

c({cough, fever}) ⊇ Di

where i = 1, . . . , 4. Irredundant diagnoses of E are D1 and D3. There is only one
minimal cardinality diagnosis, viz. D1 = {influenza}. Now suppose that E = {cough},
then for example D = {influenza, pneumonia} would not have been a relevant diagnosis,
because

c({cough}) = {influenza , common cold} 6⊇ D
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Other, more domain-specific, definitions of the notion of explanation have only been developed
recently. Such domain-specific knowledge can be effective in reducing the size of the set of
diagnoses generated by a diagnostic system. For example, Tuhrim et al. demonstrated that the
use of knowledge concerning the three-dimensional structure of the brain by means of a binary
adjacency relation in a neurological diagnostic knowledge system, based on the set-covering
theory of diagnosis, could increase the diagnostic accuracy of the system considerably.

Peng and Regia [5] have also shown that the causation relation C can be extended for the
representation of multi-layered causal nets, in which defects are causally connected to each
other, finally leading to observable findings. By computation of the reflexive, transitive closure
of the causation relation, C⋆, the basic techniques discussed above immediately apply. The
reflexive closure makes it possible to enter defects as observed findings, which are interpreted
as already established defects, yielding a slight extension to the theory treated above.

4.4 Non-monotonic reasoning

From an AI point of view, one of the interesting features of abductive diagnosis, as is also true
for consistency-based diagnosis, is that these are examples of non-monotonic reasoning. By
this we mean that more knowledge does not always give yield more results, as is, in contrast,
always true for standard logic (that underlies mathematics).

To get insight into the non-monotonic nature of model-based diagnosis, the key idea in
abductive diagnosis is to reverse the logical implication symbol → and add the resulting
formula to the causal model R. The result is called the completion, as now any finding f
observed can be deducibly associated to an explanation in terms of defects d. For example,
assume that we have d → f (meaning ‘d causes f ’), then adding d ← f yields d ↔ f . But
now we have

{d↔ f} ∪ {f} ⊢ d

so, we have derived the diagnosis (explanation for f) d by ordinary (monotonic) logical de-
duction. However, we needed the completion of the causal model to make it possible. See
now the slides about the relationship between abduction and completion.

Understanding the non-monotonic nature of consistency-based diagnosis is more difficult.
One common approach, which we have adopted in the lecture, is to map consistency-based
diagnosis to a non-monotonic logic, such as default logic. Then is becomes possible to char-
acterise the computation of a diagnosis as reasoning in this logic, which then by definition is
non-monotonic.

In default logic, one adds special inference rules to what is already available to predicate
logic. The general form of a default is as follows:

prerequisite : justifications

consequent

where ‘prerequisite’ is a condition that most be true, as is the case with ‘justifications’,
and only then ‘consequent’ can be derived, however, only when it is not the case that an
inconsistency occurs.

There are various ways in which default logic can be used to model particulay ways of
reasoning:
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• Prototypical reasoning (“typically children have parents”):

Child(x) : HasParents(x)

HasParent(x)

• No-risk reasoning (“assume that the accused is innocent unless you know otherwise”):

Accused(x) : Innocent(x)

Innocent(x)

• Autoepistemic reasoning (“the tutorial will be on Wednesday, unless moved”):

: Tutorial-on-Wednesday

Tutorial-on-Wednesday

Reasoning in default logic starts with a default theory KB = (W,D), where W is a set of
logical formulae, and D the set of defaults. Computation of what can be derived from KB is
done using a derivation operator:

• E = Th(E) (so-called fixed point, we have reached a stable situation: nothing more can
be derived);

• W ⊆ E (hence, we do not get less than the predicate logical formulae we start with);

• E includes the maximal set of conclusions obtained by applying defaults in D;

• If A : B1,...,Bn

C
∈ D, A ∈ E and ¬B1, . . . ,¬Bn 6∈ E (E is consistent with the justification

B1, . . . , Bn), then C is added to E, i.e., C ∈ E.

E is called an extension and Th is the derivation operator (deduction + default rule appli-
cation). Note that if the set of default rules D is empty, then Th just amounts to computing
all logical consequences of W (See Appendix A).

EXAMPLE 4.6

Consider the following simple default theory:

KB =

(

{P (a)},

{

P (a) : Q(a)

Q(a)

})

then

E = Th({P (a), Q(a)}) = {P (a), Q(a)}

A classical example concerns USA’s former, not particular popular, president Richard
Nixon, who was both a republican and a quaker, i.e., KB = (W,D), with

W = {Republican(Nixon),Quaker(Nixon)}

and set of defaults:

D =

{

Republican(x) : ¬Pacifist(x)

¬Pacifist(x)
,
Quaker(x) : Pacifist(x)

Pacifist(x)

}

which express that “rebublicans are typically not pacifist” whereas “quakers are typically
pacifists”. These rules are clearly mutually exclusive. There are two extensions in this
case:
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• E1 = {Republican(Nixon),Quaker(Nixon),Pacifist(Nixon)}

• E2 = {Republican(Nixon),Quaker(Nixon),¬Pacifist(Nixon)}

which can be looked on as two alternative solutions.

We only need a very simple default logic in the context of model-based diagnosis (so-called
normal defaults). See Section 4.2 and the slides about consistency-based reasoning and default
logic.

4.5 The AILog system

David Poole and colleagues have developed a theory and an implementation of a form of
hypothetical reasoning, called AILog. AILog may be used as a framework of diagnosis, but it
is not restricted in any way to diagnostic problem solving [6].

In AILog, a diagnostic problem must be specified in terms of a set of facts, denoted by
FACTS, a set of hypotheses, denoted by HYP, and a set of constraints, denoted by C. The set
of facts FACTS and constraints C are collections of arbitrary closed formulae in first-order
logic; hypotheses act as a kind of defaults that might become instantiated, and assumed to
hold true, in the reasoning process. A set FACTS ∪ H is called an explanation of a closed
formula g, where H is a set of ground instances of hypothesis elements in HYP, iff:

(1) FACTS ∪H � g, and

(2) FACTS ∪H ∪ C 2 ⊥.

assumable a1.

assumable a2.

assumable fever.

assumable influenza.

assumable sport.

chills <- fever & a1.

fever <- influenza.

thirst <- fever.

myalgia <- influenza & a2.

myalgia <- sport.

false <- chills. % the set C

create_nogoods.

Figure 4.4: Specification of an abductive diagnostic problem in AILog.

On first sight, the framework looks a lot like the framework of abductive diagnosis discussed
in Section 4.3.1, but it is much more general, mainly due to the unrestricted nature of its
elements. In terms of the abductive theory of diagnosis, we would have called H a diagno-
sis, if the abnormality axioms R were taken as FACTS, the set of findings not observed as
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constraints C, and the set of observed findings E as g. Obviously, because there is no fixed
diagnostic interpretation in AILog, the framework can be used as a basis for various other
notions of diagnosis, such as consistency-based diagnosis (just take g ≡ ⊤).

EXAMPLE 4.7

Figure 4.4 presents a specification of the abductive diagnostic problem from Example 4.2
in terms of the AILog implementation, where C denotes the set of findings assumed to
be absent, C, taken as an integrity constraints in AILog. The following query:

ask thirst & myalgia.

yields the following results:

Answer is thirst & myalgia

Assuming [a2,fever,influenza]

Answer is thirst & myalgia

Assuming [fever,sport]

Answer is thirst & myalgia

Assuming [a2,influenza]

Answer is thirst & myalgia

Assuming [influenza,sport]

Theories are solutions in the abductive theory of diagnosis. Only a subset of the so-
lutions mentioned in Example 4.2 are computed, because in AILog it is assumed that
every observed finding need be explained only once by a diagnosis.
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Chapter 5

Lecture 9 – Reasoning and Decision

Making under Uncertainty

Since the early 1970s reasoning with uncertainty has been one of the most impor-
tant topics on the AI research agenda. The reason is, of course, that there are
very few real-world problems where there is no uncertainty involved. Uncertainty
usually arises from incomplete knowledge about the world, e.g., noisy sensors (a
robot may have to infer its location from imperfect sensors), tests that are imper-
fect, or measurements that cannot be taken because it is too dangerous (looking
inside the brain of a patient, for example), or impossible (the composition of soil
on Pluto, for example). Furthermore, contemporary theories on how the human
brain functions rely heavily on probability theory.

5.1 Introduction

In the early days of AI research, rule-based systems were important, i.e., knowledge systems
where knowledge bases were composed from rules of the form A → C (premise A implies
conclusion C). To represent uncertainty, some measure of uncertainty was attached to the
conclusion of rules, yielding: A→ Cx with x some uncertainty measure, usually meaning that
given that when A is known with absolute certainty, then C is known with a certainty equal
to x.

The rule-based approaches were at the end of the 1980s slowly replaced by graphical rep-
resentations of probability distributions, so-called probabilistic graphical models. In particular
Bayesian networks have become important.

Rather ironically (because in the 1990s there were many AI researchers who thought that
rule-based approached to reasoning with uncertainty were by definition unsound), the last
few years there is revival happening of combining rule-based, logical approaches to reasoning
with uncertainty and probabilistic graphical models. An example is Markov logic.

5.2 Rule-based uncertainty knowledge

In rule-based representations of uncertainty one needs:

• a way to represent uncertainty, and

75
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• a method to propagate the uncertainty from evidence (observations) to conclusions,
called propagation rules.

The representation of uncertainty is straightforward. Most methods simply associate a mea-
sure of uncertainty x to to conclusion of a logical rule, as follows:

e1 ∧ · · · ∧ en → hx

meaning that e1, e2, . . . , en are true (observed), then conclusion h is true with certainty x.
If we assume that the rules have a restricted syntax, for example only ∨ and ∧ are allow

in the premises of rules, then there are three (classes) of propagation rules that are required:

1. f∧ and f∨: combining uncertain evidence in the premise of a rule;

2. fprop: the propagation of uncertainty from the (uncertain) premise to the conclusion of
a rule;

3. fco: combining the uncertain conclusions of rules if they have the same conclusion.

The slides give definitions of these functions for a one popular method for uncertainty reason-
ing developed for the MYCIN knowledge system, called the certainty-factor calculus. Have a
look at these definitions:

• f∧: CF(e1 ∧ e2, e
′) = min{CF(e1, e

′),CF(e2, e
′)}

• f∨: CF(e1 ∨ e2, e
′) = max{CF(e1, e

′),CF(e2, e
′)}

• fprop: CF(h, e′) = CF(h, e) ·max{0,CF(e, e′)}

• fco: Let CF(h, e′1) = x and CF(h, e′2) = y. Then

CF(h, e′1 co e′2) =







x+ y(1− x) if x, y > 0
x+y

1−min{|x|,|y|} if −1 < xy ≤ 0

x+ y(1 + x) if x, y < 0

For example, in the definition of fprop, the max operator makes sure that only positive or
zero uncertainties are propagated to the conclusion, as CFs are numbers between −1 and 1
(inclusive), and a condition that has a negative uncertainty attached fails (yielding 0). The
fact that CFs can also be negative also explains why there are three entries in the definition
of fco. For positive CFs only the first entry is important, and this is the entry which we use
when we give CFs a probabilistic interpretation.

5.3 Probabilistic graphical models

The rule-based representation enforces a restricted use of uncertainty: only from the premise
to the conclusion of rules, and always is it necessary to have knowledge about any of the
elements in the premise of the rules. So, already from a conceptual point of view there are
reasons to find the early rule-based approaches too restrictive.

The breakthrough come from realising that reasoning with joint (multivariate) probability
distributions becomes feasible if one is able to make assumptions of (statistical) independence
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between random variables. In probabilistic graphical models, such independence assumptions
are represented by means of a graph or network and the associated probability distribution
respects those assumptions. One of the most successful probabilistic graphical models are
Bayesian networks; their graph representation is that of an acyclic, directed graph, i.e., all
links are arcs (directed edges or arrows), and there are no directed cycles in the graph. Markov
networks are other examples of probabilistic graphical models; their graph consists of only
undirected edges.

Formally, a Bayesian network is a pair B = (G,P ), where G = (V,E) is an acyclic directed
graph, with V a set of vertices or nodes, E ⊆ V × V the set of arcs, and P the associated
joint (multivariate) probability distribution that is defined such that there is for each vertex
in G a random variable in P , and:

P (XV ) =
∏

v∈V

P (Xv | Xπ(v)) (5.1)

where π(v) is the set of parents of vertex v. The expression: P (Xv | Xπ(v)) means that Xv

is the random variable that corresponds to the vertex v, and Xπ(v) is the set of random vari-
ables that correspond to the set of parents of vertex v. P (Xv | Xπ(v)) is then the conditional
probability distribution.1 The multiplication rule (5.1) says that of one multiplies all con-
ditional probability distributions associated with each variable Xv, when a joint probability
distribution is obtained.

Consider the following example. We have the Bayesian network with acyclic directed
graph 1→ 2, and associated joint probability distribution:

P (X1,X2) = P (X2 | X1)P (X1)

Note that we have followed the structure of the graph in our definition: vertex 2 has parent
1, and vertex 1 has no parents. This explains why we have the two factors: P (X2 | X1) and
P (X1). Now consider the following more extensive Bayesian network, also included in the
slides.

EXAMPLE 5.1

Consider Figure 5.1, which shows a simplified version of a Bayesian network modelling
some of the relevant variables in the diagnosis of two causes of fever. The presence
of an arc between two vertices denotes the existence of a direct causal relationship or
other influences; absence of an arc means that the variables do not influence each other
directly. The following knowledge is represented in Figure 5.1: variable ‘fl’ is expressed
to influence ‘my’ and ‘fe’, as it is known that flu causes myalgia (muscle pain) and fever.
In turn, fever causes a change in body temperature, represented by the random variable
temp. Finally, pneumonia (pn) is another cause of fever.

For Figure 5.1, the conditional probability table

P (fe | fl,pn)

has been assessed with respect to all possible values of the variables fe, fl and pn.
In general, the graph associated with a Bayesian network mirrors the (in)dependences

1For convenience, we often abuse notation and write, e.g., π(Xv) instead of Xπ(v).
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Flu (FL)
(yes/no)

Pneumonia (PN)
(yes/no)

Fever (FE)
(yes/no)

Myalgia (MY)
(yes/no)

TEMP
(≤ 37.5/
> 37.5)

Pr(FL = y) = 0.1

Pr(PN = y) = 0.05

Pr(FE = y|FL = y,PN = y) = 0.95

Pr(FE = y|FL = n,PN = y) = 0.80

Pr(FE = y|FL = y,PN = n) = 0.88

Pr(FE = y|FL = n,PN = n) = 0.001

Pr(MY = y|FL = y) = 0.96

Pr(MY = y|FL = n) = 0.20

Pr(TEMP ≤ 37.5|FE = y) = 0.1

Pr(TEMP ≤ 37.5|FE = n) = 0.99

Figure 5.1: Bayesian network B = (G,P ) with associated joint probability distribution P
(only probabilities P (Xv = y | Xπ(v)) are shown, as P (Xv = n | Xπ(v)) = 1 − P (Xv = y |
Xπ(v))).

NO

YES

MYALGIA

NO

YES

FLU

NO

YES

FEVER

NO

YES

PNEUMONIA

<=37.5

>37.5

TEMP

Figure 5.2: Prior marginal probability distributions for the Bayesian network shown in Fig-
ure 5.1.
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NO
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MYALGIA

NO

YES

FLU

NO

YES

FEVER

NO

YES

PNEUMONIA

<=37.5

>37.5

TEMP

Figure 5.3: Posterior marginal probability distributions for the Bayesian network after enter-
ing evidence concerning body temperature. Note the increase in probabilities of the presence
of both flu and pneumonia compared to Figure 5.2. It is also predicted that it is likely for
the patient to have myalgia.

that are assumed to hold among variables in a domain. For example, given knowledge
about presence or absence of fever, neither additional knowledge of flu nor of pneumonia
is able to influence the knowledge about body temperature, since it holds that temp

is conditionally independent of both pn and fl given fe. The marginal probability
distribution P (Vi) for every variable in the network can be computed; this is shown
for the fever network in Figure 5.2. In addition, a once constructed Bayesian belief
network can be employed to enter and process data of a specific case, i.e. specific values
for certain variables, like temp, yielding an updated network. Figure 5.3 shows the
updated Bayesian network after entering evidence about a patient’s body temperature
into the network shown in Figure 5.1. Entering evidence in a network is also referred
to as instantiating the network.

