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Abstract

GitHub is currently the largest and most utilised open-source repository
hosting platform with integrated Git version control, CI/CD pipelines, AI
auto-completion and task management. Because of GitHub’s scale and
importance in the developer community, discovering what makes GitHub
repositories popular is crucial in understanding the expectations of the pro-
gramming world. Multiple studies have been conducted on the topic but
they fail to encompass some GitHub features that may relate to repository
popularity, they do not discuss all effects releases have on the number of
stars, nor do they explore the importance of these features in predicting the
number of stars. This thesis aims to find out what gives rise to popularity
in GitHub projects, by answering several questions: How can popularity be
quantised in GitHub? What features influence repository popularity posi-
tively? What are the possible repository growth patterns and to what extent
releases impact weekly star growth? Can we accurately predict the number
of stars of a GitHub repository in a certain week? What are the features
that impacted the predictions the most? It was decided that popularity
should be measured by the number of stars a repository has. The corre-
lation analysis chapter unfolded by proving that forks, watchers and other
features influence the popularity of a repository whereas the number of com-
mits and the ratio between closed and all issues do not. Multiple repository
growth patterns have been found, among which fast initial growing reposito-
ries which then dimmed down, constant growing, and late growing projects.
Releases impact the number of stars in a week by either being on a spike
in the week of the release, a spike follows several weeks after a release, con-
stant growth and even a decrease as no project can maintain a perennial
increase in stars. Popularity prediction tried 3 machine learning algorithms:
Multiple Linear Regression, Neural Networks, Random Forests and 2 inputs
to the models (one with releases and one without) which proved to be inac-
curate in predicting stars per week due to insufficient data, and due to the
unpredictability of GitHub repository growth. A neural network with the
input without releases performed best overall at individual predictions, but
the neural networks with releases in the input had better overall predictions.
The most important features in the predictions were the number of stars in
the week before the prediction, the programming language, the number of
stars 3 weeks before the prediction, the type of release in the week before
the prediction and the type of license.
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Chapter 1

Introduction

Open Source Software [13] has been gaining a lot of momentum over
time (40 million users in 2019, 92 million users in 2024, set to become 100
million by 2025) with advanced applications that allow developers to share
their code on remote repositories, have version control systems and issue
trackers. GitHub [3] is a web-based platform that provides hosting for ver-
sion control and collaboration, allowing users to work together on projects
from anywhere. It utilizes Git [3][20], a distributed version control system,
to enable multiple users to track changes in source code during software de-
velopment. The amount of features and the versatility of GitHub makes it
the most popular remote repository hosting platform, and with the advent of
AI (GitHub Copilot) [23] and CI/CD pipelines automation and productivity
have never been greater. As GitHub is so widely used in the programming
community, a user feedback system had to be put in place [6].

Starring a repository functions more or less like a bookmark, after which
you can view the repository on the ”starred repositories” list in GitHub.
After starring a repository, other projects on similar topics will be recom-
mended to you. It has been studied that the majority of developers in
GitHub star projects so they can look at them later and a smaller percent-
age that are currently or have used the starred repositories [5]. Thus, by
looking at the number of stars in relation to other repositories, the project
can be viewed as more or less popular, with the majority of developers us-
ing a project with a considerable amount of stars as opposed to one with
fewer [5]. This is because developers want to make sure that the project
is maintained, and the number of stars is an assurance to the developers
working on the project that what they are working on is well received and
still matters to the community. There are multiple other GitHub repository

3



attributes that are related to the popularity and these are:

1. the number of forks, with a fork being a repository which points to the
original repository (the owner of the forked repository has read permis-
sions of all forks), and is made with the intent of working on it locally
until submitting a pull request to the repository owner (submitting
the changes made in the fork).

2. current number of watchers, which correspond to all the people that
are notified of all changes of a repository, i.e. commits, issues being
created etc.

3. The dependency graph (How many projects use a particular project)

4. External references (other mentions of the project in social media,
blogs etc.)

and many others.

Because the popularity of a repository indicates how used and how rel-
evant it is, it is essential to find out what gives rise to it.

1.1 Problem statement

Objective repository popularity, which can be measured by the feedback
received from users via stars [4][5][6][15], forks [1], watchers [6], frequency
of utilisation [6] etc., is what ultimately decides whether a repository is suc-
cessful or not [4][5][6]. However, the limited amount of studies regarding this
topic have not included some variables that may relate to the popularity of
a Github repository, have not researched all the effects releases may have
on the number of stars and have not discussed and validated the impact
of variables in predicting the number of stars over time. This thesis aims
to find which GitHub features correlate with a repository’s popularity, to
what extent releases impact popularity and whether predicting the number
of stars of a GitHub repository is feasible given only data mined through the
GitHub API. The research question that we aim to answer in this research
paper is: ”What are the GitHub repository attributes that influence their
popularity?”. The research question is broken down into multiple subques-
tions which will be answered sequentially in the methodology chapter. The
subquestions are:
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Q1: How is the popularity of a repository quantised? (What is an
appropriate metric for measuring repository’s popularity?)

Q2: How do set features like programming languages used, type of li-
cense, type of owner (user/organisation) influence the metric explained
after answering Q1?

Q3: Do Git and GitHub factors like the nr. of commits, nr. of forks,
nr. of watchers, ratio between closed and total issues influence the
popularity of a project (number of stars)?

Q4: What are the possible growth patterns and how do releases im-
pact the number of stars?

Q5: Can we accurately predict the number of stars in a certain week?
What are the features used for the input of the models? What are the
features that impacted the prediction the most?

The research question and subquestions will all be answered during the
Methodology/Results/Discussion sections.

1.2 Motivation

Popularity is defined by the attention and the appreciation that an objec-
t/idea/place/person receives. Finding what is popular and how that some-
thing got popular can give you insights into how to design new items that
are popular, or maybe exploit that item. In Software Development, projects
get the most attention by being available to the public, more explicitly by
being Open Source.

Open Source Software is the best way to make code accessible to ev-
eryone, because everyone can see your code, they can then learn about the
insides of it and they can even contribute if you accept, which may end up
in boosting the project even more. The popularity of Open Source Software,
especially in Github which is the topic of this thesis, stems from usefulness,
ease of use and the users’ opinion of the software. There is no doubt that
people have been asking: ’What do I have to do to make my repository
more popular on Github?’. Intuitive responses to this question are: clean
code, usefulness, uses of trendy programming languages and topics. While
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of course, these are all true, an in depth analysis of what are the features of
a Github repository that lead to its success is needed to reveal true insights.

Finding a definitive answer to what brings success to a GitHub repository
seems unlikely as there may be multiple ways to approach this problem.
However, uncovering relationships between different GitHub features and a
repository’s popularity will provide an appropriate guide or framework for
developers as to what their GitHub behaviour should be like if they would
like to attract more followers. This could range between changing the type
of license for a more permissive use, the frequency and magnitude of the
releases and so on. Another reason for making this project is to build on
top of the Mining Software Repository (MSR) literature and for this work
to be used in subsequent works in the field.
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Chapter 2

Background

2.1 Git & Github

Git is an open source version control system, with which one can make
checkpoints of projects, revert back to different versions of a project and
look at differences between files of different versions [20]. It has grown in
adoption with the appearance of GitHub, which is a website which allows
repositories (projects) to be hosted on the platform, and also has a UI with
which the user can perform tasks that could be produced within the CLI
with Git on the local machine.

In order for Git to be used in the version control of a project, the user
needs to type in ’git init’, which essentially ’allows’ the directory in which
they are working to be tracked by Git. There are 3 ’areas’ in which a project
can be with Git: modified, staged and commited. The modified area is rep-
resented by files that have been changed but have not told git to put any
of these files in a new version, the staged area represents files which Git
will put into the new version, and the commited area which relates to the
files from the staged area that have been already assigned a new version.
The project enters the staging area when the user runs ’git add file1 file2
... fileX’, which tells git to put all of the files mentioned after ’add’ to the
staging area. Commiting is done by running ’git commit -m ”any commit
message”’. Commits are all identifiable by hashes which are codified repre-
sentations of the contents of the commits. The powerful idea behind Git is
that because all of the commits are stored locally, one can simply go back
to a previous commit if something goes horribly wrong with ’git checkout
commitHash’, where commitHash is the 20 character long SHA-1 hash of the
commit. Another very important feature of Git is branching, which allows
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the user to ’branch out’ of the main commit tree, and work on a completely
separate versions with probably other features. This is best shown in Figure
1, where branch 2 is a branch made starting from the first commit in the
main branch, and branch 3 is a branch made from the 3rd commit in the
main branch.

Figure 1. Git branching

Creating a branch is done by running ’git branch branchName’, and
moving to that branch is done with ’git checkout branchName’. This tells
git that from now on the commits will happen on the branch ’branchName’.
What was discussed so far are the basics of Git. The true power of Git
comes from its synergy with GitHub. Because GitHub has the projects
stored somewhere, that means we can get them locally. Git clone repoUrl
essentially gets the entire repository with the url repoUrl from GitHub onto
the local machine. Linking a remote GitHub repository to the local machine
is also very handy as that is how you can get access to the whole project,
including different branches that other people have made to the project on
GitHub. Also essential are ’git fetch’ and ’git pull’, which given a branch
that the user is on it fetches and gets all of the newest changes from a branch
in GitHub to the local machine, and git push which pushes the contents of
a branch you are on in the linked remote repository or local machine onto
GitHub (if the pull request is accepted, i.e. the code you just pushed, then if
the branch existed only the code is changed, and if the branch didn’t exist,
GitHub will also create the branch alongside all of the code.

GitHub presents numerous metrics and features which allows the de-
velopers to understand developer satisfaction with the project, make tasks,
view tasks and assign developer tasks, see pull requests etc. The main page
of a repository looks like Figure 2.
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Figure 2. Example repository UI - VueJS repository

The main GitHub repository UI has multiple features, but we will discuss
only the basics. The file system of the project is visible in the middle. Tasks
can be visualised by clicking issues and pull requests as well. Branches can
be visualised by clicking on the button on the left above the code that has
’main’ written on it. After you choose a branch the file system of the branch
is then shown on the UI. One can get the url of the project by clicking on the
Code button and taking the url that comes from the https version. With
that url you can clone the repository as discussed previously. Important
features that will come up in the research will be the stars, watchers and
forks, which are all done by viewers of the repository appear on the right
middle, alongside with the license of the repository and below the current
release of the repository. Previously mentioned in the introduction, stars
act as bookmarks of projects, with users being able to visualise the projects
later in a list of all their starred repositories. Forks are repositories linked to
the original repositories, to which the forker can later submit a pull request
to change the code with their code. The owner of the original repository
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can also see all the forked repositories. Watchers in GitHub are people that
are notified of every change that happens to a repository. This includes
commits, pull requests, branches made etc. The release system in GitHub
is largely ubiquitous, with almost all repositories following the convention
of x.y.z, with x - major release, y - minor release, z - bug fix. Licenses in
GitHub tell the users what they are allowed to do with the code. There
are permissive licenses and more limiting ones. Permissive licenses such as
the MIT License allow the developer to use the code, and can make money
from software distributed which uses that particular repository as a library.
Limiting licenses such as GNU General Public which allows users to use the
code, but the project must be open sourced.

2.2 Correlation analysis

Correlation analysis denotes finding the strength of the relationship be-
tween 2 variables. More specifically, one variable is correlated to another if
a change in the first variable prompts a change in the second variable. In
statistics, there are 3 types of correlation: positive correlation, negative cor-
relation and no correlation. Positive correlation signifies the degree of which
an increase in a variable determines an increase in the other variable. On
the other hand, negative correlation relates to the degree to which a decrease
in a variable amounts to an increase in the other. Zero correlation indicates
that there is no relationship between 2 variables. This is also depicted in
the plots from figure 3.

Figure 3. Types of correlation
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Figure 3 shows different types of correlations. The upper-left plot shows
the perfect positive correlation where every time variable x increases, vari-
able y also increases. The upper-right plot shows the perfect negative cor-
relation where an increase in a variable signals a decrease in the other. The
bottom 2 plots represent a positive and negative correlation of 0.6 respec-
tively where there is a margin of error of whether the change in a variable
will signal an increase or a decrease. The rightmost plot shows data which
has no correlation. The metric with which correlation will be calculated is
Pearson’s correlation coefficient.

ρx,y = cov(X,Y )
σx·σy

Equation 1. Pearson’s correlation coefficient

Cov(x, y) =

∑
(xi − x̄)(yi − ȳ)

N

Equation 2. Covariance formula

σx =

√∑
(xi − x̄)2

n− 1

Equation 3. Standard deviation
formula

The covariance from Equation 2. indicates the degree to which the 2
variables grow together. A high covariance means that the variables change
a lot relative to the mean and a low covariance shows that the variables do
not change that much. The standard deviation shows how far values tend
to be from the mean. The main metric used in the correlation analysis will
be Pearson’s coefficient, so we will solely refer to it from now on. Another
important tool needed in correlation analysis is statistical significance.

2.3 Statistical significance

Statistical significance is another test that must be applied to the data.
Significance refers to the claim that a result from data generated by test-
ing or experimentation is likely to be attributable to a specific cause. Due
to the data in this research having outliers, being left skewed (there are
more repositories with less stars), and having multiple groups of data being
analysed, the Kruskal-Wallis test is chosen. Kruskal-Wallis is a rank based
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approach that checks whether the medians are different across all groups. It
follows the formula:

H = (N − 1)
Σg

i=1ni(r̄i−r̄)2

Σi=1Σ
ni
j=1(rij−r̄)2

Equation 4. Kruskal-Wallis’ H formula

• N is the total number of observations across all groups

• g is the total number of groups

• ni is the number of observations in group i

• nij is the rank of observation j from group i

• r̄i is the mean rank of group i

• r̄ij is the mean rank of all groups

The degrees of freedom (df) in this case are the number of groups that we
are comparing - 1:

df = |G| − 1, where:

• |G| is the number of groups

.