We continue with the simple example. If we assume that we have the following definitions for
P (X2 | X1) and P (X1) yielding P (X1,X2) = P (X2 | X1)P (X1):

P (x2 | x1) = 0.2

P (x2 | ¬x1) = 0.3

P (x1) = 0.4

(we use xi as notation for Xi = yes and ¬xi for Xi = no). Then we know that it must hold
that P (¬x2 | x1) = 0.8, as according to the axioms of probability theory P (x2 | x1)+P (¬x2 |
x1) = 1; similarly, P (¬x2 | ¬x1) = 0.7 and P (¬x1) = 0.6. We therefore have the following
joint probability distribution:

P (x1, x2) = P (x2 | x1)P (x1) = 0.2× 0.4 = 0.08

P (¬x1, x2) = P (x2 | ¬x1)P (¬x1) = 0.3× 0.6 = 0.18

P (x1,¬x2) = P (¬x2 | x1)P (x1) = 0.8 × 0.4 = 0.32

P (¬x1,¬x2) = P (¬x2 | ¬x1)P (¬x1) = 0.7 × 0.6 = 0.42

Note that
∑

X1,X2
P (X1,X2) = P (x1, x2) + P (¬x1, x2) + P (x1,¬x2) + P (¬x1,¬x2) = 1, as

with any probability distribution.
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The interesting thing of joint probability distributions is that any (conditional) probability
distribution can be computed from them using the marginalisation and conditioning rules.
Using marginalisation, it is easy to compute P (x2), as we have that

P (x2) =
∑

X1

P (X1, x2) = P (x1, x2) + P (¬x1, x2) = 0.08 + 0.18 = 0.26

Using conditioning, it easy to compute P (x1 | x2), as follows:

P (x1 | x2) =
p(x1, x2)

P (x2)
= 0.08/0.26 = 4/13

In this case, I used the definition of conditional probability distributions.
This type of reasoning has been called naive probabilistic reasoning, as it may involve a

lot of, also redundant, work. Probabilistic reasoning is usually done using special-purpose
algorithms, such as (approximate) particle-based (sampling) algorithms, variable elimination,
or Pearl’s algorithm, which is based on a message-passing scheme.

A particularly important rule, which can be derived from the chain rule and commutativity
of conjunction is Bayes’ rule. We write P (h, e) = P (h | e)P (e) = P (e | h)P (h). If P (e) 6= 0,
you can divide the right hand sides by P (e):

P (h | e) =
P (e | h)P (h)

P (e)

This is Bayes’ rule. It is an important rule since it allows quantities of interest P (h | e) to
be expressed in terms of a likelihood P (e | h and a prior P (h) which are often much easier to
estimate. Bayes’ rule can be interpreted as reasoning in the opposite direction of the arrow
in a Bayesian network h→ e.

An interesting result, mentioned in the slides, is that it is possible to map the certainty-
factor calculus of rule-based systems to Bayesian networks. This gives insight into the as-
sumptions underlying the certainty-factor calculus. So, maybe, in the end, the designers of
the rule-based uncertainty schemes were not as stupid as some lecturers sometimes say! What
is your opinion about this?

5.4 Towards Decision Making

Logic and probability theory provide necessary and sufficient tools in order to allow an agent
to reason in a rational way. However, in the real world, reasoning alone does not ensure the
agent’s survival. It is rather the actions that are executed based on an agent’s inferences that
implement optimal behaviour. This selection of optimal action based on an agent’s knowledge
is the subject matter of decision theory. Decision theory is also crucial in the development
of expert systems. Often, a physian would like to get advice on which action to perform
given observed symptoms rather than just knowing what disease is the most likely cause of
the symptoms. Furthermore, sometimes actions themselves update our state of knowledge.
Think for instance of laboratory tests which may or may not be performed for a particular
patient. Our notation and examples are inspired by the textbook by David Poole [15], which
is also freely available on his website: http://artint.info/. Chapter 13 and 14 of the AI book
by Russell and Norvig [9] cover this topic too.
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5.5 Preferences and utilities

An action a ∈ A will always result in an outcome o ∈ O. Agents have preferences over
outcomes and a rational agent will always choose that action which leads to the optimal
outcome. If o1 and o2 are outcomes:

• o1 � o2 means o1 is at least as desirable as o2

• o1 ∼ o2 means o1 � o2 and o2 � o1

• o1 ≻ o2 means o1 � o2 but not o2 � o1

An action may not always lead to one particular outcome but rather to a probability distri-
bution over outcomes. This is known as a lottery, written as

p1 : o1; p2 : o2; . . . ; pk : ok

where the oi are outcomes and pi > 0 such that
∑

i pi = 1. Preferences are formalized in
terms of various axioms and a rational agent should obey these axioms. The following axioms
hold:

• Completeness: ∀o1∀o2 o1 � o2 or o2 � o1. The rationale for this axiom is that an agent
must act; if the actions available to it have outcomes o1 and o2 then, by acting, it is
explicitly or implicitly preferring one outcome over the other.

• Transitivity: if o1 � o2 and o2 � o3 then o1 � o3

• Monotonicity: if o1 ≻ o2 and p > q then [p : o1, 1 − p : o2] ≻ [q : o1, 1 − q : o2]. Note
that, in this axiom, > between outcomes represents the agent’s preference, whereas >
between p and q represents the familiar comparison between numbers.

• Decomposability: Indifference between lotteries (over lotteries) with the same probabili-
ties and outcomes: [p : o1, 1−p : [q : o2, 1−q : o3]] ∼ [p : o1, (1−p)q : o2, (1−p)(1−q) : o3].
This axiom formalizes the indifference between lotteries (no fun in gambling).

• Substitutability: if o1 ∼ o2 then the agent is indifferent between lotteries that only differ
by o1 and o2: [p : o1, 1− p : o3] ∼ [p : o2, 1− p : o3]

• Continuity: suppose o1 ≻ o2 and o2 ≻ o3 then there exists a p ∈ [0, 1] such that
o2 ∼ [p : o1, 1− p : o3]

If an agent is rational, then the preference of an outcome can be quantified using a utility
function:

U : O → [0, 1]

such that:

• o1 � o2 if and only if U(o1) ≥ U(o2).

• U([p1 : o1, p2 : o2, . . . , pk : ok]) =
∑k

i=1 pi · U(oi)
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People are often risk-aversive. What do you prefer? 50/50 chance for 0 or 1000000 or
300000 now? For this utility function, U(999000) approx 0.9997. Thus, given this utility
function, the person would be willing to pay 1000 to eliminate a 0.03% chance of losing all of
their money. This is why insurance companies exist. By paying the insurance company, say
600, the agent can change the lottery that is worth 999,000 to them into one worth 1,000,000
and the insurance companies expect to pay out, on average, about 300, and so expect to make
300. The insurance company can get its expected value by insuring enough houses. It is good
for both parties.

5.6 Decision problems

What an agent should do depends on:

• The agent’s ability: what options are available to it.

• The agent’s beliefs: the ways the world could be, given the agent’s knowledge. Sensing
updates the agent’s beliefs.

• The agent’s preferences: what the agent wants and tradeoffs when there are risks.

Decision theory specifies how to trade off the desirability and probabilities of the possible
outcomes for competing actions. In order to represent decisions, we make use of decision
variables. They are like random variables that an agent gets to choose a value for. For a
single decision variable, the agent can choose D = d for any d ∈ dom(D). The expected
utility of decision D = d is

E(U | D = d) =
∑

ω�d

P (ω | d)U(ω)

That is, we sum over all possible worlds that imply the decision and for each world, we take
the product of the (conditional) probability of that world times the utility of that world. An
optimal single decision is the decision D = dmax whose expected utility is maximal:

dmax = arg max
d∈dom(D)

E(U | D = d)

One way to represent a decision problem is using a decision tree. Decision trees are a
way to graphically organise a sequential decision process. It contains chance nodes (random
variables) and decision nodes, each with branches for each of the alternative decisions. The
utility of each branch is computed at the leaf of each branch and the expected utility of any
decision is computed on the basis of the weighted summation of all branches from the decision
to all leaves from that branch. Figure 5.4 shows a very simple decision tree, which depicts
the problem of deciding whether or not to go to a party depending on the weather. The
respectively utilities are computed as follows:

U(party) =
∑

Rain

U(party,Rain)P (Rain) = −100× 0.6 + 500 × 0.4 = 140

U(no− party) =
∑

Rain

U(no− party,Rain)P (Rain) = 0× 0.6 + 50× 0.4 = 20
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Figure 5.4: Deciding to go to the party or not. After [16].

Figure 5.5: The umbrella network. After [16].

An intelligent agent doesn’t carry out just one action or ignore intermediate information.
A more typical scenario is where the agent: observes, acts, observes, acts, etc. Subsequent
actions can depend on what is observed and what is observed depends on previous actions.
Often the sole reason for carrying out an action is to provide information for future actions.
Solving a sequence of decisions can be achieved using a decision tree by rolling back the tree.
However, decision trees grow exponentially fast in the number of variables. A sequential
decision problem consists of a sequence of decision variables D1, . . . ,Dn where each Di has
an information set of variables π(Di) whose value will be known at the time decision Di is
made. The decision nodes are totally ordered. This is the order the actions will be taken.
All decision nodes that come before Di are parents of decision node Di. Thus the agent
remembers its previous actions. Any parent of a decision node is a parent of subsequent
decision nodes. Thus the agent remembers its previous observations. Total utility is given by
the sum of the independent utilities (additive utility).

One way to represent a finite sequential decision problem is by means of an influence
diagram. Influence diagrams extend belief networks to include decision variables and utility.
They specify what information is available when the agent has to act and which variables the
utility depends on. Figure 5.5 shows an example of an influence diagram concerning whether
or not to wear an umbrella.
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5.7 Optimal policies

What an agent should do under all circumstances is formalized by a policy. It is a sequence
δ1, . . . , δN of decision functions

δi : dom(π(Di))→ dom(Di)

meaning that when the agent has observed O ∈ dom(π(Di)), it will do δi(O). The expected
utility of policy δ is

E(u | δ) =
∑

ω�δ

u(ω)× P (ω)

and an optimal policy is one with the highest expected utility. Finding the optimal policy is
equivalent to solving a decision problem. The recipe for finding an optimal policy using an
influence diagram, exemplified with the umbrella network, is as follows:

• Let us take the conditional probability tables and the table for the utility (the so-called

factors)

• In spirit of the value elimination algorithm, one can systematically remove factors by
maximization (since we want the optimal policy) and computing new factors. For
example, here we compute the factor for the utility of the combination of the decision
and the forecast (U(Fcast,Umb)). That is, U(sunny, take) = P (sunny|rain)×P (rain)×
U(rain, take)+P (sunny|norain)×P (norain)×U(norain, take) = 0.15× 0.3× 70+ 0.7×
0.7 × 20 = 12.95. This leaves use with:

– the optimal decision function for D, arg maxD f

– a new factor to use (e.g. in variable elimination), maxD f (or more generally; for
computing the optimal decision)
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• Such calculations are repeated untill there are no more decision nodes to consider.

• If multiple factors are computed, one can multiply the factors: this is the expected
utility of the optimal policy (in this example we have only one factor to consider).

This approach to solving a sequential decision problem only holds for finite-horizon prob-
lems. That is, problems consisting of a fixed number of time steps. In case of infinite or
indefinite horizon decision problems, we typically formalize them in terms of (partially ob-
servable) Markov decision processes, which make use of other solution methods such as value
iteration or policy iteration. Such decision problems are common in, for example, planning
problems where robots need to traverse a space in order to reach a goal.
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Chapter 6

Lecture 10 – Probabilistic logic

There have been different recent proposals in the AI literature to combine logic and proba-
bility theory, where usually predicate logic is combined with probabilistic graphical models.
David Poole has developed so-called independent choice logic (which later was integrated into
AIlog). It combined Prolog-like logic with Bayesian networks. Another approach, developed
by Williamson et al. makes use of credal networks, which are similar to Bayesian networks
but reason over probability intervals instead of probabilities. The last few years Markov logic
has had an enormous impact on the research area. The idea is to use predicate logic to gen-
erate Markov networks, i.e., joint probability distributions that have an associated undirected
graph. Formalisms such as independent choice logic and Markov logic are examples of what
is called probabilistic logic.

Section 14.6 of Russell and Norvig [9] features a brief introduction to probabilistic rela-
tional models. Also, Chapter 14 of the book by Poole [15] features the combination of logic
and probability, especially in Section 14.3.

6.1 Probabilistic logic based on logical abduction

Various probabilistic logics, such as the independent choice logic, are based on logical abduc-
tion. The basic idea of these kind of logics is to define the probability of a query in terms of the
probability of its explanations (sometimes called a prediction in theory of logical abduction)
of a certain query (cf. Section 4.5) given a logic program. Probability of the explanations
are defined by a very simple distribution, namely by a set of independent random variables,
which makes it possible to (relatively) efficiently compute a probability. The nice thing about
this approach is that it truely combines logical reasoning (finding the explanations) with
probabilistic reasoning (computing the probability of the set of explanations).

Defining the probability distributions over the explanations is done by associating proba-
bilities to hypotheses in a set ∆. In order to make sure that we end up with a valid probability
distribution, we require a partitioning of this set into subsets ∆1, . . . ,∆n, i.e., such that it
holds that:

n
⋃

i=1

∆i = ∆

and ∆i ∩∆j = ∅ for all i 6= j. Each possible grounding of ∆i, i.e. ∆iσ with σ a substition, is
associated to a random variable Xi,σ, i.e., dom(Xi,σ) = ∆iσ. While you could imagine that
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every random variable is different, here we will assume that every grounding of h ∈ ∆ has to
have the same probability, i.e., for all substitutions σ, σ′:

P (Xi,σ = hσ) = P (Xi,σ′ = hσ′)

Whereas each pair of random variables as we have just defined is assumed to be independent,
the hypotheses in the same partition are dependent. Suppose for example, we have a random
variable X with three possible hypotheses:

dom(X) = {influenza, sport ,not sport or influenza}

In each possible state (element of the sample space), each random variable is exactly in one
state at the time, i.e., in this case, we assume that we either have influenza, or we sport, or
neither, but we do not sport while we have influenza. In other words: sport and influenza are
considered to be inconsistent.

To understand the space of explanations that we may consider is by picking a possible
value for each random variable. In the language of the independent choice logic, this is called
a choice (hence, the name). In order to make this work probabilistically, we need some
slight restrictions on our logic program. First, it is not allowed to have two hypotheses in
∆ that unify. Further, it is not allowed that an element from ∆ unifies with a head of one
of the clauses. Finally, mostly for convenience here, we will restrict ourselves to acyclic logic
programs consisting of Horn clauses and substitutions that can be made using the constants
in the program.

The probability distribution over ∆ is now used to define a probability for arbitrary atoms.
As mentioned earlier, this will be defined in terms of explanations, which are slightly different
than we have seen before due to the probabilistic semantics. Given a causal specification
Σ = (∆,Φ,R), a (probabilistic) explanation E ⊆ ∆σ for some formula F ∈ Φ is:

R∪ E |= F
R∪ C ∪E 6|= ⊥

where

C = {⊥ ← h1, h2 | ∆i is one of the partitions of ∆, h1, h2 ∈ ∆i}

and ∆σ grounded. Note that the consistency condition entails that we only pick at most one
value for each random variable. The intuitive assumption that is now being made is that an
atom is true if and only if at least one of its (grounded) explanations is true. Suppose E(F )
is the set of all explanations for F , then we define:

F =
∨

Ei∈E(F )

Ei

Notice that this definition is equivalent to assuming Clarke’s completion of the given theory
(cf. Section 4.3.1).