Figure 4. Chi squared distribution with X degrees of freedom
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Because H follows the same distribution as χ2 (Figure 4.), we check
whether H is larger than the critical value, and if it is we reject the null
hypothesis and thus the medians are different. The critical value at the
significance level 0.05, signifies the x value is associated with a y value (the
x value matched with the dotted lines start in Figure 4.) where the area
under the graph on the right of the critical value is 0.05. The larger the
H value compared to the critical value, the more statistically significant
the result. Conversely, if H is smaller than the critical value, then it is
known that the groups come from the same sample, and thus the results are
statistically insignificant.

Another way to calculate the statistical significance is by using H to de-
rive a p-value, which is the probability of H to be larger or equal to itself.
This is done by calculating the area under the curve from H rightward. The
lower the p-value, the more statistically significant the result.

In this research, both Kruskal-Wallis and Mann-Whitney (the 2 group
alternative to Kruskal-Wallis) are used to calculate significance levels.
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2.4 Regression algorithms

This section will elaborate on how the techniques used in the predic-
tion of stars for Github repositories (Chapter 4.6) generally work. These
encompass:

1. Multiple linear regression

2. Neural Network regression

3. Random Forest regression

2.4.1 Regression

Regression is a supervised learning task where given multiple depen-
dant variables, a continuous variable is predicted. Supervised learning means
that given data for which the answer is known, the machine learning model
tweaks its parameters to minimise the errors between predicted and actual
values. Before model prediction, subdividing the dataset between training
and test set to train and test the model is done. There are multiple ways
one can subdivide the dataset but the most common approach is 80%/20%
or 75%/25%. Ensuring that the model has enough data to train is crucial
as the quality of the prediction is influenced by it, along with other factors
such as distribution and skewness of the data.

Time-series regression, represents predicting a continuous variable at
time t, given variables at times t − z, .., t − 2, t − 1. In this research, the
dependant variables are GitHub repository features such as programming
language, license type, number of contributors (to name a few) and variables
Xt−z, Xt−z+1, .., Xt−2, Xt−1, with Xt−z, Xt−z+1, ..Xt−2, Xt−1 being the val-
ues of variables at times t − z, .., t − 2, t − 1. These in conjunction are all
used to predict the value Xt.

2.4.2 (Multiple) linear regression

Linear regression is a supervised learning algorithm, which predicts a
continuous variable given another variable. This is done by approximating
the line that minimises the errors between the predicted values and actual
values. The line that results from this algorithm is also more commonly
known as ”the line of best fit”, as it best fits the data. The formula for the
line is the function:
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y = ax+ b

Equation 5. Linear regression

• x: dependent variable

• y: predicted variable

.
Multiple linear regression, as its name suggests, involves multiple

dependant variables that predict one variable. The function for this is:

y = a1X1 + a2X2 + a3X3 + ...+ an−1Xn−1 + anXn + b

Equation 6. Multiple linear regression equation

• X1, X2, ..Xn = dependant variables

• y = predicted variable

• b = constant factor

• a1, a2..an = constant factors

Similar to its 1 variable counterpart, multiple linear regression tweaks
the constant factors multiplied with the variables, to find the line that best
fits the data.
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2.4.3 Neural Network regression

Neural networks have proven to be an invaluable machine learning
algorithm in multiple areas. Their ability to understand non-linear patterns
and fit the data accordingly is the main reason they are used in complex
areas such as image recognition, regression and classification. A neural net-
work (Figure 5.), has as components:

Figure 5. An artificial neural network

1. Input layer, comprised of X neurons (depicted in green in Figure
6). This is the layer in which the dependant variables are encoded as
values (neurons). The output of this layer is connected to the input
of the next layer.

2. Output layer, made of Y neurons (depicted in red in Figure 6). This
is the layer which is represented by the predicted variable(s) (neurons).
The output of every neuron in the previous layer is connected with the
input of every neuron in this layer.

3. Hidden layer(s), which can have an arbitrary number of neurons
(The neural network in Figure 6 has 2 hidden layers depicted in yellow).
The input of every neuron in the hidden layer is connected to every
output of the preceding layer and the output of every neuron in the
hidden layer is connected to every input of the next layer.

16



The value of every neuron from the subsequent layer in the network fol-
lows the linear formula:

X
(L)
k = σ(Σn

i=0wikX
(L−1)
i + b

(L)
k )

Equation 7. Value of a neuron

The components of Equation 7 are:

• X
(L)
k - value of a neuron k on layer L

• w0k, w1k, .., wnk - weights attributed to links between neurons from
the previous layer and current neuron signifying the importance of a
previous neuron to the current one

• X
(L−1)
0 , X

(L−1)
1 , .., X

(L−1)
n - values of neurons from the previous layer

• bLk - bias term of neuron k of layer L

• σ - activation function (Can be a linear or non-linear function)

The most important aspect in the above function is the activation func-
tion, which can introduce non-linearity in the values of the neurons. This
allows the neural network to represent much more complicated relationships
than the linear regression seen before.

Neural networks learn by using backpropagation, a technique with
which the weights of every connection of neurons and biases are changed
to minimize the cost function. The cost function is usually Mean Squared
Error, seen in Equation 8, but it can be set to something different such as
Mean Absolute Error, Root Mean Squared Error etc.

MSE = 1
nΣ

n
i=1(yi − ŷi)

2

Equation 8. Mean squared error

The process of neural network training is the following:

For n batches perform:
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1. The forward pass. Given an input the value of every neuron is com-
puted by following Equation 7.

2. For every input in a batch perform (1)

3. After every batch perform backpropagation, a process in which
weights and biases are changed to minimise the cost function (in this
case MSE).

The Neural Networks used in the prediction of stars in Github repos-
itories in Chapter 4.6 have a number X of dependant variables (i.e. input
neurons), a variable number of hidden layers, number of neurons in the hid-
den layers and only one output neuron, the predicted number of stars.

2.4.4 Decision Trees

A decision tree is a machine learning model which makes a prediction
after following a series of decisions based on the values of features in the
dataset. An example of a decision tree would be:

Figure 6. Example Decision Tree

Figure 6 shows an example of a decision tree of predicting house prices based
on several features. The features of the dataset are used to split the data
so that the split gives the lowest variance, or in other words the splits give
the closest valued subsets. When a node split results in a pure split on one
end (in our case if the house doesn’t have a garden), in a regression decision
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tree the prediction is the mean of all training data points that had the same
decision outcomes. In our case, the decision outcomes are > 2 bedrooms
and has garden = no. If our training data consisted of 3 houses that have
gone through that decision trajectory, the mean of their price would be the
prediction of the next house to have the same decision splits. Thus, if those
houses were 70.000$, 80.000$ and 120.000$, the prediction would be the
mean of these prices, which is 90.000$. The same applies to all other nodes.