Recall that an explanation E is called minimal if there does not exist an explanation E′

such that E′ ⊂ E. It is not difficult to see that we can restrict our attention to the set of
minimal explanations Em(F ): by logical reasoning it holds that, if E′ ⊂ E then E′ ∨E = E′,
so it can be shown that E(F ) = Em(F ). We then have:

F =
∨

Ei∈Em(F )

Ei
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feverinfluenza chills

thirst

myalgia
sport

α1

α2

Figure 6.1: A knowledge base with causal relations.

Again, there is a close connection to the semantics of abduction, as
∨

Ei∈Em(F )Ei is sometimes
referred to as the solution formula. Of course, if two things are equal, then their probability
must be equal:

P (F ) = P (
∨

Ei∈Em(F )

Ei)

It is now clear how we can solve the problem of computing the probability of F : first we find
the (minimal) explanations of F and then we use the probability distribution defined over the
hypotheses to compute the disjunction of the explanations.

EXAMPLE 6.2

Consider the causal specification Σ = (∆,Φ,R), with

∆ = {influenza, sport ,not sport or influenza, α1,not α1, α2,not α2}

and

Φ = {chills , thirst ,myalgia}

and the set of logical formulae R that was presented before in context of abduction:

fever ∧ α1 → chills
influenza→ fever
fever→ thirst
influenza ∧ α2 → myalgia
sport → myalgia

The corresponding causal net, is shown in Figure 6.1.

First we need to define a probability distribution over ∆. For example, we may assume
to have three independent random variables X, Y , Z, such that:

P (X = sport) = 0.3
P (X = influenza) = 0.1
P (X = not sport or influenza) = 0.6
P (Y = α1) = 0.9
P (Y = not α1) = 0.1
P (Z = α2) = 0.7
P (Z = not α2) = 0.3
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Note that explanations containing e.g., sport and influenza are inconsistent with this
probability distribution, as X can only take the value of one of them (they are mutually
exclusive).

Suppose we have interested in the probability of myalgia, i.e., P (myalgia). The set of
all minimal explanations for myalgia, i.e., Em(myalgia) is {E1, E2}, where:

E1 = {influenza, α2}
E2 = {sport}

Clearly, there are many more explanations, e.g.,

E3 = {influenza, sport , α2}
E4 = {influenza, α1, α2}
E5 = {influenza,not α1, α2}
. . .

Note that for example, the set:

E′ = {influenza , α1,not α1, α2}

is inconsistent, because α1 and not α1 cannot both be true. Therefore, it is not an
explanation.

Since we assumed that a formula is true if only if at least one of its explanations is true,
the probability of myalgia is defined it terms of influenza and sport:

P (myalgia) = P ((influenza ∧ α2) ∨ sport)

Since influenza∧α2 and sport are mutually exclusive, the probability of the disjunction
is the sum of the disjuncts, i.e.:

P (myalgia) = P (influenza ∧ α2) + P (sport)
= P (influenza)P (α2) + P (sport)
= 0.1 · 0.7 + 0.3 = 0.37

From a computational point of view, the question is how to obtain the relevant explana-
tions. Observe that trying all subsets of groundings of ∆ would be wildly inefficient: there are
an exponential amount of explanations that we need to consider. Moreover, if we have a first-
order theory, then there might be an infinite amount of groundings of our set of hypotheses.
Luckily, it can be done more efficiently using logic programming techniques. In particular, it
can be shown that explanations can be found using SLD resolution: each proof for a query
q found by SLD that uses a consistent set of (ground) hypotheses is an explanation for q.
Moreover, if we ensure that in each SLD proof for a given query, the hypotheses that we need
to prove are grounded, all explanations can be found using SLD resolution.

EXAMPLE 6.3
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Consider the causal specification of Example 6.2. If we assume the hypotheses are true,
then we find two SLD resolution proofs for ‘myalgia’ (written in logic programming
notation):

← myalgia myalgia← sport

← sport sport←

�

and

← myalgia myalgia← influenza, α2

← influenza, α2 influenza←

← α2 α2 ←

�

As these are the only two SLD proofs, we have found all its explanations. The first
proof uses the hypothesis sport, whereas the second proof uses the hypotheses influenza
and α2.

6.2 Probabilistic reasoning in AILog

The type of reasoning discussed in this chapter is also implemented in the AILog system. For
the specification of random variables, the prob keyword is used, which comes in two forms.
The first form is as you might expect for defining a random variable:

prob a1 : p1, . . . , an : pn

where ai are atoms that can be assumed and pi are probabilities such that each pi ∈ [0, 1]
and

∑n
i=1 pi = 1. The second form is:

prob a : p

where a is again an atom and p ∈ [0, 1]. Here we implicitly define a binary random variable X
for every grounding of a such that P (X = aσ) = p. The other value forX simply has no name.

EXAMPLE 6.4

The causal specification and associated probability distribution as discussed in Exam-
ple 6.2 is formalised as follows in AILog:

prob influenza : 0.1, sport : 0.3, not_influenza_or_sport : 0.6.

prob a1 : 0.9.

prob a2 : 0.7.

chills <- fever & a1.

fever <- influenza.

thirst <- fever.

myalgia <- flu & a2.

myalgia <- sport.
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To obtain a probability, the predict keyword can be used, i.e., to predict the probability
of myalgia we obtain:

ailog: predict myalgia.

Answer: P(myalgia|Obs)=0.37.

[ok,more,explanations,worlds,help]: explanations.

0: ass([],[a2,influenza],0.06999999999999999)

1: ass([],[sport],0.3)

Furthermore, it is possible to find conditional probability, e.g., the probability of myalgia
given that we observe fever. To observe atoms, we use the observe keyword:

ailog: observe fever.

Answer: P(fever|Obs)=0.1.

[ok,more,explanations,worlds,help]: ok.

ailog: predict myalgia.

Answer: P(myalgia|Obs)=0.6999999999999998.



Chapter 7

Lecture 11 – Logic for Dynamic

Worlds

In the previous chapters we have dealt with static databases, i.e. where rules and facts were
fixed. We did, however, see some examples of new or additional information was obtained
and incorporated using conditioning, for example in Bayesian networks. Here we move on to
a somewhat more general setting in which we use logic to reason about these changes. This is
useful for playing games, predicting the future, generating plans for a robot and many other
things. In addition, we can also use such formalisms to interpret dynamic information, for
example coming from video data. In that case we talk about activity recognition, a very active
area in AI.

The slides of the last two lectures contain most of the necessary information for under-
standing changing databases. The rest of the story can be found in the excellent book by
Brachman and Levesque [1], of which you find two (draft) chapters on Blackboard and the
course webpage. These two chapters contain the full story of STRIPS, situation calculus and
planning in both formalisms. You will also need these descriptions for the practical exercises.
In the following we briefly provide some additional information, in particular on the state-
operator model which is not dealt with extensively in the Brachman and Levesque chapters.
On the web page you also find a PDF containing several pages from Russell and Norvig’s
AI text book (2nd version) to provide a little more background on the fundamental frame,
ramification and qualification problems.

7.1 States and Operators

The simplest way to represent dynamically changing worlds is to explicitly specify which
states can occur (and how they are represented) and which operators (or: actions) can change
the state of the world (and how). Dynamic worlds, actions and planning are much related,
and we can start seeing this by looking at a simple example. Examples here stem mainly
from Levesque’s book [REF]. The Monkey-Banana problem was first proposed by John
McCarthy, the seminal figure in situation calculus. This problem appears in many planning-
related contexts, and in the lecture we have seen research studies where they use actual
monkeys.

A monkey is in a room where a bunch of bananas is hanging from the ceiling, too
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high to reach. In the corner of the room is a box, which is not under the bananas.
The box is sturdy enough to support the monkey if he climbs on it, and light enough
so that he can move it easily. If the box is under the bananas, and the monkey is
on the box, he will be high enough to reach the bananas.

Initially the monkey is on the ground, and the box is not under the bananas. There’s a lot
the monkey can do:

• Go somewhere else in the room (assuming the monkey is not standing on the box)

• Climb onto the box (assuming the monkey is at the box, but not on it)

• Climb off the box (assuming it is standing on the box)

• Push the box anywhere (assuming the monkey is at the box, but not on it)

• Grab the bananas (assuming the monkey is on the box, under the bananas)

Given these possibilities, it is fairly easy to find an informal plan for the monkey to get
something to eat: 1) go to the box, 2) push it until it is right under the bananas, 3) climb onto
it, and 4) grab the bananas. This amounts to the fastest plan, but many other possibilities
exist.

Now in order to automaticallly find a plan for this problem, we need to formalize it as a
search problem. Actually this is very similar to either planning or reasoning in this situation.
In general, we need the following concepts in any such problem formulation:

• States: a form of snapshots of how the world can look like. In our example, a state
consist of the locations of the monkey, the box and the bananas.

• Operators: actions that can change the state of the world. In our example, moving
the box changes the location of the box (and the monkey).

• Initial state: the state of the world at the start of problem. In our example, the
monkey is not on the box, and the box is not under the bananas.

• Goal state: the desired state we want to be in. This state is the goal of the whole
planning process.

The activity of planning consists of computing a sequence of operators such that once that
sequence is applied starting from the initial state, one will reach the goal state. Note that it
is required that each operator should be possible to apply in each consequitive state. In other
words, a state should be reachable from another state using an operator. A general planning
algorithm is now simple to program, see the following algorithm:

A general planning algorithm in Prolog
plan(L) : −initial state(I), goal state(G), reachable(I, L, G).
%
reachable(S, [], S).
reachable(S1, [M|L], S3) : −legal move(S1, M, S2), reachable(S2, L, S3).
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Thus, a plan tries to find a sequence of legal moves such that the goal state is reachable from
the initial state by the application of the sequence of operators.

Let us now first try to find a simple logical model of the problem. Let us assume that
each state describes the location of the bananas (b), the monkey (m) and the box (l), as well
as whether the monkey is on the box (o, which can take values y and n), and whether the
monkey has the bananas h (which too can take the values y and n).

We can use this to form states in Prolog as lists of atoms. For example, we can represent
the initial state as [loc1, loc2, loc3, n, n] and a goal state will (at least) have as last element
in the list a ’y’.

%
initial state([loc1, loc2, loc3, n, n]).
%
goal state([ , , , , y]).
%
legal move([B, M, M, n, H], climb on, [B, M, M, y, H]).
legal move([B, M, M, y, H], climb off, [B, M, M, n, H]).
legal move([B, B, B, y, n], grab, [B, B, B, y, y]).
legal move([B, M, M, n, H], push(X), [B, X, X, n, H]).
legal move([B, , L, n, H], go(X), [B, X, L, n, H]).
%

We can run this simply by querying the plan predicate, but this might not be the best option:

?− plan(P).
ERROR : Outoflocalstack

Note that while planning, it does not matter that we do not yet know where to go to; the
goal state will provide that information in the end.

Now, plan(P) is obviously a too general query, and it will – unboundedly – search for any
sequence, , and consequently it will first make the plan longer and longer without actually
looking for useful substitutions first (question: what’s really happening here?). Better is to
bound the plan by saying explicitly how many actions you want, for example exactly four:

?- plan([X,Y,Z,W]).

X = go(loc3),

Y = push(loc1),

Z = climb_on,

W = grab ;

false.

Or, we try to find plans of length five:

?- plan([X,Y,Z,W,V]).

X = go(loc3),

Y = push(loc1),

Z = climb_on,

W = grab,
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V = climb_off ;

X = go(loc3),

Y = push(_G1281),

Z = push(loc1),

W = climb_on,

V = grab ;

X = go(loc3),

Y = push(loc1),

Z = go(loc1),

W = climb_on,

V = grab ;

X = go(_G1264),

Y = go(loc3),

Z = push(loc1),

W = climb_on,

V = grab ;

false.

Note that, technically, the first solution is ok, but it is not optimal (why?). Can you
explain why the uninstantiated variables (e.g. G1264) appear in the plan?

A better solution would be to search for small plans first, and extend the length of possible
plans increasingly until a good plan is found.

bplan(L) :- tryplan([],L).

tryplan(L,L) :- plan(L).

tryplan(X,L) :- tryplan([_|X],L).

1 ?- bplan(L).

L = [go(loc3), push(loc1), climb_on, grab] ;

L = [go(loc3), push(loc1), climb_on, grab, climb_off] ;

L = [go(loc3), push(_G228), push(loc1), climb_on, grab] ;

L = [go(loc3), push(loc1), go(loc1), climb_on, grab] ;

L = [go(_G211), go(loc3), push(loc1), climb_on, grab] ;

L = [go(loc3), climb_on, climb_off, push(loc1), climb_on, grab] ;

L = [go(loc3), push(loc1), climb_on, climb_off, climb_on, grab] ;

L = [go(loc3), push(loc1), climb_on, grab, climb_off, climb_on] ;

L = [go(loc3), push(loc1), climb_on, grab, climb_off, push(_G202)] ;

L = [go(loc3), push(loc1), climb_on, grab, climb_off, go(_G202)] ;

L = [go(loc3), push(_G231), push(loc1), climb_on, grab, climb_off] ;

L = [go(loc3), push(_G231), push(_G248), push(loc1), climb_on, grab] ;

L = [go(loc3), push(_G231), push(loc1), go(loc1), climb_on, grab] ;

L = [go(loc3), push(loc1), go(loc1), climb_on, grab, climb_off] ;

L = [go(loc3), push(_G231), go(_G231), push(loc1), climb_on, grab] ;

L = [go(loc3), push(loc1), go(_G248), go(loc1), climb_on, grab] ;

L = [go(_G214), go(loc3), push(loc1), climb_on, grab, climb_off] ;

L = [go(_G214), go(loc3), push(_G248), push(loc1), climb_on, grab] ;
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L = [go(_G214), go(loc3), push(loc1), go(loc1), climb_on, grab] ;

L = [go(_G214), go(_G231), go(loc3), push(loc1), climb_on, grab] ;

L = [go(loc3), climb_on, climb_off, push(loc1), climb_on, grab, climb_off]

Thus, state-operator models are very simple, and use fixed-order and fixed-size representa-
tions. However, they do support very easily all kinds of implementations of planning algo-
rithms as we have seen. For example, it is also easy to add additional knowledge to the
planner by creating a predicate acceptable to discard any unwanted actions, or to guide the
planner to specific actions. We can then extend the planner using:

reachable(S1, [M|L], S3) : −legal move(S1, M, S2), acceptable(M, S1), reachable(S2, L, S3).

Note that, because we are using a language such as Prolog here, we can basically add any
kind of knowledge to the planning process, creating ever smarter planning algorithms.

7.2 STRIPS

A second type of representation is STRIPS, which forms the foundation for many kinds of
planning languages such as ADL and PDDL. STRIPS can be formalized in propositional logic,
but here we use a relational (first-order) version. A STRIPS operator is defined as

〈Act,Pre,Add,Del〉

and features four components:

• action name Act: the name (plus arguments) of the action described in the operator

• precondition Pre: atoms that must be true in order to apply the action

• delete list: Add: atoms to be deleted from the current state (those becoming false)
if the action is applied

• add list: Del: atoms to be added to the current state (those becoming true) if the
action is applied

An example operator is

O = 〈Go(x, y)
{At(Monkey, x),On(Monkey,Floor)},
{At(Monkey, x)}, {At(Monkey, Y )}〉,

which specifies the go-action in our monkey-banana problem.
STRIPS has an operational semantics, which means that there is a specific way how to

use the formalism (for reasoning about the world, for planning, etc.). Let O be an operator
and let S be a state, i.e. a set of ground relational atoms. The operational semantics of
applying O to S is

• first find a matching of Pre and S, i.e. find a subset S′ ⊆ S and a substitution θ such
that Preθ ≡ S′

• compute the new state as S′′ = (S\Delθ) ∪Addθ.
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For our example action, let the current state be S = {On(Monkey,Floor),At(Monkey,Loc1), . . . , etc.}

Taking Go(Loc1,Loc2) spawns the new state S′ = {On(Monkey,Floor),At(Monkey,Loc2), . . . , etc.}

In Prolog it looks like this:

action(go(X,Y), [at(monkey,X), on(monkey,floor)],

[at(monkey,X)], [at(monkey,Y)]).

action(push(B,X,Y),

[at(monkey,X), at(B,X), on(monkey,floor), on(B,floor)],

[at(monkey,X), at(B,X)], [at(monkey,Y), at(B,Y)]).

action(climbon(B),

[at(monkey,X), at(B,X), on(monkey,floor), on(B,floor)],

[on(monkey,floor)], [on(monkey,B)]).

action(grab(B),

[on(monkey,box), at(box,X), at(B,X), status(B,hanging)],

[status(B,hanging)], [status(B,grabbed)]).