The tool with which a decision tree splits the node in the ”purest” sub-
sets in a regression task is called variance.

Variance

Variance is a measure of how much the values in a subset vary. In a re-
gression tree, the goal is to minimize the variance within each node, leading
to more accurate predictions. The variance σ of a set S can be calculated as:

σ2 = 1
|S|Σ

n
i=1(xi − x̄)2

Equation 9. Variance of a leaf node

where:

• σ2 = variance

• |S| = size of the subset

• xi = value of data point i

• x̄ = mean of all points from subset S

Decision trees choose the split with the lowest variance, i.e. the weighted
sum of the variances of the child nodes.

σ2
N = Σm

i=1
a
nσ

2
i

Equation 10. Variance of a node split
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• σ2
N = variance of a decision node n

• σ2
i = variance of a child node

• a = number of elements in child node

• n = number of elements in parent node

• m = number of classes (in regression only 2 with < or >=)

To understand how variance is used to best split a decision tree node we
will consider a small dataset of house prices and we will consider 2 splits,
one that minimises the variance of the split and one that does not.

m2 House Price

200 300.000 $
250 350.000 $
300 400.000 $
400 550.000 $
450 600.000 $

Table 1. House prices dataset

Figure 7. Decision tree splits: Split 1 minimises variance and split 2 is a
split that does not minimise variance.

By looking at figure 7, we see that the values in both parts of split 1
are closer together/have less variance than the values in split 2. This is
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preferred in regression as when predicting a value we want to be as close as
possible to the actual value. The calculations of the variance of split 1 and
split 2 are shown in appendix A.
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2.4.5 Random Forest regression

Random Forest is an ensemble learning algorithm, that is used for mul-
tiple tasks such as regression and classification. It combines the results of
multiple decision trees to arrive at a final result. In the case of regression,
the final outcome of the random forest for a prediction is the mean of all the
results of the decision trees that have had a similar decision path. Random
forest functions by taking a sample of a dataset by replacement and training
that subset on a tree, to reduce over-fitting. Sampling by replacement refers
to putting a data point in the dataset more than once.

Figure 8. Generic Random Forest Regression

Figure 8. shows the structure of a random forest, with the result of the
random forest being the mean of all predictions of the decision trees in the
forest.

It is essential to tweak the parameters of the random forest by providing
parameters like:

• maxDepth = the maximum depth of a decision tree in a Random
Forest,

• nrEstimators = the total number of decision trees in a Random Forest,
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• maxFeatures = the maximum number of features that a decision tree
can use to split nodes,

which can help in fitting the data just right.
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Chapter 3

Related Work

The topic discussed in this paper, evaluating a repository’s popularity
has been explored numerous times and from different perspectives. This
chapter is dedicated to explaining what others have done in the field and
some of the methods applied in the works discussed below are used in this
paper.

Borges et al., 2016 [4], conducted similar research to this paper and they
elaborate on the following factors as being proxies to popularity in Github.

1. programming language/application domain/repository owner

2. repository characterstics:

(a) age

(b) number of commits

(c) number of contributors

(d) number of forks

3. How early do repositories become popular?

4. impact of new features

They first conducted a correlation analysis of the repositories between
programming language, application domain and repository owner and stars
and they arrived at the conclusion that all of the aforementioned are indi-
cators of popularity. This is because popular programming languages make
the projects built in them more desirable to be viewed, application domain
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also depend on the current trend and it has been discovered that reposito-
ries of organisations have more stars than individuals. However, the mean
number of stars is not significantly higher for repositories built by organisa-
tions than for the ones built by users (37% for orgs and 33% for users). The
second step in their analysis was to uncover whether commits, forks, age and
contributors correlate to the number of stars. Apparently, age is not related
to the number of stars, commits and the number of contributors are weakly
related and the number of forks are greatly related. Furthermore, for most
repositories the biggest surge in popularity happens after the first release
and then gradually becomes constant (51% age - 50% stars, 91% age - 90%
stars). They also examined the impact of new features on the number of
stars. Only projects with versions x.y.z, with x = major release, y = minor
release, z = bug fix were considered and it follows that the highest spike in
popularity comes with major releases and medium growth is attributed to
minor releases. The last step in their paper involved a time series analy-
sis using the KSC algorithm on releases and how they influence popularity.
This experiment concluded in finding 4 types of projects in terms of pace
of growth. It appears that 65.7% of projects have slow growth (27.3% of
stars in one year), followed by 26.9% that have medium growth (96% stars
in one year), 5.7% have fast growth (469.2% stars/year) 1.9% have rampant
growth (2673% stars/year). They concluded that some programming lan-
guages have a higher growth spurt than others, organisations do not have a
significantly higher number of viral projects than individuals, and that older
projects tend to get smaller growth than newer projects.

Borges et al. conducted 2 more studies, [5] which uses Multiple Linear
Regression as an algorithm to predict the number of stars of the top 5000
repositories with at most 40K stars and by predicting the rank (where the
repository falls in the dataset in terms of number of stars) of repositories
that have been clustered based on a similar growth pattern using KSC.
and [6], which goes in-depth into what a GitHub star actually signifies, by
surveying developers that starred some repositories (1500 repositories), and
they concluded that a star means 3 things: starring is appreciation towards
a project, it is used as a bookmark, and some developers are starring because
they are using that repository.

A. Al-Rubaye et al. [3] discuss another measure of assessing popular-
ity on GitHub (WTPS), Weighted total popularity score, which involves a
weighted sum of the number of stars and the number of forks. With this
metric, the stars have a correlation of 0.925 and the forks have a correlation
of 0.726, which indicates that stars are better suited for assessing popular-
ity. They also experimented with making a graph of repositories and their
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followers, with the size of a node being the popularity measure (stars, forks,
WTPS, watchers) and seeing how fast the clustering coefficient is reduced
based on the deletion of the nodes in decreasing popularity order. Because
WTPS is more influenced by stars, WTPS and stars had lower clustering
coefficient after a number X of deletions than the other 2 metrics, which
indicates that they are more suited for assessing popularity.

Ren et al. [4] hypothesize that the influence of a stargazer based on their
number of followers also affects the number of stars of a repository. This is
intuitively correct because when someone you follow stars a repository, you
will most likely be recommended that repository. They calculate a user’s
influence using HFN (the number of followers a user has), the NDF (Network
Dynamic Factor) and the NSF (Network Static Factor). The user’s influence
at a certain point in time is calculated by a weighted sum of NDF and NSF,
where NDF is calculated by taking into account all nodes and links in the
network (developers are expected to have an effect on the followers of their
followers) and the NSF (only followers or a small area of followers of followers
is taken into account) is calculated by only taking into account an area of
the network in the vicinity of the target node. The researchers evaluated
StarIn with respect to the programming language and application type and
found out that regardless of the system and language, stargazer influence
does affect the overall popularity of a repository.