A planning algorithm in Prolog for STRIPS can now operate on the lists specifying the states.

plan(State, Goal, Plan):-

plan(State, Goal, [], Plan).

plan(State, Goal, Plan, Plan):-

is_subset(Goal, State), nl,

write_sol(Plan).

plan(State, Goal, Sofar, Plan):-

action(A, Preconditions, Delete, Add),

is_subset(Preconditions, State),

\+ member(A, Sofar),

delete_list(Delete, State, Remainder),

append(Add, Remainder, NewState),

plan(NewState, Goal, [A|Sofar], Plan).

test1(Plan):-

plan([on(monkey,floor),on(box,floor),at(monkey,loc1),at(box,loc2),

at(bananas,loc3),status(bananas,hanging)],

[status(bananas,grabbed)],

Plan).

The slides and Brachman and Levesque’s chapters provide more detail on the STRIPS for-
malism.
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7.2.1 Situation calculus

The situation calculus is a full first-order logical language for specifying (and reasoning about)
dynamic worlds. The logic has two sorts: actions and situations. An action is a predicate
with arguments, such as put(x, y), walk(loc) and pickup(r, x), with the intuitive meaning is
that it denotes something that can change the state of the world. A situation is a term do(s, a)
denoting the state of the world after applying action a in situation s. A situation essentially
is a structured term expressing the history of actions undertaken. A distinguished constant
S0 denotes the initial situation in which no actions have yet been applied. An example of a
more elaborated situation is do(put(A,B), do(put(B,C), S0), which is the situation resulting
from putting A on B after putting B on C in the initial situation.

Thus, situation calculus does not explicitly represent the state of the world, but only
implicitly by representing the initial state of the world plus all actions that have been applied.
Based on a rigorous formalization in terms of effect axioms, precondition axioms and successor
state axioms this is all that is needed to reason about anything in the world. The slides and
Brachman and Levesque’s chapters contain all necessary details on this formalization and
how planning can be seen as theorem proving (e.g. using resolution). In addition, it contains
a description on how to add imperative constructs (such as if-then-else, while-loops, etc.) to
the language to get a powerful logical programming language (Golog, see [11]). Furthermore,
the slides contain examples in AILog that add probabilistic aspects to the language.



Chapter 8

Lecture 12 – AI Applications of

Probabilistic Logic

Computer vision using (probabilistic) logical representations has the promise of being able to
use both structured knowledge representation for high-level aspects of a domain (e.g. a house
is next to another house) and probabilistic aspects for representing the inherent uncertain
features of any vision domain. The lecture has covered many examples of how high-level
knowledge aspects can be used to help in the interpretation of visual data, both for static
images as well as dynamic video data. All needed information can be found in the slides.
Here we briefly summarize two main approaches.

8.0.2 Vision as constraint satisfaction

As a first example in image interpretation using logic, Levesque describes a simple setting
in Levesque’s book [12] (http://www.cs.toronto.edu/ hector/tc-instructor.html). in which a
picture is described using Prolog rules, and where all constraints on the possible values for
parts of the image are added as Prolog rules. This way, knowledge representation is used to
specify all constraints and knowledge about a domain, and the interpretation process consists
of solving a constraint satisfaction problem (i.e. what are possible values for variables which
stand for parts of the image?). The slides contain the Prolog code for this simple setting. It
depicts in a simple program with which we can ask Prolog for an instantiation of

solution(R1, R2, R3, R4, R5)

such that, for example, R1 = water, R2 = grass and so on.

8.0.3 Vision using probabilistic explanations

Our last AI example of using KR and probability stems from the field of depiction and image
interpretation. In his article on probabilistic Horn abduction [17], which you can find on the
course webpage, Poole describes an application of probabilistic logic to the task of interpreting
simple images. The key issue is to see pictures as being made up of image objects which
could have been caused by scene objects. These scene objects contribute to the meaning
(or: semantics) of the picture.
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Following earlier work by Reiter and Mackworth, Poole assumes that for each image
object I there is a corresponding scene object σ(I) which it depicts. As an example, let us
assume that images can contain regions, which can be explained using a scene object called
area. Furthermore, let us assume that we have can have different types of areas that can be
an explanation for seeing a region in the image. Here we consider only two different kinds
of areas: land and water. Additional information (for example obtained by counting in all
images in a certain domain) teaches us that 70 percent of all areas are water, and only 30
percent are land. We can model this as follows:

region(I)← area(σ(I), T ).

disjoint([area(S, land) : 0.3, area(S,water) : 0.7]).

In AILog we can model the second rule using the prob statement. Poole introduces several
fragments of code to capture the whole image domain, see the paper and the slides.

An image is now one observation, which is actually a conjunction over all image objects
(represented as ground atoms), for example chain(c1)∧chain(c2)∧ . . .∧bounds(c1, r2) . . .∧
tee(c3, c2, 1) ∧ . . .. In essence, we condition on this information. Interpreting an im-
age (observation) now amounts to finding a (probabilistic-logical) explanation in terms of
scene objects. Poole lists four possible explanations for the example image and shows that
using the computed probabilities one can also compute conditional probabilities such as
P (linear(σ(c2), river)|image).
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Appendix A

Logic and Resolution

One of the earliest formalisms for the representation of knowledge is logic. The formalism is
characterized by a well-defined syntax and semantics, and provides a number of inference rules
to manipulate logical formulas on the basis of their form in order to derive new knowledge.
Logic has a very long and rich tradition, going back to the ancient Greeks: its roots can
be traced to Aristotle. However, it took until the present century before the mathematical
foundations of modern logic were laid, amongst others by T. Skolem, J. Herbrand, K. Gödel,
and G. Gentzen. The work of these great and influential mathematicians rendered logic firmly
established before the area of computer science came into being.

Already from the early 1950s, as soon as the first digital computers became available,
research was initiated on using logic for problem solving by means of the computer. This
research was undertaken from different points of view. Several researchers were primarily
interested in the mechanization of mathematical proofs: the efficient automated generation
of such proofs was their main objective. One of them was M. Davis who, already in 1954,
developed a computer program which was capable of proving several theorems from number
theory. The greatest triumph of the program was its proof that the sum of two even numbers
is even. Other researchers, however, were more interested in the study of human problem
solving, more in particular in heuristics. For these researchers, mathematical reasoning served
as a point of departure for the study of heuristics, and logic seemed to capture the essence of
mathematics; they used logic merely as a convenient language for the formal representation
of human reasoning. The classical example of this approach to the area of theorem proving
is a program developed by A. Newell, J.C. Shaw and H.A. Simon in 1955, called the Logic
Theory Machine. This program was capable of proving several theorems from the Principia
Mathematica of A.N. Whitehead and B. Russell. As early as 1961, J. McCarthy, amongst
others, pointed out that theorem proving could also be used for solving non-mathematical
problems. This idea was elaborated by many authors. Well known is the early work on
so-called question-answering systems by J.R. Slagle and the later work in this field by C.C.
Green and B. Raphael.

After some initial success, it soon became apparent that the inference rules known at
that time were not as suitable for application in digital computers as hoped for. Many AI
researchers lost interest in applying logic, and shifted their attention towards the development
of other formalisms for a more efficient representation and manipulation of information. The
breakthrough came thanks to the development of an efficient and flexible inference rule in
1965, named resolution, that allowed applying logic for automated problem solving by the

104



A.1. Propositional logic 105

computer, and theorem proving finally gained an established position in artificial intelligence
and, more recently, in the computer science as a whole as well.

Logic can directly be used as a knowledge-representation formalism for building knowledge
systems; currently however, this is done only on a small scale. But then, the clear semantics
of logic makes the formalism eminently suitable as a point of departure for understanding
what the other knowledge-representation formalisms are all about. In this chapter, we first
discuss the subject of how knowledge can be represented in logic, departing from propositional
logic, which although having a rather limited expressiveness, is very useful for introducing
several important notions. First-order predicate logic, which offers a much richer language for
knowledge representation, is treated in Section A.2. The major part of this chapter however
will be devoted to the algorithmic aspects of applying logic in an automated reasoning system,
and resolution in particular will be the subject of study.

A.1 Propositional logic

Propositional logic may be viewed as a representation language which allows us to express
and reason with statements that are either true or false. Examples of such statements are:

‘A full-adder is a logical circuit’
‘10 is greater than 90’

Clearly, such statement need not be true. Statements like these are called propositions and
are usually denoted in propositional logic by uppercase letters. Simple propositions such as
P and Q are called atomic propositions or atoms for short. Atoms can be combined with
so-called logical connectives to yield composite propositions. In the language of propositional
logic, we have the following five connectives at our disposal:

negation: ¬ (not)
conjunction: ∧ (and)
disjunction: ∨ (or)
implication: → (if then)
bi-implication: ↔ (if and only if)

For example, when we assume that the propositions G and D have the following meaning

G = ‘A Bugatti is a car’
D = ‘A Bugatti has 5 wheels’

then the composite proposition

G ∧D

has the meaning:

‘A Bugatti is a car and a Bugatti has 5 wheels’

However, not all formulas consisting of atoms and connectives are (composite) propositions.
In order to distinguish syntactically correct formulas that do represent propositions from those
that do not, the notion of a well-formed formula is introduced in the following definition.
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Definition A.1 A well-formed formula in propositional logic is an expression having one of
the following forms:

(1) An atom is a well-formed formula.

(2) If F is a well-formed formula, then (¬F ) is a well-formed formula.

(3) If F and G are well-formed formulas, then (F ∧ G), (F ∨ G), (F → G) and (F ↔ G)
are well-formed formulas.

(4) No other formula is well-formed.

EXAMPLE A.1

Both formulas (F ∧(G→ H)) and (F ∨(¬G)) are well-formed according to the previous
definition, but the formula (→ H) is not.

In well-formed formulas, parentheses may be omitted as long as no ambiguity can occur; the
adopted priority of the connectives is, in decreasing order, as follows:

¬ ∧ ∨ → ↔

In the following, the term formula is used as an abbreviation when a well-formed formula is
meant.

EXAMPLE A.2

The formula P → Q ∧R is the same as the formula (P → (Q ∧R)).

The notion of well-formedness of formulas only concerns the syntax of formulas in proposi-
tional logic: it does not express the formulas to be either true or false. In other words, it tells
us nothing with respect to the semantics or meaning of formulas in propositional logic. The
truth or falsity of a formula is called its truth value. The meaning of a formula in propositional
logic is defined by means of a function w : PROP→ {true, false} which assigns to each propo-
sition in the set of propositions PROP either the truth value true or false. Consequently, the
information that the atom P has the truth value true, is now denoted by w(P ) = true, and
the information that the atom P has the truth value false, is denoted by w(P ) = false. Such
a function w is called an interpretation function, or an interpretation for short, if it satisfies
the following properties (we assume F and G to be arbitrary well-formed formulas):

(1) w(¬F ) = true if w(F ) = false, and w(¬F ) = false if w(F ) = true.

(2) w(F ∧G) = true if w(F ) = true and w(G) = true; otherwise w(F ∧G) = false.

(3) w(F ∨G) = false if w(F ) = false and w(G) = false ; in all other cases, that is, if at least
one of the function values w(F ) and w(G) equals true, we have w(F ∨G) = true.

(4) w(F → G) = false if w(F ) = true and w(G) = false; in all other cases we have
w(F → G) = true.

(5) w(F ↔ G) = true if w(F ) = w(G); otherwise w(F ↔ G) = false .
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Table A.1: The meanings of the connectives.
F G ¬F F ∧G F ∨G F → G F ↔ G

true true false true true true true
true false false false true false false
-false true true false true true false
false false true false false true true

Table A.2: Truth table for P → (¬Q ∧R).

P Q R ¬Q ¬Q ∧R P → (¬Q ∧R)

true true true false false false
true true false false false false
true false true true true true
true false false true false false
false true true false false true
false true false false false true
false false true true true true
false false false true false true

These rules are summarized in Table A.1. The first two columns in this table list all possible
combinations of truth values for the atomic propositions F and G; the remaining columns
define the meanings of the respective connectives. If w is an interpretation which assigns to
a given formula F the truth value true, then w is called a model for F .

By repeated applications of the rules listed in table 2.1, it is possible to express the truth
value of an arbitrary formula in terms of the truth values of the atoms the formula is composed
of. In a formula containing n different atoms, there are 2n possible ways of assigning truth
values to the atoms in the formula.

EXAMPLE A.3

Table A.2 lists all possible combinations of truth values for the atoms in the formula
P → (¬Q ∧ R); for each combination, the resulting truth value for this formula is
determined. Such a table where all possible truth values for the atoms in a formula
F are entered together with the corresponding truth value for the whole formula F , is
called a truth table.

Definition A.2 A formula is called a valid formula if it is true under all interpretations. A
valid formula is often called a tautology. A formula is called invalid if it is not valid.

So, a valid formula is true regardless of the truth or falsity of its constituent atoms.

EXAMPLE A.4

The formula ((P → Q) ∧ P ) → Q is an example of a valid formula. In the previous
example we dealt with an invalid formula.

Definition A.3 A formula is called unsatisfiable or inconsistent if the formula is false under
all interpretations. An unsatisfiable formula is also called a contradiction. A formula is called
satisfiable or consistent if it is not unsatisfiable.
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example:example:example:

always falsesometimes true
sometimes false

always true

unsatisfiablesatisfiable

invalidvalid

P ∧ ¬PP ∨QP ∨ ¬P

Figure A.1: Relationship between validity and satisfiability.

Table A.3: Truth table of ¬(P ∧Q) and ¬P ∨ ¬Q.
P Q ¬(P ∧Q) ¬P ∨ ¬Q

true true false false
true false true true
false true true true
false false true true

Note that a formula is valid precisely when its negation is unsatisfiable and vice versa.

EXAMPLE A.5

The formulas P ∧ ¬P and (P → Q) ∧ (P ∧ ¬Q) are both unsatisfiable.

Figure A.1 depicts the relationships between the notions of valid, invalid, and satisfiable, and
unsatisfiable formulas.

Definition A.4 Two formulas F and G are called equivalent, written as F ≡ G, if the truth
values of F and G are the same under all possible interpretations.

Two formulas can be shown to be equivalent by demonstrating that their truth tables are
identical.

EXAMPLE A.6

Table A.3 shows that ¬(P ∧Q) ≡ ¬P ∨ ¬Q.

Using truth tables the logical equivalences listed in Table 2.4 can easily be proven. These
equivalences are called laws of equivalence. Law (a) is called the law of double negation; the
laws (b) and (c) are called the commutative laws; (d) and (e) are the so-called associative
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Table A.4: Laws of equivalence.
¬(¬F ) ≡ F (a)
F ∨G ≡ G ∨ F (b)
F ∧G ≡ G ∧ F (c)
(F ∧G) ∧H ≡ F ∧ (G ∧H) (d)
(F ∨G) ∨H ≡ F ∨ (G ∨H) (e)
F ∨ (G ∧H) ≡ (F ∨G) ∧ (F ∨H) (f)
F ∧ (G ∨H) ≡ (F ∧G) ∨ (F ∧H) (g)
F ↔ G ≡ (F → G) ∧ (G→ F ) (h)
F → G ≡ ¬F ∨G (i)
¬(F ∧G) ≡ ¬F ∨ ¬G (j)
¬(F ∨G) ≡ ¬F ∧ ¬G (k)

laws, and (f) and (g) are the distributive laws. The laws (j) and (k) are known as the laws
of De Morgan. These laws often are used to transform a given well-formed formula into a
logically equivalent but syntactically different formula.

In the following, a conjunction of formulas is often written as a set of formulas, where the
elements of the set are taken as the conjunctive subformulas of the given formula.

EXAMPLE A.7

The set S = {F ∨G,H} represents the following formula: (F ∨G) ∧H.

Truth tables can be applied to determine whether or not a given formula follows logically
from a given set of formulas. Informally speaking, a formula logically follows from a set of
formulas if it is satisfied by all interpretations satisfying the given set of formulas; we say
that the formula is a logical consequence of the formulas in the given set. The following is a
formal definition of this notion.

Definition A.5 A formula G is said to be a logical consequence of the set of formulas F =
{F1, . . . , Fn}, n ≥ 1, denoted by F � G, if for each interpretation w for which w(F1∧· · ·∧Fn) =
true, we have w(G) = true.

EXAMPLE A.8

The formula R is a logical consequence of the set of formulas {P ∧ ¬Q,P → R}. Thus
we can write {P ∧ ¬Q,P → R} � R.

Note that another way of stating that two formulas F and G are logically equivalent, that is,
F ≡ G, is to say that both {F} � G and {G} � F hold. This tells us that the truth value of
F and G are explicitly related to each other, which can also be expressed as � (F ↔ G).

Satisfiability, validity, equivalence and logical consequence are semantic notions; these
properties are generally established using truth tables. However, for deriving logical conse-
quences from of a set of formulas for example, propositional logic provides other techniques
than using truth tables as well. It is possible to derive logical consequences by syntactic
operations only. A formula which is derived from a given set of formulas then is guaranteed
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to be a logical consequence of that set if the syntactic operations employed meet certain con-
ditions. Systems in which such syntactic operations are defined, are called (formal) deduction
systems. Various sorts of deduction systems are known. An example of a deduction system is
an axiomatic system, consisting of a formal language, such as the language of propositional
logic described above, a set of inference rules (the syntactic operations) and a set of axioms.
In Section 2.4 we shall return to the subject of logical deduction.

A.2 First-order predicate logic

In propositional logic, atoms are the basic constituents of formulas which are either true or
false. A limitation of propositional logic is the impossibility to express general statements
concerning similar cases. First-order predicate logic is more expressive than propositional
logic, and such general statements can be specified in its language. Let us first introduce the
language of first-order predicate logic. The following symbols are used:

• Predicate symbols, usually denoted by uppercase letters. Each predicate symbol has
associated a natural number n, n ≥ 0, indicating the number of arguments the predicate
symbol has; the predicate symbol is called an n-place predicate symbol. 0-place or
nullary predicate symbols are also called (atomic) propositions. One-place, two-place
and three-place predicate symbols are also called unary, binary and ternary predicate
symbols, respectively.

• Variables, usually denoted by lowercase letters from the end of the alphabet, such as x,
y, z, possibly indexed with a natural number.

• Function symbols, usually denoted by lowercase letters halfway the alphabet. Each
function symbol has associated a natural number n, n ≥ 0, indicating its number of
arguments; the function symbol is called n-place. Nullary function symbols are usually
called constants.

• The logical connectives which have already been discussed in the previous section.

• Two quantifiers: the universal quantifier ∀, and the existential quantifier ∃. The quan-
tifiers should be read as follows: if x is a variable, then ∀x means ‘for each x’ or ‘for all
x’, and ∃x means ‘there exists an x’.

• A number of auxiliary symbols such as parentheses and commas.

Variables and functions in logic are more or less similar to variables and functions in for
instance algebra or calculus.

Before we define the notion of an atomic formula in predicate logic, we first introduce the
notion of a term.

Definition A.6 A term is defined as follows:

(1) A constant is a term.

(2) A variable is a term.

(3) If f is an n-place function symbol, n ≥ 1, and t1, . . . , tn are terms, then f(t1, . . . , tn) is
a term.
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(4) Nothing else is a term.

So, a term is either a constant, a variable or a function of terms. Recall that a constant may
also be viewed as a nullary function symbol. An atomic formula now consists of a predicate
symbol and a number of terms to be taken as the arguments of the predicate symbol.

Definition A.7 An atomic formula, or atom for short, is an expression of the form
P (t1, . . . , tn), where P is an n-place predicate symbol, n ≥ 0, and t1, . . . , tn are terms.

EXAMPLE A.9

If P is a unary predicate symbol and x is a variable, then P (x) is an atom.
Q(f(y), c, g(f(x), z)) is an atom if Q is a ternary predicate symbol, c is a constant,
f a unary function symbol, g a binary function symbol, and x, y and z are variables.
For the same predicate symbols P and Q, P (Q) is not an atom, because Q is not a term
but a predicate symbol.

Composite formulas can be formed using the five connectives given in Section 2.1, together
with the two quantifiers ∀ and ∃ just introduced. As was done for propositional logic, we now
define the notion of a well-formed formula in predicate logic. The following definition also
introduces the additional notions of free and bound variables.

Definition A.8 A well-formed formula in predicate logic, and the set of free variables of a
well-formed formula are defined as follows:

(1) An atom is a well-formed formula. The set of free variables of an atomic formula
consists of all the variables occurring in the terms in the atom.

(2) Let F be a well-formed formula with an associated set of free variables. Then, (¬F ) is
a well-formed formula. The set of free variables of (¬F ) equals the set of free variables
of F .

(3) Let F and G be well-formed formulas and let for each of these formulas a set of free
variables be given. Then, (F ∨ G), (F ∧ G), (F → G) and (F ↔ G) are well-formed
formulas. The set of free variables of each of these last mentioned formulas is equal to
the union of the sets of free variables of F and G.

(4) If F is well-formed formula and x is an element of the set of free variables of F , then
both (∀xF ) and (∃xF ) are well-formed formulas. The set of free variables of each of
these formulas is equal to the set of free variables of F from which the variable x has
been removed. The variable x is called bound by the quantifier ∀ or ∃.

(5) Nothing else is a well-formed formula.

Note that we have introduced the notion of a formula in the preceding definition only from a
purely syntactical point of view: nothing has been said about the meaning of such a formula.

Parentheses will be omitted from well-formed formulas as long as ambiguity cannot occur;
the quantifiers then have a higher priority than the connectives.

Definition A.9 A well-formed formula is called a closed formula, or a sentence, if its set of
free variables is empty; otherwise it is called an open formula.
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EXAMPLE A.10

The set of free variables of the formula ∀x∃y(P (x)→ Q(y, z)) is equal to {z}. So, only
one of the three variables in the formula is a free variable. The formula ∀x(P (x)∨R(x))
has no free variables at all, and thus is an example of a sentence.

In what follows, we shall primarily be concerned with closed formulas; the term formula will
be used to mean a closed formula, unless explicitly stated otherwise.

In the formula ∀x(A(x) → G(x)) all occurrences of the variable x in A(x) → G(x) are
governed by the associated universal quantifier; A(x) → G(x) is called the scope of this
quantifier.

EXAMPLE A.11

The scope of the universal quantifier in the formula

∀x(P (x)→ ∃yR(x, y))

is P (x)→ ∃yR(x, y); the scope of the existential quantifier is the subformula R(x, y).

In propositional logic, the truth value of a formula under a given interpretation is obtained by
assigning either the truth value true or false to each of its constituent atoms according to this
specific interpretation. Defining the semantics of first-order predicate logic is somewhat more
involved than in propositional logic. In predicate logic, a structure representing the ‘reality’
is associated with the meaningless set of symbolic formulas: in a structure the objects or
elements of the domain of discourse, or domain for short, are enlisted, together with functions
and relations defined on the domain.

Definition A.10 A structure S is a tuple

S = (D, {f̄n
i : Dn → D,n ≥ 1}, {P̄m

i : Dm → {true, false},m ≥ 0})

having the following components:

(1) A non-empty set of elements D, called the domain of S;

(2) A set of functions defined on Dn, {f̄n
i : Dn → D,n ≥ 1};

(3) A non-empty set of mappings, called predicates, from Dm to the set of truth values
{true , false}, {P̄m

i : Dm → {true, false},m ≥ 0}.

The basic idea underlying the definition of a structure is that we associate functions f̄n
i to

function symbols fi and predicates P̄m
i to predicate symbols Pi. Hence, we have to express

how a given meaningless formula should be interpreted in a given structure: it is not possible
to state anything about the truth value of a formula as long as it has not been prescribed
which elements from the structure are to be associated with the elements in the formula.

EXAMPLE A.12



A.2. First-order predicate logic 113

Consider the formula A(c). We associate the predicate having the intended meaning
‘is a car’ with the predicate symbol A. The formula should be true if the constant
representing a Bugatti is associated with c; on the other hand, the same formula should
be false if the constant representing a Volvo truck is associated with c. However, if we
associate the predicate ‘Truck’ with A, the truth values of A(c) for the two constants
should be opposite to the ones mentioned before.

In the following definition, we introduce the notion of an assignment, which is a function that
assigns elements from the domain of a structure to the variables in a formula.

Definition A.11 An assignment ( valuation) v to a set of formulas F in a given structure
S with domain D is a mapping from the set of variables in F to D.

The interpretation of (terms and) formulas in a structure S under an assignment v now
consists of the following steps. First, the constants in the formulas are assigned elements from
D. Secondly, the variables are replaced by the particular elements from D that have been
assigned to them by v. Then, the predicate and function symbols occurring in the formulas
are assigned predicates and functions from S. Finally, the truth values of the formulas are
determined.

Before the notion of an interpretation is defined more formally, a simple example in which
no function symbols occur, is given. For the reader who is not interested in the formal aspects
of logic, it suffices to merely study this example.

EXAMPLE A.13

The open formula

F = A(x)→ O(x)

contains the unary predicate symbols A and O, and the free variable x. Consider the
structure S consisting of the domain D = {bugatti , volvo-truck, alfa-romeo} and the set
of predicates comprising of the following elements:

• a unary predicate Car, with the intented meaning ‘is a car’, defined by
Car(bugatti) = true, Car(alfa-romeo) = true and Car(volvo-truck) = false , and

• the unary predicate FourWheels with the intended meaning ‘has four wheels’,
defined by FourWheels(bugatti) = false, FourWheels(volvo-truck) = false and
FourWheels(alfa-romeo) = true.

Let us take for the predicate symbol A the predicate Car, and for the predicate symbol
O the predicate FourWheels. It will be obvious that the atom A(x) is true in S under
any assignment v for which Car(v(x)) = true; so, for example for the assignment
v(x) = alfa-romeo, we have that A(x) is true in S under v. Furthermore, F is true
in the structure S under the assignment v with v(x) = alfa-romeo, since A(x) and
O(x) are both true in S under v. On the other hand, F is false in the structure
S under the assignment v′ with v′(x) = bugatti, because Car(bugatti) = true and
FourWheels(bugatti) = false in S. Now, consider the closed formula

F ′ = ∀x(A(x)→ O(x))

and again the structure S. It should be obvious that F ′ is false in S.
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Table A.5: Laws of equivalence for quantifiers.
¬∃xP (x) ≡ ∀x¬P (x) (a)
¬∀xP (x) ≡ ∃x¬P (x) (b)
∀x(P (x) ∧Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x) (c)
∃x(P (x) ∨Q(x)) ≡ ∃xP (x) ∨ ∃xQ(x) (d)
∀xP (x) ≡ ∀yP (y) (e)
∃xP (x) ≡ ∃yP (y) (f)

Definition A.12 An interpretation of terms in a structure S = (D, {f̄n
i }, {P̄

m
i }) under an

assignment v, denoted by IS
v , is defined as follows:

(1) IS
v (ci) = di, di ∈ D, where ci is a constant.

(2) IS
v (xi) = v(xi), where xi is a variable.

(3) IS
v (fn

i (t1, . . . , tn)) = f̄n
i (IS

v (t1), . . . , I
S
v (tn)), where f̄n

i is a function from S associated
with the function symbol f

n

i .

The truth value of a formula in a structure S under an assignment v for a given interpretation
IS
v is obtained as follows:

(1) IS
v (Pm

i (t1, . . . , tm)) = P̄m
i (IS

v (t1), . . . , I
S
v (tm)), meaning that an atom Pm

i (t1, . . . , tm) is
true in the structure S under the assignment v for the interpretation IS

v if
P̄m

i (IS
v (t1), . . . , I

S
v (tm)) is true, where P̄m

i is the predicate from S associated with Pm
i .

(2) If the truth values of the formulas F and G have been determined, then the truth values
of ¬F , F ∧G, F ∨G, F → G and F ↔ G are defined by the meanings of the connectives
as listed in Table A.1.

(3) ∃xF is true under v if there exists an assignment v′ differing from v at most with regard
to x, such that F is true under v′.

(4) ∀xF is true under v if for each v′ differing from v at most with regard to x, F is true
under v′.

The notions valid, invalid, satisfiable, unsatisfiable, logical consequence, equivalence and
model have meanings in predicate logic similar to their meanings in propositional logic. In ad-
dition to the equivalences listed in Table A.4, predicate logic also has some laws of equivalence
for quantifiers, which are given in Table A.5. Note that the properties ∀x(P (x) ∨ Q(x)) ≡
∀xP (x) ∨ ∀xQ(x) and ∃x(P (x) ∧Q(x)) ≡ ∃xP (x) ∧ ∃xQ(x) do not hold.

We conclude this subsection with another example.

EXAMPLE A.14

We take the unary (meaningless) predicate symbols C, F , V , W and E, and the con-
stants a and b from a given first-order language. Now, consider the following formulas:

(1) ∀x(C(x)→ V (x))
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(2) F (a)

(3) ∀x(F (x)→ C(x))

(4) ¬E(a)

(5) ∀x((C(x) ∧ ¬E(x))→W (x))

(6) F (b)

(7) ¬W (b)

(8) E(b)

Consider the structure S in the reality with a domain consisting of the elements and
bugatti, which are assigned to the constants a and b, respectively. The set of predicates
in S comprises the unary predicates Car, Fast, Vehicle, FourWheels, and Exception,
which are taken for the predicate symbols C, F , V , W , and E, respectively. The
structure S and the mentioned interpretation have been carefully chosen so as to satisfy
the above-given closed formulas, for instance by giving the following intended meaning
to the predicates:

Car = ‘is a car’
Fast = ‘is a fast car’
Vehicle = ‘is a vehicle’
FourWheels = ‘has four wheels’
Exception = ‘is an exception’

In the given structure S, the formula numbered 1 expresses the knowledge that every
car is a vehicle. The fact that an alfa-romeo is a fast car, has been stated in formula 2.
Formula 3 expresses that every fast car is a car, and formula 4 states that an alfa-romeo
is not an exception to the rule that cars have four wheels, which has been formalized
in logic by means of formula 5. A Bugatti is a fast car (formula 6), but contrary to
an alfa-romeo it does not have 4 wheels (formula 7), and therefore is an exception to
the last mentioned rule; the fact that Bugattis are exceptions is expressed by means of
formula 8.

It should be noted that in another structure with another domain and other predicates,
the formulas given above might have completely different meanings.

A.3 Clausal form of logic

Before turning our attention to reasoning in logic, we introduce in this section a syntactically
restricted form ofpredicate logic, called the clausal form of logic, which will play an important
role in the remainder of this chapter. This restricted form however, can be shown to be as
expressive as full first-order predicate logic. The clausal form of logic is often employed, in
particular in the fields of theorem proving and logic programming.

We start with the definition of some new notions.

Definition A.13 A literal is an atom, called a positive literal, or a negation of an atom,
called a negative literal.
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Definition A.14 A clause is a closed formula of the form

∀x1 · · · ∀xs(L1 ∨ · · · ∨ Lm)

where each Li, i = 1, . . . ,m, m ≥ 0, is a literal, with Li 6= Lj for each i 6= j, and x1, . . . , xs,
s ≥ 0, are variables occurring in L1 ∨ · · · ∨ Lm. If m = 0, the clause is said to be the empty
clause, denoted by �.

The empty clause � is interpreted as a formula which is always false, in other words, � is an
unsatisfiable formula.

A clause

∀x1 · · · ∀xs(A1 ∨ · · · ∨Ak ∨ ¬B1 ∨ · · · ∨ ¬Bn)

where A1, . . . , Ak, B1, . . . , Bn are atoms and x1, . . . , xs are variables, is equivalent to

∀x1 · · · ∀xs(B1 ∧ · · · ∧Bn → A1 ∨ · · · ∨Ak)

as a consequence of the laws ¬F ∨G ≡ F → G and ¬F ∨¬G ≡ ¬(F ∧G), and is often written
as

A1, . . . , Ak ← B1, . . . , Bn

The last notation is the more conventional one in logic programming. The commas in
A1, . . . , Ak each stand for a disjunction, and the commas in B1, . . . , Bn indicate a conjunction.
A1, . . . , Ak are called the conclusions of the clause, and B1, . . . , Bn the conditions.