The study of Bidoki et al. [7] introduce the use of LSTM in predicting
GitHub stars over time. Because LSTMs are very good at remembering re-
lationships over time, they are favorable in time-series analyses. Also using
LSTM’s, Sahin et al. [6] attempted to predict stars, by first trying out stars
as input to predict stars x days later, where x ∈ {1,7,14,28} days, then trying
to predict whether repository data such as commits, nr of resolved issues,
forks, releases at different time intervals can predict stars x days later, where
x ∈ {1,7,14,28} days, and after that attempting to predict whether contribu-
tor activity such as commits, forks, stars, issues closed in an interval of time
can predict stars. The models that used the repository attributes as input
performed better than the ones that used developer attributes. Sajedi et al.
[5] emphasized that a large following does not necessarily equate to popular-
ity; instead, the frequency of content redistribution or repurposing is more
telling. Yan et al. [6] expanded on this idea by suggesting that a user’s influ-
ence is not only determined by their involvement in highly starred, forked,
or watched projects but also by their activity levels on GitHub, measured
through commits, issues, and discussions. Börstler et al. [7] investigates
developers’ perceptions of code quality and their experiences discussing it.
The study includes insights from developers using GitHub for code review
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and collaboration, highlighting how discussions around code quality impact
software development practices. Lastly, Ziegler et al. [14] conducted a case
study into how GitHub Copilot (the AI code auto-completion tool) has im-
pacted the productivity of developers. The findings indicate that using
GitHub Copilot enhances coding efficiency, reduces frustration, and allows
developers to focus on more enjoyable tasks.
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3.1 Comparison with related work

This thesis presents a structure similar to the study of Borges et al. [4],
in that it provides a correlation analysis on some same variables (program-
ming language, repository owner, forks, watchers), however, this study also
used additional features in that regard: license type and the ratio between
closed issues and all issues. Another similarity between this project and
the aforementioned paper lies in the analysis of growth over time. As differ-
ences, this study zoomed in on the effect of releases on the number of stars by
looking at separate repositories and identifying possible patterns that could
arise after and during releases, it provides a comparison between counting
the stars during the week with a release and 1 week after the release and
it uses different models when predicting the number of stars and different
inputs are tried on the models. In the popularity prediction section, it is
similar to the study of Sahin et al. [10], which also tries multiple inputs for
the machine learning model, however the inputs of this research’s models
differ only by either incorporating the type of releases for every week in the
last 3 weeks or not, which aimed to discover whether GitHub releases matter
in the number of stars gained by a repository per week. It also differs to
[10]’s study by the machine learning models used. All of the studies pre-
sented tried only one machine learning algorithm in predicting the number
of stars, while this research presented 3 different machine learning models.
Interestingly, none of the studies presented incorporate feature importance
in their research to validate the results of their machine learning models.
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Chapter 4

Research

This chapter delves into assessing the factors of the most popular reposi-
tories, correlating popularity with different factors, understanding repository
growth patterns, assessing the impact of releases on the number of stars and
popularity prediction. It provides a framework to how such an analysis is
conducted by completing the following steps:

1. After gathering the data, an outline of the main features of the dataset
is presented, i.e. the distribution of programming languages, number
of stars, forks, watchers, contributors and age.

2. Defining the popularity of a repository

3. Correlating repository attributes and popularity

4. Understand repository growth patterns

5. assess the impact of releases on the number of stars

6. Predicting the popularity of top GitHub projects with < 40K stars

4.1 Dataset

There are multiple frameworks for mining GitHub data, however, I dis-
covered that the best suited framework in this scenario is PyGithub, as it
is the most complete GitHub mining framework with Python support. Py-
Github contains all the necessary information about repositories, users and
others, but when gathering events such as star timestamps and fork times-
tamps, regular requests to the Github API are used. To begin with, the
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top 2690 most starred GitHub repositories have been gathered. The data
has been gathered in the span of 2 months, from March 2024 to May 2024.
The GitHub repositories’ overall data has first been mined which included
the number of stars at that point using PyGithub, after which all the stars
events were mined using the GitHub Events API based on the number of
stars the repositories had when they were first collected. The releases of
the projects are also gathered (also via the Events API) up until the day of
the last star (23 March 2024). Every repository in the dataset has all the
attributes from Table 1. In the growth, releases and time-series prediction
parts of the thesis, (Chapters 4.5, 4.6) repositories with > 40k stars are not
considered because of GitHub API limits (in the time-series analysis part
of the project, timestamps of star events are needed, which are provided by
GitHub API. However the API does not allow the user to get more than
400 pages of data, with every page containing at most 100 star events. This
then limits us to 2390 repositories with under 40000 stars). The dataset
gathered contains the following features:
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Dataset Features Explanation

Path
The owner and repository name

concatenated as ’OWNER/NAME’

Stars
The number of stars the repository received

at the time of retrieval

Forks
The number of forks the repository

has at the time of retrieval

Watchers
The number of people that subscribed to the repository
and will be notified by any change to the repository

Owner Type User or Organisation (Linus Torvalds / Facebook)

programming language most used programming language in the repository

license type the type of license of the repository

number of contributors how many developers actively worked on the repository

age the number of months since the repository’s inception

issues solved the number of tasks solved

total issues the total number of tasks created

releases
A list of all releases of the project of the form:

release name: x.y.z, timestamp: YYYY:MM:DD HH:MM:SS

Stars events
The stars events of the repository received

at the time of retrieval, of the form:
timestamp: YYYY-MM-DD HH-MM-SS

Table 2. Dataset features

This section will go over surface aspects of the dataset, i.e. attributes
which make us get an idea about what we should expect from the reposito-
ries, which include:

1. the distribution of programming language in the dataset

2. the distribution of age, forks, stars and watchers

3. number of contributors working on projects from the dataset

Programming language is intuitively a big influencer of popularity, as one
would assume that the most popular languages would have the most pop-
ular projects. When looking at the proportion of programming languages
(Figure 9) , the top 3 are clear winners: JavaScript, Python and TypeScript.
This is attributed to the popularity of the languages and also of frontend
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development.