Each well-formed formula in first-order predicate logic can be translated into a set of
clauses, which is viewed as the conjunction of its elements. As we will see, this translation
process may slightly alter the meaning of the formulas. We shall illustrate the translation
process by means of an example. Before proceeding, we define two normal forms which are
required for the translation process.

Definition A.15 A formula F is in prenex normal form if F is of the form

Q1x1 · · ·QnxnM

where each Qi, i = 1, . . . , n, n ≥ 1, equals one of the two quantifiers ∀ and ∃, and where M
is a formula in which no quantifiers occur. Q1x1 . . . Qnxn is called the prefix and M is called
the matrix of the formula F .

Definition A.16 A formula F in prenex normal form is in conjunctive normal form if the
matrix of F is of the form

F1 ∧ · · · ∧ Fn

where each Fi, i = 1, . . . , n, n ≥ 1, is a disjunction of literals.

EXAMPLE A.15

Consider the following three formulas:
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∀x(P (x) ∨ ∃yQ(x, y))
∀x∃y∀z((P (x) ∧Q(x, y)) ∨ ¬R(z))
∀x∃y((¬P (x) ∨Q(x, y)) ∧ (P (y) ∨ ¬R(x)))

The first formula is not in prenex normal form because of the occurrence of an existential
quantifier in the ‘inside’ of the formula. The other two formulas are both in prenex
normal form; moreover, the last formula is also in conjunctive normal form.

The next example illustrates the translation of a well-formed formula into a set of clauses.
The translation scheme presented in the example however is general and can be applied to
any well-formed formula in first-order predicate logic.

EXAMPLE A.16

Consider the following formula:

∀x(∃yP (x, y) ∨ ¬∃y(¬Q(x, y)→ R(f(x, y))))

This formula is transformed in eight steps, first into prenex normal form, subsequently
into conjunctive normal form, amongst others by applying the laws of equivalence listed
in the tables A.4 and A.5, and finally into a set of clauses.

Step 1. Eliminate all implication symbols using the equivalences F → G ≡ ¬F ∨G and
¬(¬F ) ≡ F :

∀x(∃yP (x, y) ∨ ¬∃y(Q(x, y) ∨R(f(x, y))))

If a formula contains bi-implication symbols, these can be removed by applying the
equivalence

F ↔ G ≡ (F → G) ∧ (G→ F )

Step 2. Diminish the scope of the negation symbols in such a way that each negation
symbol only governs a single atom. This can be accomplished by using the equivalences
¬∀xF (x) ≡ ∃x¬F (x), ¬∃xF (x) ≡ ∀x¬F (x), ¬(¬F ) ≡ F , together with the laws of De
Morgan:

∀x(∃yP (x, y) ∨ ∀y(¬Q(x, y) ∧ ¬R(f(x, y))))

Step 3. Rename the variables in the formula using the equivalences ∀xF (x) ≡ ∀yF (y)
and ∃xF (x) ≡ ∃yF (y), so that each quantifier has its own uniquely named variable:

∀x(∃yP (x, y) ∨ ∀z(¬Q(x, z) ∧ ¬R(f(x, z))))

Formulas only differing in the names of their bound variables are called variants.

Step 4. Eliminate all existential quantifiers. For any existentially quantified variable
x not lying within the scope of a universal quantifier, all occurrences of x in the for-
mula within the scope of the existential quantifier can be replaced by a new, that is,
not previously used, constant symbol c. The particular existential quantifier may then
be removed. For instance, the elimination of the existential quantifier in the formula
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∃xP (x) yields a formula P (c). However, if an existentially quantified variable y lies
within the scope of one or more universal quantifiers with the variables x1, . . . , xn,
n ≥ 1, then the variable y may be functionally dependent upon x1, . . . , xn. Let this
dependency be represented explicitly by means of a new n-place function symbol g such
that g(x1, . . . , xn) = y. All occurrences of y within the scope of the existential quan-
tifier then are replaced by the function term g(x1, . . . , xn), after which the existential
quantifier may be removed. The constants and functions introduced in order to allow
for the elimination of existential quantifiers are called Skolem functions.

The existentially quantified variable y in the example lies within the scope of the uni-
versal quantifier with the variable x, and is replaced by g(x):

∀x(P (x, g(x)) ∨ ∀z(¬Q(x, z) ∧ ¬R(f(x, z))))

Note that by replacing the existentially quantified variables by Skolem functions, we lose
logical equivalence. Fortunately, it can be shown that a formula F is satisfiable if and
only if the formula F ′, obtained from F by replacing existentially quantified variables
in F by Skolem functions, is satisfiable as well. In general, the satisfiability of F and F ′

will not be based on the same model, since F ′ contains function symbols not occurring
in F . In the following, it will become evident that this property is sufficient for our
purposes.

Step 5. Transform the formula into prenex normal form, by placing all the universal
quantifiers in front of the formula:

∀x∀z(P (x, g(x)) ∨ (¬Q(x, z) ∧ ¬R(f(x, z))))

Note that this is allowed because by step 3 each quantifier applies to a uniquely named
variable; this means that the scope of all quantifiers is the entire formula.

Step 6. Bring the matrix in conjunctive normal form using the distributive laws:

∀x∀z((P (x, g(x)) ∨ ¬Q(x, z)) ∧ (P (x, g(x)) ∨ ¬R(f(x, z))))

Step 7. Select the matrix by disregarding the prefix:

(P (x, g(x)) ∨ ¬Q(x, z)) ∧ (P (x, g(x)) ∨ ¬R(f(x, z)))

All variables in the matrix are now implicitly considered to be universally quantified.

Step 8. Translate the matrix into a set of clauses, by replacing formulas of the form
F ∧ G by a set of clauses {F ′, G′}, where F ′ and G′ indicate that F and G are now
represented using the notational convention of logic programming:

{P (x, g(x)) ← Q(x, z)), P (x, g(x)) ← R(f(x, z))i}

or the notation used in automated theorem proving:

{P (x, g(x)) ∨ ¬Q(x, z), P (x, g(x)) ∨ ¬R(f(x, z))}

We conclude this subsection with the definition of a special type of clause, a so-called Horn
clause, which is a clause containing at most one positive literal.
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Definition A.17 A Horn clause is a clause having one of the following forms:

(1) A←

(2) ← B1, . . . , Bn, n ≥ 1

(3) A← B1, . . . , Bn, n ≥ 1

A clause of the form 1 is called a unit clause; a clause of form 2 is called a goal clause.

Horn clauses are employed in the programming language Prolog. We will return to this
observation in Section 2.7.2.

A.4 Reasoning in logic: inference rules

In the Sections 2.1 and 2.2 we described how a meaning could be attached to a meaningless set
of logical formulas. This is sometimes called the declarative semantics of logic. The declarative
semantics offers a means for investigating for example whether or not a given formula is a
logical consequence of a set of formulas. However, it is also possible to answer this question
without examining the semantic contents of the formulas concerned, by applying so-called
inference rules. Contrary to truth tables, inference rules are purely syntactic operations
which only are capable of modifying the form of the elements of a given set of formulas.
Inference rules either add, replace or remove formulas; most inference rules discussed in this
book however add new formulas to a given set of formulas. In general, an inference rule
is given as a schema in which a kind of meta-variables occur that may be substituted by
arbitrary formulas. An example of such a schema is shown below:

A,A→ B

B

The formulas above the line are called the premises, and the formula below the line is called
the conclusion of the inference rule. The above-given inference rule is known as modus ponens,
and when applied, removes an implication from a formula. Another example of an inference
rule, in this case for introducing a logical connective, is the following schema:

A,B

A ∧B

Repeated applications of inference rules give rise to what is called a derivation or deduction.
For instance, modus ponens can be applied to draw the conclusion S from the two formulas
P ∧ (Q ∨R) and P ∧ (Q ∨R)→ S. It is said that there exists a derivation of the formula S
from the set of clauses {P ∧ (Q ∨R), P ∧ (Q ∨R)→ S}. This is denoted by:

{P ∧ (Q ∨R), P ∧ (Q ∨R)→ S} ⊢ S

The symbol ⊢ is known as the turnstile.

EXAMPLE A.17

Consider the set of formulas {P,Q,P ∧Q→ S}. If the inference rule

A,B

A ∧B
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is applied to the formulas P and Q, the formula P ∧ Q is derived; the subsequent
application of modus ponens to P ∧Q and P ∧Q→ S yields S. So,

{P,Q,P ∧Q→ S} ⊢ S

Now that we have introduced inference rules, it is relevant to investigate how the declarative
semantics of a particular class of formulas and its procedural semantics, described by means
of inference rules, are interrelated: if these two notions are related to each other, we are in the
desirable circumstance of being able to assign a meaning to formulas which have been derived
using inference rules, simply by our knowledge of the declarative meaning of the original set
of formulas. On the other hand, when starting with the known meaning of a set of formulas,
it will then be possible to derive only formulas which can be related to that meaning. These
two properties are known as the soundness and the completeness, respectively, of a collection
of inference rules.

More formally, a collection of inference rules is said to be sound if and only if for each
formula F derived by applying these inference rules on a given set of well-formed formulas S
of a particular class (for example clauses), we have that F is a logical consequence of S. This
property can be expressed more tersely as follows, using the notations introduced before:

if S ⊢ F then S � F .

In other words, a collection of inference rules is sound if it preserves truth under the operations
of a derivation. This property is of great importance, because only by applying sound inference
rules it is possible to assign a meaning to the result of a derivation.

EXAMPLE A.18

The previously discussed inference rule modus ponens is an example of a sound inference
rule. From the given formulas F and F → G, the formula G can be derived by applying
modus ponens, that is, we have {F,F → G} ⊢ G. On the other hand, if F → G and
F are both true under a particular interpretation w, then from the truth Table 2.1 we
have that G is true under w as well. So, G is a logical consequence of the two given
formulas: {F,F → G} � G.

The reverse property that by applying a particular collection of inference rules, each logical
consequence F of a given set of formulas S can be derived, is called the completeness of the
collection of inference rules:

if S � F then S ⊢ F .

EXAMPLE A.19

The collection of inference rules only consisting of modus ponens is not complete for all
well-formed formulas in propositional logic. For example, it is not possible to derive the
formula P from ¬Q and P ∨Q, although P is a logical consequence of the two formulas.
However, by combining modus ponens with other inference rules, it is possible to obtain
a complete collection of inference rules.
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The important question now arises if there exists a mechanical proof procedure, employing a
particular sound and complete collection of inference rules, which is capable of determining
whether or not a given formula F can be derived from a given set of formulas S. In 1936,
A. Church and A.M. Turing showed, independently, that such a general proof procedure does
not exist for first-order predicate logic. This property is called the undecidability of first-order
predicate logic. All known proof procedures are only capable of deriving F from S (that is,
are able to prove S ⊢ F ) if F is a logical consequence of S (that is, if S � F ); if F is not a
logical consequence of S, then the proof procedure is not guaranteed to terminate.

However, for propositional logic there do exist proof procedures which always terminate
and yield the right answer: for checking whether a given formula is a logical consequence of a
certain set of formulas, we can simply apply truth tables. So, propositional logic is decidable.

The undecidability of first-order predicate logic has not refrained the research area of
automated theorem proving from further progress. The major result of this research has been
the development of an efficient and flexible inference rule, which is both sound and complete
for proving inconsistency, called resolution. This is sometimes called refutation completeness
(see below). However, the resolution rule is only suitable for manipulating formulas in clausal
form. Hence, to use this inference rule on a set of arbitrary logical formulas in first-order
predicate logic, it is required to translate each formula into the clausal form of logic by means
of the procedure discussed in Section 2.3. This implies that resolution is not complete for
unrestricted first-order predicate logic. The formulation of resolution as a suitable inference
rule for automated theorem proving in the clausal form of logic has been mainly due to J.A.
Robinson, who departed from earlier work by D. Prawitz. The final working-out of resolution
in various algorithms, supplemented with specific implementation techniques, has been the
work of a large number of researchers. Resolution is the subject of the remainder of this
chapter.

A.5 Resolution and propositional logic

We begin this section with a brief, informal sketch of the principles of resolution. Consider a
set of formulas S in clausal form. Suppose we are given a formula G, also in clausal form, for
which we have to prove that it can be derived from S by applying resolution. Proving S ⊢ G
is equivalent to proving that the set of clauses W , consisting of the clauses in S supplemented
with the negation of the formula G, that is W = S ∪{¬G}, is unsatisfiable. Resolution on W
now proceeds as follows: first, it is checked whether or not W contains the empty clause �;
if this is the case, then W is unsatisfiable, and G is a logical consequence of S. If the empty
clause � is not in W , then the resolution rule is applied on a suitable pair of clauses from W ,
yielding a new clause. Every clause derived this way is added to W , resulting in a new set of
clauses on which the same resolution procedure is applied. The entire procedure is repeated
until some generated set of clauses has been shown to contain the empty clause �, indicating
unsatisfiability of W , or until all possible new clauses have been derived.

The basic principles of resolution are best illustrated by means of an example from propo-
sitional logic. In Section 2.6 we turn our attention to predicate logic.

EXAMPLE A.20



A.5. Resolution and propositional logic 122

Consider the following set of clauses:

{C1 = P ∨R,C2 = ¬P ∨Q}

These clauses contain complementary literals, that is, literals having opposite truth
values, namely P and ¬P . Applying resolution, a new clause C3 is derived being the
disjunction of the original clauses C1 and C2 in which the complementary literals have
been cancelled out. So, application of resolution yields the clause

C3 = R ∨Q

which then is added to the original set of clauses.

The resolution principle is described more precisely in the following definition.

Definition A.18 Consider the two clauses C1 and C2 containing the literals L1 and L2

respectively, where L1 and L2 are complementary. The procedure of resolution proceeds as
follows:

(1) Delete L1 from C1 and L2 from C2, yielding the clauses C ′
1 and C ′

2;

(2) Form the disjunction C ′ of C ′
1 and C ′

2;

(3) Delete (possibly) redundant literals from C ′, thus obtaining the clause C.

The resulting clause C is called the resolvent of C1 and C2. The clauses C1 and C2 are said
to be the parent clauses of the resolvent.

Resolution has the important property that when two given parent clauses are true under a
given interpretation, their resolvent is true under the same interpretation as well: resolution
is a sound inference rule. In the following theorem we prove that resolution is sound for the
case of propositional logic.

THEOREM A.1 ( soundness of resolution) Consider two clauses C1 and C2 containing
complementary literals. Then, any resolvent C of C1 and C2 is a logical consequence of
{C1, C2}.

Proof: We are given that the two clauses C1 and C2 contain complementary literals. So, it
is possible to write C1 and C2 as C1 = L∨C ′

1 and C2 = ¬L∨C ′
2 respectively for some literal

L. By definition, a resolvent C is equal to C ′
1 ∨ C

′
2 from which possibly redundant literals

have been removed. Now, suppose that C1 and C2 are both true under an interpretation w.
We then have to prove that C is true under the same interpretation w as well. Clearly, either
L or ¬L is false. Suppose that L is false under w, then C1 obviously contains more than one
literal, since otherwise C1 would be false under w. It follows that C ′

1 is true under w. Hence,
C ′

1 ∨ C
′
2, and therefore also C, is true under w. Similarly, it can be shown that the resolvent

is true under w if it is assumed that L is true. So, if C1 and C2 are true under w then C is
true under w as well. Hence, C is a logical consequence of C1 and C2. ♦

Resolution is also a complete inference rule. Proving the completeness of resolution is beyond
the scope of this book; we therefore confine ourselves to merely stating the property.

EXAMPLE A.21
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¬P ∨Q ¬Q P

¬P

�

Figure A.2: A refutation tree.