Figure 9. Programming language frequency in the top 2690 most popular
repositories

The mid-field is represented by systems languages: with Go having 238
projects, Java having 180, C++ 159, Rust 101 and C at 89 projects. Go
has been gaining traction lately as one of the most popular systems lan-
guage with projects like Go repository, awesome-go - a list of Go frame-
works and libraries and Kubernetes the most used container orchestration
tool. Heavyweights like Java which is perfect for cloud computing and sys-
tems programming, C++ which is used from image and audio processing
to game development and machine learning, Rust which has been voted the
developer’s most loved language for the 8th year in a row because of its great
documentation, smart syntax and error handling and C should not be over-
looked as they are used in many more fields than the ”frontend” languages.
The bottom 2 languages used in the dataset are Shell and Jupyter notebook.
Shell is a popular scripting language and Jupyter notebook is mostly used
in Machine Learning projects, which is a very hot topic these days with the
surge of AI.
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Other aspects to consider when examining the dataset are the age of
a repository (in number of months), nr. of contributors, nr. of watch-
ers, nr. of forks, nr. of stars. Older repositories have many more re-
leases than more recent ones, which counts as possible stages where devel-
opers could have heard about them and thus are more likely to be popular.
The number of contributors can vary as there are very popular projects
like ’freeCodeCamp/freeCodeCamp’ with over 5000 contributors and
’facebook/react’ with 1600 contributors, but they can also have few con-
tributors: ’cloudflare/pingora’ with 8 contributors. Intuitively, successful
repositories have the most watchers, forks and stars.

Figure 10. Distribution of stars, forks, watchers and age of repositories of
the dataset.

As seen in Figure 10, the dataset contains repositories with stars ranging
from 11045 to 384890, forks ranging from 82 to 141563, watchers ranging
from 21 to 8499 and ages of repositories from 2 months to 192. The overall
statistics can also be seen in Table 3.
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Minimum 1st quartile Median 3rd quartile 95th percentile Maximum

Stars 11045 13527.5 17437 26128.5 59078.5 384890

Forks 82 1330 2410 4477.0 12438 141563

Watchers 21 200 357 627 1572.5 8499

Age (months) 2 64 94 120 159 192

Contributors 1 50 137 325 1167 20722

Table 3. Overall statistics of the repository

From Table 3 it is clear that the majority of projects contain 12500-27500
stars, 1000-5000 forks and 175 - 700 watchers, and that outliers (5% of the
dataset) happen above 59000 stars, 12438 forks, 1572 watchers. This indi-
cates the rareness of highly influential repositories. The number of stars is
the biggest indicator of popularity since that is how repositories get recom-
mended to other developers. However, forks are also closely tied to popular-
ity as they are repositories that are cloned from the original one and point to
the source project. If someone views the forked repository the chance they
look at the original are high and if he stars the fork he will also star the
original. Watchers on the other hand represent developers that are notified
of every change in the repository, but they are not contributors. Objectively,
one can think of watchers as developers thinking of becoming contributors,
which is pertinent to the success of the repository as the more influential
the repository the more people are willing to contribute. The median age
of a repository is 94, the 1st quartile at 64 and 3rd quartile at 120 indicate
that the probability of a repository being well known is much higher if it
has a longer lifetime. Nevertheless, there are exceptions in the dataset, with
the minimum repository age in this dataset is 2 (months), and there are 53
repositories that are less than 12 months old. This is because some projects
experienced viral growth since their inception. The number of contributors
can also be a sign of popularity of a repository, as the more known and
liked a repository is, the more chances a developer will want to help with it.
The box plot below, and the metrics in Table 3., show that the majority of
popular projects lie between 40 and 400 contributors.

34



Figure 11. Distribution contributors per programming language

The number of contributors found via the API is 10% larger than the
metrics seen on GitHub as GitHub counts as contributors only people with
necessary permissions: i.e. developers with direct push access, commiters
and issue openers. GitHub API has a more broad horizon and it also counts
developers that have attempted a pull request.

The above plots and data tell us the following about the dataset:

1. the mass majority of projects are mature (median lifetime is 94 months
(7.8 years), 1st quartile indicates 64 months (5.3 years))

2. most highly popular repositories have≥ 50 contributors (75% of projects).
This shows that in order for a project to be highly successful it is easier
to have a lot of developers to work on it.

3. all of the projects (in the dataset) have at least 82 forks and 21 watch-
ers and 75% of all repositories have > 1330 forks and > 200 watchers.
This indicates the usefulness of the projects in the dataset.

4. minimum number of stars is 11045 and maximum of 384890, which
means that the projects in the dataset have a massive fan base.

5. the most popular languages by a landslide are the front-end JavaScript,
TypeScript and the most popular language Python, which is used in
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many cases but most notably nowadays for machine learning. The next
are the back-end languages Go, Java, C++, Rust and C, languages
known for their performance. The last are Shell and Jupyter notebook,
with Jupyter notebook being synonymous to Python and Machine
Learning.
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4.2 Defining popularity

As discussed in the introduction, popularity is a construct that can be
measured in various ways. In GitHub, one can measure popularity by look-
ing at the number of stars, watchers, forks, the dependency graph of a
repository’s followers etc. However, for a quantitative analytical approach,
it is necessary to devise a metric for measuring popularity in GitHub. The
related work provides sensible reasoning when devising popularity measures,
and they also avoid GitHub’s limitations by doing so. Most studies chose
the number of stars as their main quantifier [4][5][15], however, there were
also works that considered the weighted sum of stars and forks [1]. Watchers
are mostly ignored because GitHub API does not provide timestamps for
watchers and thus a time-series analysis is impossible. After careful consid-
eration, it has been decided that stars will be the main popularity indicator,
since they reflect it the most [6]. Even though forks and watchers also depict
the success of a repository, they are highly correlated with the number of
stars and thus it was decided to avoid them.
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4.3 Correlating repository features and popularity

This section aims to answer RQ2: ”How do features like programming
languages used, type of license, repository owner influence the number of
stars?”. The question will be answered by conducting a correlation analysis.

We have seen in the dataset section that there are groupings in the fre-
quency of projects in the dataset with JavaScript, Python and TypeScript at
the top, followed by back-end languages Go, Java, C++, Rust and C as mid-
fielders and Shell and Jupyter notebook as last. To find out whether there is
a relationship between programming languages and popularity, a statistical
significance test is conducted. Before testing, it is necessary to define the
null hypothesis and the alternative hypothesis. In this instance, the null
hypothesis refers to programming languages not being related to popularity,
as there is no difference in the data, and the alternative hypothesis suggests
that there is a link between programming languages and repository success.
Since the data involves multiple samples (multiple programming languages
and the number of stars of the projects), the Kruskal-Wallis test is cho-
sen. Kruskal-Wallis calculates the statistical significance by comparing the
means of the samples. It assumes a similar distribution, equal sample size
and independent observations. Naturally, since the dataset contains more
projects for some languages than others, the samples compared in the test
only considers projects at regular intervals for each language so a similar
distribution (Fig. 12) is achieved and the outliers are also removed. Con-
ducting the test results in a significance level of 0.0007 < 0.001, which is
considered to be highly significant. Looking at Figure 13. there are pro-
gramming langauages with a much higher mean than others, for example
Rust, which has a mean of more than 3000 than the language with the 2nd
largest mean, which indeed proves that programming language matters in
popularity.
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Figure 12. Distribution of stars and programming language

Figure 13. Box plots of stars and programming language

The second aspect to be examined is license. The license specifies the
permissions that the viewer of the repository has. Most notable are:

1. MIT license, which allows the user to use the code and can also dis-
tribute it for commercial purposes, but the developer must include the
original license in their project.

2. Apache License 2.0, that lets the viewer use source code and distribute
it for commercial purposes, however, the developer must include the
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original license and all the modifications that have been done to the
original product.

3. GNU General Public License v3.0, is a copyleft license which states
that the source code can be copied and modified, but it demands that
user also open-sources the code.

Because of the permissions alloted to the licenses, some are more used
than others. As the MIT license is the most permissive, it is also the most
utilized with 1205 projects, 2nd most used license is Apache at 538 and the
3rd is GNU General Public License with 156. Other licenses include BSD
3-Clause ”New” or ”Revised” License (79), GNU Affero General Public Li-
cense v3.0 (77), GNU General Public License v2.0 (35).

Figure 14. Licenses boxplots and stars
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Figure 15. Stars per license distribution

After performing the same test as for programming language, the p-value
for licenses is 0.3 > 0.05, which is considered statistically insignificant. Thus,
the type of license does not play a huge role in project popularity. How-
ever, as mentioned previously, there are more projects with more permissive
licenses in the dataset than restrictive ones, which may hint that using a
more permissive license is best when posting your project on GitHub and
you want more followers.

The last important repository feature left to analyse in this chapter is
owner type. By owner type it is meant either user or organisation. A pre-
analysis assumption would be that repositories of organisations have more
stars than ones made by users. This stems from factors like: higher budget,
larger teams, marketing which all lead to more well-known projects. The
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box plot in Fig. 8 shows us the distribution of stars for projects under Users
and Organisations.

Figure 16. Stars per owner type

The plot depicts organisations having a much higher mean of stars than
users, and the lowest nr of stars of an organisation’s project is larger than
the user’s mean. This clearly indicates that owner type plays a role in
popularity. To test this statistically, the Mann-Whitney test will again be
conducted. The result of the test is ≈ 0, which is very satisfactory. Thus,
owner type also plays a role in a repository’s success.

To conclude this section, of the 3 features discussed: owner type, license
and programming language, only license does not contribute to a reposi-
tory’s popularity. Programming language does play a role as choosing a
popular language may give you a boost in followers. Organisations are also
seen to have many more followers than users in their repositories due to
more resources.

42



4.4 Repository actions and their influence on suc-
cess

The goal of this section is to discover whether social coding aspects such
as the number of commits, pull requests, issues solved result in influencing
popularity. To prove whether the aforementioned aspects impact repository
success, a correlation analysis will be conducted.

Commits in git are essential as this is how new checkpoints are added
to the repository. Through commits developers advance to different stages
in their development and will utimately help them arrive at the final prod-
uct. However, it is not perfectly clear whether the number of commits will
ultimately influence the popularity of a repository. This stems from the
following:

1. Commits may simply represent code refactoring as in rewriting

2. Some commits may be redundant as they come from branches that
haven’t been merged to the final tree.

3. Intuitively, the number of commits does not reflect popularity as a
very popular project can have few commits.

Figure 17. Commits and stars of projects
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The plot in Figure 17. proves that there is a small correlation between
commits and number of stars. Pearson’s correlation coefficient calculated
between commits and stars also indicates a correlation of ≈ 0.2. Therefore,
a larger number of commits does not contribute to the overall number of
stars.

Forks on GitHub represent a more sophisticated form of cloning, as they
enable the forker to propose changes to the original repository through pull
requests. Furthermore, forks maintain a connection to the source repository,
potentially enhancing the visibility and popularity of the original project.
This is because developers exploring a fork are likely to examine the origi-
nal repository as well. Furthermore, forking a repository essentially means
using the repository, which is a direct translation to popularity by adoption.
Consequently, it is hypothesized that there exists a significant correlation
between the number of forks and the number of stars a repository receives.

Figure 18. Forks and stars

Figure 18. shows the plot of stars and forks of projects. The plot sug-
gests a positive correlation of 0.67 which proves that a higher number of
forks does indeed most likely mean the repository is popular.

The next attribute of a repository to be examined in this chapter is
watchers. Watchers represent developers that want to be notified of changes
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in a repository [18]. This interest may also lead to becoming a collaborator,
which can indicate the impact a repository has on its users. Because of
this exact reason, the number of watchers may mean that a repository is
impactful.

Figure 19. Watchers and stars

Figure 19. shows the plot of stars and forks of projects. The plot sug-
gests a strong positive correlation of 0.76 which proves that a higher number
of watchers most likely means the repository is popular.

Issues in Github are essentially to do tasks. They allow developers to
keep track of what to work on next and they are also assigned priorities
so that developers know the urgency of the task. Opening an issue means
creating a task and closing one means that that task has been completed
or has been canceled. To evaluate whether issues contribute to the number
of stars, the ratio between closed issues and all issues for a project will be
plotted against the number of stars.
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Figure 20. Ratios closed/all issues and number of stars

From figure 20. it is visible that there is no correlation whatsoever be-
tween the ratio of closed and all issues and number of stars. The Pearson
correlation coefficient on this data is equal to 0.06, which confirms the in-
significant correlation depicted by the plot.
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4.5 How do repositories grow over time?

The questions regarding when repositories become popular and what
influences repository growth are crucial in understanding GitHub projects.
Firstly, looking at the proportion of projects that reach a certain thresh-
old of stars after different periods of time will help us gain insights in the
types of growth of the projects from the dataset. Moreover, looking at how
releases shape weekly repository growth is also necessary to understand pos-
sible patterns.

Figure 21. Age and probability when repositories reach 10/25/50/75%
stars

The plot above (Figure 21.) presents a view of when and how likely a
project in the dataset is to have 10%/25%/50%/75% of the total stars. In
the dataset:

1. 40% of all projects reach 10% stars in the first 1
10 of their lifetime and

90% of projects have 10% of their stars by 4
10 of their lifetime. The

latter indicates repositories that grew late. It is also interesting to
note that there are 12% of projects that reach 10% of stars within 1

100
of their lifetime and 22% of projects that reach 10% of stars within 4

100
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of their lifetime. This proves that there are early growing repositories
in the dataset.

2. 50% of projects reach 25% stars by 1
4 of their age, which highlights an

average pattern and 90% of projects have 25% of their stars by 6
10 of

their lifetime, which shows that there are 10% repositories that gain
75% of stars in the 2nd half of their lifespan. Moreover, 17% percent
of projects have 25% stars by 1

10 of their age and 10% of all projects
got 25% star by 1

20 of age. This also denotes a large proportion of
initially viral projects.