In the definition of a clause in Section 2.3, it was mentioned that a clause was not allowed
to contain duplicate literals. This condition appears to be a necessary requirement for
the completeness of resolution. For example, consider the following set of formulas:

S = {P ∨ P,¬P ∨ ¬P}

It will be evident that S is unsatisfiable, since P ∨P ≡ P and ¬P ∨¬P ≡ ¬P . However,
if resolution is applied to S then in every step the tautology P ∨ ¬P is derived. It is
not possible to derive the empty clause �.

Until now we have used the notion of a derivation only in an intuitive sense. Before giving
some more examples, we define the notion of a derivation in a formal way.

Definition A.19 Let S be a set of clauses and let C be a single clause. A derivation of C
from S, denoted by S ⊢B C, is a finite sequence of clauses C1, C2, . . . , Cn, n ≥ 1, where each
Ck either is a clause in S or a resolvent with parent clauses Ci and Cj , i < k, j < k, i 6= j,
from the sequence, and C = Cn. If Cn = �, then the derivation is said to be a refutation of
S, indicating that S is unsatisfiable.

EXAMPLE A.22

Consider the following set of clauses:

S = {¬P ∨Q,¬Q,P}

From C1 = ¬P ∨Q and C2 = ¬Q we obtain the resolvent C3 = ¬P . From the clauses
C3 and C4 = P we derive C5 = �. So, S is unsatisfiable. The sequence of clauses
C1, C2, C3, C4, C5 is a refutation of S. Note that it is not the only possible refutation of
S. In general, a set S of clauses may have more than one refutation.

Notice that by the choice of the empty clause � as a formula that is false under all interpre-
tations, which is a semantic notion, the proof-theoretical notion of a refutation has obtained
a suitable meaning. A derivation can be depicted in a graph, called a derivation graph. In the
case of a refutation, the vertices in the derivation graph may be restricted to those clauses and
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resolvents which directly or indirectly contribute to the refutation. Such a derivation graph
has the form of a tree and is usually called a refutation tree. The leaves of such a tree are
clauses from the original set, and the root of the tree is the empty clause �. The refutation
tree for the derivation discussed in the previous example is shown in Figure A.2. Note that
another refutation of S gives rise to another refutation tree.

A.6 Resolution and first-order predicate logic

An important feature of resolution in first-order predicate logic, taking place in the basic
resolution method, is the manipulation of terms. This has not been dealt with in the previous
section, where we only had atomic propositions, connectives and auxiliary symbols as building
blocks for propositional formulas. In this section, we therefore first discuss the manipulation
of terms, before we provide a detailed description of resolution in first-order predicate logic.

A.6.1 Substitution and unification

The substitution of terms for variables in formulas in order to make these formulas syntac-
tically equal, plays a central role in a method known as unification. We first introduce the
notion of substitution formally and then discuss its role in unification.

Definition A.20 A substitution σ is a finite set of the form

{t1/x1, . . . , tn/xn}

where each xi is a variable and where each ti is a term not equal to xi, i = 1, . . . , n, n ≥ 0;
the variables x1, . . . , xn differ from each other. An element ti/xi of a substitution σ is called
a binding for the variable xi. If none of the terms ti in a substitution contains a variable, we
have a so-called ground substitution. The substitution defined by the empty set is called the
empty substitution, and is denoted by ǫ.

Definition A.21 An expression is a term, a literal, a conjunction of literals or a disjunction
of literals; a simple expression is a term or an atom.

A substitution σ can be applied to an expression E, yielding a new expression Eσ which is
similar to E with the difference that the variables in E occurring in σ have been replaced by
their associated terms.

Definition A.22 Let σ = {t1/x1, . . . , tn/xn}, n ≥ 0, be a substitution and E an expression.
Then, Eσ is an expression obtained from E by simultaneously replacing all occurrences of
the variables xi by the terms ti. Eσ is called an instance of E. If Eσ does not contain any
variables, then Eσ is said to be a ground instance of E.

EXAMPLE A.23

Let σ = {a/x,w/z} be a substitution and let E = P (f(x, y), z) be an expression. Then,
Eσ is obtained by replacing each variable x in E by the constant a and each variable z
by the variable w. The result of the substitution is Eσ = P (f(a, y), w). Note that Eσ
is not a ground instance.
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The application of a substitution to a single expression can be extended to a set of expressions,
as demonstrated in the following example.

EXAMPLE A.24

Application of the substitution σ = {a/x, b/z} to the set of expressions {P (x, f(x, z)),
Q(x,w)} yields the following set of instances:

{P (x, f(x, z)), Q(x,w)}σ = {P (a, f(a, b)), Q(a,w)}

The first element of the resulting set of instances is a ground instance; the second one
is not ground, since it contains the variable w.

Definition A.23 Let θ = {t1/x1, . . . , tm/xm} and σ = {s1/y1, . . . , sn/yn}, m ≥ 1, n ≥ 1, be
substitutions. The composition of these substitutions, denoted by θσ, is obtained by removing
from the set

{t1σ/x1, . . . , tmσ/xm, s1/y1, . . . , sn/yn}

all elements tiσ/xi for which xi = tiσ, and furthermore, all elements sj/yj for which yj ∈
{x1, . . . , xm}

The composition of subtitutions is associative, i.e., for any expression E and substitutions
φ, θ and σ we have that E(φσ)θ = Eφ(σθ); the operation is not commutative. Let θ =
{t1/x1, . . . , tm/xm} be a substitution, and let V be the set of variables occurring in {t1, . . . , tm},
then θ is idempotent, i.e., E(θθ) = Eθ, iff V ∩ {x1, . . . , xm} = ∅.

Note that the last definition gives us a means for replacing two substitutions by a single
one, being the composition of these substitutions. However, it is not always necessary to
actually compute the composition of two subsequent substitutions σ and θ before applying
them to an expression E: it can easily be proven that E(σθ) = (Eσ)θ. The proof of this
property is left to the reader as an exercise (see Exercise 2.11); here, we merely give an
example.

EXAMPLE A.25

Consider the expression E = Q(x, f(y), g(z, x)) and the two substitutions
σ = {f(y)/x, z/y} and θ = {a/x, b/y, y/z}. We compute the composition σθ of σ and
θ: σθ = {f(b)/x, y/z}. Application of the compound substitution σθ to E yields the
instance E(σθ) = Q(f(b), f(y), g(y, f(b))). We now compare this instance with (Eσ)θ.
We first apply σ to E, resulting in Eσ = Q(f(y), f(z), g(z, f(y))). Subsequently, we
apply θ to Eσ and obtain the instance (Eσ)θ = Q(f(b), f(y), g(y, f(b))). So, for the
given expression and substitutions, we have E(σθ) = (Eσ)θ.

In propositional logic, a resolvent of two parent clauses containing complementary literals,
such as P and ¬P , was obtained by taking the disjunction of these clauses after cancelling
out such a pair of complementary literals. It was easy to check for complementary literals
in this case, since we only had to verify equality of the propositional atoms in the chosen
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literals and the presence of a negation in exactly one of them. Now, suppose that we want
to compare the two literals ¬P (x) and P (a) occurring in two different clauses in first-order
predicate logic. These two literals are ‘almost’ complementary. However, the first literal
contains a variable as an argument of its predicate symbol, whereas the second one contains
a constant. It is here where substitution comes in. Note that substitution can be applied to
make expressions syntactically equal. Moreover, the substitution which is required to obtain
syntactic equality of two given expressions also indicates the difference between the two. If
we apply the substitution {a/x} to the example above, we obtain syntactic equality of the
two atoms P (x) and P (a). So, the two literals ¬P (x) and P (a) become complementary after
substitution.

The unification algorithm is a general method for comparing expressions; the algorithm
computes, if possible, the substitution that is needed to make the given expressions syntacti-
cally equal. Before we discuss the algorithm, we introduce some new notions.

Definition A.24 A substitution σ is called a unifier of a given set of expressions {E1, . . . , Em}
if E1σ = · · · = Emσ,m ≥ 2. A set of expressions is called unifiable if it has a unifier.

Definition A.25 A unifier θ of a unifiable set of expressions E = {E1, . . . , Em}, m ≥ 2, is
said to be a most general unifier (mgu) if for each unifier σ of E there exists a substitution λ
such that σ = θλ.

A set of expressions may have more than one most general unifier; however, a most general
unifier is unique but for a renaming of the variables.

EXAMPLE A.26

Consider the set of expressions {R(x, f(a, g(y))), R(b, f(z,w))}. Some possible unifiers
of this set are σ1 = {b/x, a/z, g(c)/w, c/y}, σ2 = {b/x, a/z, f(a)/y, g(f(a))/w} and σ3 =
{b/x, a/z, g(y)/w}. The last unifier is also a most general unifier: by the composition
of this unifier with the substitution {c/y} we get σ1; the second unifier is obtained by
the composition of σ3 with {f(a)/y}.

The unification algorithm, more precisely, is a method for constructing a most general unifier
of a finite, non-empty set of expressions. The algorithm considered in this book operates in
the following manner. First, the left-most subexpressions in which the given expressions differ
is computed. Their difference is placed in a set, called the disagreement set. Based on this
disagreement set a (‘most general’) substitution is computed, which is subsequently applied
to the given expressions, yielding a partial or total equality. If no such substitution exists,
the algorithm terminates with the message that the expressions are not unifiable. Otherwise,
the procedure proceeds until each element within each of the expressions has been processed.
It can be proven that the algorithm either terminates with a failure message or with a most
general unifier of the finite, unifiable set of expressions.

EXAMPLE A.27

Consider the following set of expressions:

S = {Q(x, f(a), y), Q(x, z, c), Q(x, f(a), c)}
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The left-most subexpression in which the three expressions differ is in the second argu-
ment of the predicate symbol Q. So, the first disagreement set is {f(a), z}. By means of
the substitution {f(a)/z} the subexpressions in the second argument position are made
equal. The next disagreement set is {y, c}. By means of the substitution {c/y} these
subexpressions are also equalized. The final result returned by the unification algorithm
is the unifier {f(a)/z, c/y} of S. It can easily be seen that this unifier is a most general
one.

The following section shows an implementation of the unification algorithm. In the next
section we discuss the role of unification in resolution in first-order predicate logic.

A.6.2 Resolution

Now that we have dealt with the subjects of substitution and unification, we are ready for a
discussion of resolution in first-order predicate logic. We start with an informal introduction
to the subject by means of an example.

EXAMPLE A.28

Consider the following set of clauses:

{C1 = P (x) ∨Q(x), C2 = ¬P (f(y)) ∨R(y)}

As can be seen, the clauses C1 and C2 do not contain complementary literals. However,
the atoms P (x), occurring in C1, and P (f(y)), occurring in the literal ¬P (f(y)) in the
clause C2, are unifiable. For example, if we apply the substitution σ = {f(a)/x, a/y}
to {C1, C2}, we obtain the following set of instances:

{C1σ = P (f(a)) ∨Q(f(a)), C2σ = ¬P (f(a)) ∨R(a)}

The resulting instances C1σ and C2σ do contain complementary literals, namely P (f(a))
and ¬P (f(a)) respectively. As a consequence, we are now able to find a resolvent of
C1σ and C2σ, being the clause

C ′
3 = Q(f(a)) ∨R(a)

The resolution principle in first-order predicate logic makes use of the unification algorithm
for constructing a most general unifier of two suitable atoms; the subsequent application of the
resulting substitution to the literals containing the atoms, renders them complementary. In
the preceding example, the atoms P (x) and P (f(y)) have a most general unifier θ = {f(y)/x}.
The resolvent obtained after applying θ to C1 and C2, is

C3 = Q(f(y)) ∨R(y)

The clause C ′
3 from the previous example is an instance of C3, the so-called most general

clause: if we apply the substitution {a/y} to C3, we obtain the clause C ′
3.

It should be noted that it is necessary to rename different variables having the same
name in both parent clauses before applying resolution, since the version of the unification
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algorithm discussed in the previous section is not capable of distinguishing between equally
named variables actually being the same variable, and equally named variables being different
variables because of their occurrence in different clauses.

EXAMPLE A.29

Consider the atoms Q(x, y) and Q(x, f(y)) occurring in two different clauses. In this
form our unification algorithm reports failure in unifying these atoms (due to the occur
check). We rename the variables x and y in Q(x, f(y)) to u and v respectively, thus
obtaining the atom Q(u, f(v)). Now, if we apply the unification algorithm again to com-
pute a most general unifier of {Q(u, f(v)), Q(x, y)}, it will come up with the (correct)
substitution σ = {u/x, f(v)/y}.

We already mentioned in Section 2.3 that the meaning of a formula is left unchanged by
renaming variables. We furthermore recall that formulas only differing in the names of their
(bound) variables are called variants.

From the examples presented so far, it should be clear by now that resolution in first-order
predicate logic is quite similar to resolution in propositional logic: literals are cancelled out
from clauses, thus generating new clauses. From now on, cancelling out a literal L from a
clause C will be denoted by C\L.

Definition A.26 Consider the parent clauses C1 and C2, respectively containing the literals
L1 and L2. If L1 and ¬L2 have a most general unifier σ, then the clause (C1σ\L1σ) ∨
(C2σ\L2σ) is called a binary resolvent of C1 and C2. Resolution in which each resolvent is a
binary resolvent, is known as binary resolution.

A pair of clauses may have more than one resolvent, since they may contain more than one
pair of complementary literals. Moreover, not every resolvent is necessarily a binary resolvent:
there are more general ways for obtaining a resolvent. Before giving a more general definition
of a resolvent, we introduce the notion of a factor.

Definition A.27 If two or more literals in a clause C have a most general unifier σ, then
the clause Cσ is said to be a factor of C.

EXAMPLE A.30

Consider the following clause:

C = P (g(x), h(y)) ∨Q(z) ∨ P (w, h(a))

The literals P (g(x), h(y)) and P (w, h(a)) in C have a most general unifier σ = {g(x)/w,
a/y}. So,

Cσ = P (g(x), h(a)) ∨Q(z) ∨ P (g(x), h(a)) = P (g(x), h(a)) ∨Q(z)

is a factor of C. Note that one duplicate literal P (g(x), h(a)) has been removed from
Cσ.

The generalized form of resolution makes it possible to cancel out more than one literal from
one or both of the parent clauses by first computing a factor of one or both of these clauses.

EXAMPLE A.31
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Consider the following set of clauses:

{C1 = P (x) ∨ P (f(y)) ∨R(y), C2 = ¬P (f(a)) ∨ ¬R(g(z))}

In the clause C1 the two literals P (x) and P (f(y)) have a most general unifier σ =
{f(y)/x}. If we apply this substitution σ to the clause C1, then one of these literals
can be removed:

(P (x) ∨ P (f(y)) ∨R(y))σ = P (f(y)) ∨ P (f(y)) ∨R(y)

= P (f(y)) ∨R(y)

The result is a factor of C1. The literal P (f(y)) in C1σ can now be unified with the
atom P (f(a)) in the literal ¬P (f(a)) occurring in C2, using the substitution {a/y}. We
obtain the resolvent

C3 = R(a) ∨ ¬R(g(z))

Note that a total of three literals has been removed from C1 and C2. The reader can
easily verify that there are several other resolvents from the same parent clauses:

• By taking L1 = P (x) and L2 = ¬P (f(a)) we get the resolvent P (f(y)) ∨ R(y) ∨
¬R(g(z));

• Taking L1 = P (f(y)) and L2 = ¬P (f(a)) results in the resolvent P (x) ∨ R(a) ∨
¬R(g(z));

• By taking L1 = R(y) and L2 = ¬R(g(z)) we obtain P (x)∨P (f(g(z)))∨¬P (f(a)).

We now give the generalized definition of a resolvent in which the notion of a factor is incor-
porated.

Definition A.28 A resolvent of the parent clauses C1 and C2 is one of the following binary
resolvents:

(1) A binary resolvent of C1 and C2;

(2) A binary resolvent of C1 and a factor of C2;

(3) A binary resolvent of a factor of C1 and C2;

(4) A binary resolvent of a factor of C1 and a factor of C2.

The most frequent application of resolution is refutation: the derivation of the empty clause �

from a given set of clauses. The following procedure gives the general outline of this resolution
algorithm.

procedure Resolution(S)
clauses ← S;
while � 6∈ clauses do

{ci, cj} ← SelectResolvable(clauses);
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resolvent ← Resolve(ci, cj);
clauses ← clauses ∪ {resolvent}

od

end

This algorithm is non-deterministic. The selection of parent clauses ci and cj can be done in
many ways; how it is to be done has not been specified in the algorithm. Several different
strategies have been described in the literature, each of them prescribing an unambiguous
way of choosing parent clauses from the clause set. Such strategies are called the control
strategies of resolution or resolution strategies. Several of these resolution strategies offer
particularly efficient algorithms for making computer-based theorem proving feasible. Some
well-known strategies are: semantic resolution, which was developed by J.R. Slagle in 1967,
hyperresolution developed by J.A. Robinson in 1965, and various forms of linear resolution,
such as SLD resolution, in the development of which R.A. Kowalski played an eminent role.
At present, SLD resolution in particular is a strategy of major interest, because of its relation
to the programming language Prolog.

A.7 Resolution strategies

Most of the basic principles of resolution have been discussed in the previous section. However,
one particular matter, namely the efficiency of the resolution algorithm, has not explicitly
been dealt with as yet. It is needless to say that the subject of efficiency is an important one
for automated reasoning.

Unfortunately, the general refutation procedure introduced in Section A.6.3 is quite in-
efficient, since in many cases it will generate a large number of redundant clauses, that is,
clauses not contributing to the derivation of the empty clause.

EXAMPLE A.32

Consider the following set of clauses:

S = {P,¬P ∨Q,¬P ∨ ¬Q ∨R,¬R}

To simplify referring to them, the clauses are numbered as follows:

(1) P

(2) ¬P ∨Q

(3) ¬P ∨ ¬Q ∨R

(4) ¬R

If we apply the resolution principle by systematically generating all resolvents, without
utilizing a more specific strategy in choosing parent clauses, the following resolvents are
successively added to S:

(5) Q (using 1 and 2)

(6) ¬Q ∨R (using 1 and 3)

(7) ¬P ∨R (using 2 and 3)
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(8) ¬P ∨ ¬Q (using 3 and 4)

(9) R (using 1 and 7)

(10) ¬Q (using 1 and 8)

(11) ¬P ∨R (using 2 and 6)

(12) ¬P (using 2 and 8)

(13) ¬P ∨R (using 3 and 5)

(14) ¬Q (using 4 and 6)

(15) ¬P (using 4 and 7)

(16) R (using 5 and 6)

(17) ¬P (using 5 and 8)

(18) R (using 1 and 11)

(19) � (using 1 and 12)

This derivation of the empty clause � from S has been depicted in Figure A.3 by means
of a derivation graph. As can be seen, by systematically generating all resolvents in a
straightforward manner, fifteen of them were obtained, while, for instance, taking the
two resolvents

(5′) ¬P ∨R (using 2 and 3)

(6′) R (using 1 and 5′)

would lead directly to the derivation of the empty clause:

(7′) � (using 4 and 6′)

In the latter refutation, significantly less resolvents were generated.

The main goal of applying a resolution strategy is to restrict the number of redundant clauses
generated in the process of resolution. This improvement in efficiency is achieved by incor-
porating particular algorithmic refinements in the resolution principle.

A.8 Applying logic for building intelligent systems

In the preceding sections, much space has been devoted to the many technical details of
knowledge representation and automated reasoning using logic. In the present section, we
shall indicate how logic can actually be used for building a logic-based intelligent system. As
logic offers suitable basis for model-based systems, more about the use of logic in the context
of intelligent systems will said in Chapter 6.

In the foregoing, we have seen that propositional logic offers rather limited expressiveness,
which in fact is too limited for most real-life applications. First-order predicate logic offers
much more expressive power, but that alone does not yet render the formalism suitable for
building intelligent systems. There are some problems: any automated reasoning method
for full first-order logic is doomed to have a worst-case time complexity at least as bad as
that of checking satisfiability in propositional logic, which is known to be NP-complete (this
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Q

R

R �

¬Q ¬P∨R ¬P ¬P∨R ¬Q ¬P R ¬P

¬Q ∨R ¬P ∨R ¬P ∨ ¬Q

¬P ∨Q ¬P ∨ ¬Q ∨R ¬RP

Figure A.3: Refutation of {P,¬P ∨Q,¬P ∨ ¬Q ∨R,¬R}.

means that no one has been able to come up with a better deterministic algorithm than an
exponentially time-bounded one, although it has not been proven that better ones do not
exist). Furthermore, we know that first-order predicate logic is undecidable; so, it is not
even sure that an algorithm for checking satisfiability will actually terminate. Fortunately,
the circumstances are not always as bad as that. A worst-case characterization seldom gives
a realistic indication of the time an algorithm generally will spend on solving an arbitrary
problem. Moreover, several suitable syntactic restrictions on first-order formulas have been
formulated from which a substantial improvement of the time complexity of the algorithm is
obtained; the Horn clause format we have paid attention to is one such restriction.

Since syntactic restrictions are only acceptable as far as permitted by a problem domain,
we consider some examples, such as the logical circuit introduced in Chapter 1. However, first
we discuss special standard predicates that are often used in modelling practical applications.

A.8.1 Reasoning with equality and ordering predicates

The special binary predicate symbols > (ordering predicate) and = equality predicate are
normally specified in infix position, since this is normal mathematical practice. Both equality
and the ordering predicates have a special meaning, which is described by means of a collection
of axioms. The meaning of the equality predicate is defined by means of the following four
axioms:

E1 (reflexivity): ∀x(x = x)

E2 (symmetry): ∀x∀y(x = y → y = x)

E3 (transitivity): ∀x∀y∀z(x = y ∧ y = z → x = z)
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E4 (substitutivity): ∀x1 . . . ∀xn∀y1 . . . ∀yn((x1 = y1 ∧ . . . ∧ xn = yn) → f(x1, . . . , xn) =
f(y1, . . . , yn)), and ∀x1 . . . ∀xn∀y1 . . . ∀yn((x1 = y1 ∧ . . . ∧ xn = yn ∧ P (x1, . . . , xn)) →
P (y1, . . . , yn))

Axiom E1 states that each term in the domain of discourse is equal to itself; axiom E2

expresses that the order of the arguments of the equality predicate is irrelevant. Axiom E3

furthermore states that two terms which are equal to some common term, are equal to each
other. Note that axiom E2 follows from the axioms E1 and E3; nevertheless, it is usually
mentioned explicitly. The three axioms E1, E2 and E3 together imply that equality is an
equivalence relation. Addition of axiom E4 renders it a congruence relation. The first part
of axiom E4 states that equality is preserved under the application of a function; the second
part expresses that equal terms may be substituted for each other in formulas.

EXAMPLE A.33

Consider the following set of clauses S:

S = {¬P (f(x), y) ∨Q(x, x), P (f(a), a), a = b}

Suppose that, in addition, we have the equality axioms. If we add the clause ¬Q(b, b) to
S, the resulting set of clauses will be unsatisfiable. This can easily be seen informally as
follows: we have P (f(a), a) ≡ P (f(b), a) using the given clause a = b and the equality
axiom E4. Now, we replace the atom P (f(a), a) by the equivalent atom P (f(b), a) and
apply binary resolution.

The explicit addition of the equality axioms to the other formulas in a knowledge base suffices
for rendering equality available for use in an intelligent system. However, it is well known
that proving theorems in the presence of the equality axioms can be very inefficient, since
many redundant clauses may be generated using resolution. Again, several refinements of the
(extended) resolution principle have been developed to overcome the inefficiency problem. For
dealing with equality, the resolution principle has for example been extended with an extra
inference rule: paramodulation. Informally speaking, the principle of paramodulation is the
following: if clause C contains a term t and if we have a clause t = s, then derive a clause by
substituting s for a single occurrence of t in C. Therefore, in practical realizations equality is
often only present implicitly in the knowledge base, that is, it is used as a ‘built-in’ predicate.

Another, more restrictive way to deal with equality is demodulation, which adds direc-
tionality to equality, meaning that one side of the equality may be replaces (rewitten) by the
other side, but not the other way around.

Definition A.29 A demodulator is a positive unit clause with equality predicate of the form
(l = r), where l and r are terms. Let C ∨ Lt a clause; where Lt indicates that the literal L
contains the term t. Let σ be a substitution such that lσ = t, then demodulatie is defined as
the inference rule:

C ∨ Lt, (l = r)

C ∨ Lt→rσ

where Lt→rσ indicates that term t is rewritten to rσ.
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Thus a demodulator (l = r) can be interpreted as a rewrite rule l → r with a particular
orientation (here from left to right).

EXAMPLE A.34

Consider the demodulator

(brother (father (x)) = uncle(x))

and the clause

(age(brother (father (John))) = 55)

Application of the demodulator yields

(age(uncle(John)) = 55)

The applied substitution was σ = {Jan/x}.

In many real-life applications, a universally quantified variable ranges over a finite domain
D = {ci | i = 1, . . . , n, n ≥ 0}. The following property usually is satisfied: ∀x(x = c1 ∨ x =
c2 ∨ . . . ∨ x = cn), with ci 6= cj if i 6= j. This property is known as the unique names
assumption; from this assumption we have that objects with different names are different.

EXAMPLE A.35

Consider the following set of clauses S:

S = {¬P (x) ∨ x = a}

We suppose that the equality axioms as well as the unique name assumption hold. Now,
if we add the clause P (b) to S, we obtain an inconsistency, since the derivable clause
b = a contradicts with the unique name assumption.

The ordering predicates < and > define a total order on the set of real numbers. They express
the usual, mathematical ‘less than’ and ‘greater than’ binary relations between real numbers.
Their meaning is defined by means of the following axioms:

O1 (irreflexivity): ∀x¬(x < x))

O2 (antisymmetry): ∀x∀y(x < y → ¬(y < x))

O3 (transitivity): ∀x∀y∀z((x < y ∧ y < z)→ x < z)

O4 (trichonomy law): ∀x∀y((x < y ∨ x = y ∨ x > y)

Axiom O1 states that no term is less that itself; axiom O2 expresses that reversing the order of
the arguments of the predicate < reverses the meaning. Axiom O3 furthermore states that if
a term is less than some other term, and this term is less than a third term, then the first term
is less than the third one as well. Note that axiom O2 follows from O1 and O3. The axioms
O1, O2 and O3 concern the ordering predicate <. The axioms for the ordering predicate
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> are similar to these: we may just substitute > for < to obtain them. Axiom O4 states
that a given term is either less than, equal to or greater than another given term. Again, in
practical realizations, these axioms usually are not added explicitly to the knowledge base,
but are assumed to be present implicitly as ‘built-in’ predicates or as evaluable predicates,
that after it has been checked that all variables are instantiated to constants, are evaluated
as an expression, returning true or false.

Exercises

(A.1) Consider the interpretation v : PROP → {true , false} in propositional logic, which is
defined by v(P ) = false , v(Q) = true and v(R) = true. What is the truth value of the
formula ((¬P ) ∧Q) ∨ (P → (Q ∨R)) given this interpretation v?

(A.2) For each of the following formulas in propositional logic determine whether it is valid,
invalid, satisfiable, unsatisfiable or a combination of these, using truth tables:

(a) P ∨ (Q→ ¬P )

(b) P ∨ (¬P ∧Q ∧R)

(c) P → ¬P

(d) (P ∧ ¬Q) ∧ (¬P ∨Q)

(e) (P → Q)→ (Q→ P )

(A.3) Suppose that F1, . . . , Fn, n ≥ 1, and G are formulas in propositional logic, such that
the formula G is a logical consequence of {F1, . . . , Fn}. Construct the truth table of the
implication F1 ∧ · · · ∧ Fn → G. What do you call such a formula?

(A.4) Prove the following statements using the laws of equivalence for propositional logic:

(a) P → Q ≡ ¬P → ¬Q

(b) P → (Q→ R ≡ (P ∧Q)→ R

(c) (P ∧ ¬Q)→ R ≡ (P ∧ ¬R)→ Q

(d) P ∨ (¬Q ∨R) ≡ (¬P ∧Q)→ R

(A.5) Prove that the proposition ((P → Q) → P ) → P , known as Peirce’s law, is a tautol-
ogy, using the laws of equivalence in propositional logic and the property that for any
propositions π and φ, the formula π ∨ ¬φ ∨ φ is a tautology.

(A.6) In each of the following cases, we restrict ourselves to a form of propositional logic only
offering a limited set of logical connectives. Prove by means of the laws of equivalence
that every formula in full propositional logic can be translated into a formula only
containing the given connectives:

(a) the connectives ¬ and ∨.

(b) the connective | which is known as the Sheffer stroke; its meaning is defined by the
truth table given in Table A.6.
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Table A.6: Meaning of Sheffer stroke.
F G F |G
true true false
true false true
false true true
false false true

(A.7) Consider the following formula in first-order predicate logic: ∀x(P (x)∨Q(y)). Suppose
that the following structure

S = ({2, 3},∅, {A : {2, 3} → {true, false}, B : {2, 3} → {true, false})

is given. The predicates A and B are associated with the predicate symbols P and Q,
respectively. Now, define the predicates A and B, and a valuation v in such a way that
the given formula is satisfied in the given structure S and valuation v.

(A.8) Consider the following statements. If a statement is correct, then prove its correctness
using the laws of equivalence; if it is not correct, then give a counterexample.

(a) ∀xP (x) ≡ ¬∃x¬P (x)

(b) ∀x∃yP (x, y) ≡ ∀y∃xP (x, y)

(c) ∃x(P (x)→ Q(x)) ≡ ∀xP (x)→ ∃xQ(x)

(d) ∀x(P (x) ∨Q(x)) ≡ ∀xP (x) ∨ ∀xQ(x)

(A.9) Transform the following formulas into the clausal form of logic:

(a) ∀x∀y∃z(P (z, y) ∧ (¬P (x, z)→ Q(x, y)))

(b) ∃x(P (x)→ Q(x)) ∧ ∀x(Q(x)→ R(x)) ∧ P (a)

(c) ∀x(∃y(P (y) ∧R(x, y))→ ∃y(Q(y) ∧R(x, y)))

(A.10) For each of the following sets of clauses, determine whether or not it is satisfiable. If
a given set is unsatisfiable, then give a refutation of the set using binary resolution;
otherwise give an interpretation satisfying it:

(a) {¬P ∨Q,P ∨ ¬R,¬Q,¬R}

(b) {¬P ∨Q ∨R,¬Q ∨ S,P ∨ S,¬R,¬S}

(c) {P ∨Q,¬P ∨Q,P ∨ ¬Q,¬P ∨ ¬Q}

(d) {P ∨ ¬Q,Q ∨R ∨ ¬P,Q ∨ P,¬P}

(A.11) Let E be an expression and let σ and θ be substitutions. Prove that E(σθ) = (Eσ)θ.

(A.12) For each of the following sets of expressions, determine whether or not it is unifiable. If
a given set if unifiable, then compute a most general unifier:

(a) {P (a, x, f(x)), P (x, y, x)}

(b) {P (x, f(y), y), P (w, z, g(a, b))}

(c) {P (x, z, y), P (x, z, x), P (a, x, x)}
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(d) {P (z, f(x), b), P (x, f(a), b), P (g(x), f(a), y)}

(A.13) Use binary resolution to show that each one of the following sets of clauses is unsatisfi-
able:

(a) {P (x, y) ∨Q(a, f(y)) ∨ P (a, g(z)),¬P (a, g(x)) ∨Q(a, f(g(b))),¬Q(x, y)}

(b) {append (nil , x, x), append (cons(x, y), z, cons(x, u)) ∨ ¬append(y, z, u),
¬append(cons(1, cons(2,nil )), cons(3,nil ), x)}

(c) {R(x, x), R(x, y) ∨ ¬R(y, x), R(x, y) ∨ ¬R(x, z) ∨ ¬R(z, y), R(a, b),¬R(b, a)}

Remark. The first three clauses in exercise (c) define an equivalence relation.

(A.14) Consider the set of clauses {¬P,P ∨Q,¬Q,R}. We employ the set-of-support resolution
strategy. Why do we not achieve a refutation if we set the set of support initially to the
clause R?

(A.15) Develop a logic knowledge base for a problem domain you are familiar with.