3. 5% of repositories gain 50% of stars in 1
10 of their lifetime, 57% of

repositories get 50% of their stars by 1
2 age and 99% of repositories

reach 50% of their stars at 90% of their age. The first finding indicates
that there are repositories that have a massive boost at the start, but
their growth is slow afterwards. There are more repositories that have
more stars in the first half of their lifespan than the second. This is of
course attributed to the hype over the project/technology.

4. 1% of all projects reach 75% stars in 1
10 of their lifetime, which points

to viral repositories in their inception, and this marks repositories that
have lost momentum afterwards. 20% of projects reach 75% stars by
50% of their lifetime, 66% reach 75% stars by 3

4 of their age.

The reasons for a repository’s popularity are diverse: mention of a
repository by a popular developer/youtube developer/blog post, new re-
lease, uniqueness of the project etc and multiple other aspects discussed
even in this paper. However, due to this project being about analysing
GitHub repositories only information that can be mined through Github
API is used. Thus, the next subchapter will focus on the factors that are
believed to influence the trajectory of a GitHub project the most, and that
is: releases.

4.5.1 Releases and their effect on popularity

Releases represent a crucial aspect in the lifecycle of any application,
and in GitHub it is no different [11][19]. They can bring new followers
and/or older followers that forgot about the project and this directly relates
to the number of stars. As new releases bring in new features, developers
are curious to know what these are. There are several assumptions of how
different versions affect the project:
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1. Major releases and few subsequent minor releases impact popularity
the most as this is the period when users try out the improved software.
Thus, major releases or close minor changes typically reside on peaks
of popularity.

2. Major releases may happen in periods of low popularity but after a
period of time and maybe some small changes the repository will find
itself on a spike.

3. When there are periods of inactivity in the project (i.e. no more
changes at version level) and a new release is made, this will no doubt
bring more people to the repository and create spikes of popularity.

4. After a spike of growth either because of a major or minor release, the
trend will stabilise and can also decrease.

5. In most cases, more releases bring more stars, but there may be an
increase in stars even when no changes are made.

Figure 22. React-hook-form project

Figure 23. React-use project

Figure 24. Homebrew project
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Figure 25. Drawio project

Figures 22,23,24,25 represent repositories under 40K stars and their
growth over time (every week). The red dotted lines represent major re-
leases and green lines represent minor releases. As seen in the plots, releases
have various behaviours to the stars. It is the case in all of the above reposi-
tories that assumption 4 is true. No repository can maintain the same state
or experience continuous growth for extended periods of time. Assumption
5 is also true, with repository ’React-use’ (proj 2 - Fig. 23) showing this be-
haviour. This behaviour is also attributed to the fact that some repositories
simply gain followers by what frameworks are also popular and React is a
very popular one. This is also proven by the study of [4], that suggests that
web frameworks and libraries are the 2nd most popular application domains
after systems.

Projects 1,2,3 (fig.22,23,24) are best described by assumptions 1 and 2,
with peaks happening at major changes, but sometimes popularity also hits
a low and a major release or subsequent releases increase the trend again.
They also present pauses in development after which when a release is made
a boost can be seen, thus exhibiting the behaviour of assumption 3. Project
4 (fig 25. ”Drawio”) presents the same behaviour as the other 3, however it
has a massive spike of growth after a major release, which again indicates
their importance.

4.5.2 Statistical evaluation of the impact of releases on the
number of stars

After gathering all the star events for more than half of the repositories
(1277 repositories), it is now time to discover the degree to which releases
count in weekly star growth. First, the repositories that presented a clear
versioning system were selected, more specifically of the form x.y.z, where x
is the major release, y is a minor release and z represents a bug fix. Only
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releases of the form ’x.0.0’ and ’x.y.0’ are chosen and labeled with ’M’ and
’m’ respectively. Because the interest is in the degree to which releases
account for weekly star growth, it was decided that:

1. if there are multiple releases in the same week and there were more
major releases and minor releases (happened for few projects), then
the last major release is selected as ”label” for that week;

2. if there are only minor releases in the same week then pick the last
one as ”label” for that week;

3. if there is no release in a week it is left blank.

After matching every week with a release (if the week has one), and
the weekly stars for every repository are also calculated, merging the 2 col-
lections will give an overview of how many stars a release (more releases)
accounts for in the week. Figure 26 is an example of a release stars table for
a repository (using the pandas DataFrame).

Figure 26. Releases table for the Leaflet project

Estimating the impact of releases on popularity is done by first calcu-
lating the ratio of the means of stars during release weeks and all weeks.
Another ratio is calculated with the means of stars one week after the re-
lease and all weeks as done by [3]. This can be seen in Figure 27.
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Figure 27. Ratios stars during release weeks/1 week after release and
regular weeks

1st quartile median 3rd quartile 90th percentile

Ratio stars during release weeks
vs. all weeks

0.99 1.24 1.65 2.55

Ratio stars week 1 week after release
vs. all weeks

0.98 1.21 1.56 2.19

Table 4. Ratio stars mean during release week/1 week after release and
mean all stars

From Figure 27. and table 4, it is clear that more stars happen during
release weeks than 1 week after. [4] evaluate the impact of releases with
ratios 1 week after releases which as seen above is less than counting stars
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during releases. It is important to note that natural growth or external fac-
tors cannot be taken into account in this analysis so some repositories may
present a peak in growth even though there is no release in Github. For a lot
of repositories, there are no releases at the beginning even though the stars
are at a peak and these are also not taken into consideration as releases.
Thus, the overall ratios should be higher due to unversioned releases.

In the dataset, out of 1277 repositories, only 944 have releases. This
indicates that most projects with releases become popular. It is also in-
teresting that of the 944 projects with releases, 384 do not have a major
release. The reason for this is maybe that the project does not rely that
much on the version system on Github and thus they tend to not update
it when major versions are released. Another reason for why the overall
discrepancy between major releases and minor releases in relation to stars
cannot be found is that out of the 480 projects that have major releases from
the 1250 repositories, 264 of them have the maximum number of stars in a
week with minor releases. Thus, even though the chances of stars in a week
with a major release being larger than stars in a week with minor release are
greater, it is still very uncertain whether a major release will have a higher
or lower impact than expected.
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4.6 Predicting the popularity of a repository

Prediction is a prevalent aspect in multiple industries and areas. Most
notable ones are stock market prediction, sales predictions, weather fore-
casting to name a few [8][21]. Prediction is also an important asset for
software as developers can align their workflows with the predictions and
meet the demands of the customers. In the instance of this research, the
predicted variable will be the number of stars gained by a Github repository
in a certain month/week. To do this, several models were picked which are
going to be assessed based on the performance of predicting different inter-
vals of stars. Two types of inputs are given to the models, which is also
another factor that can influence the outcome of the predictions. First, the
chapter will start with the baseline model, which is expected to have the
worst performance. Afterwards, more powerful models (i.e. models that are
capable of learning non-linear relationships in the data) will be tested and
the chapter will conclude with comparisons between all models and rankings.

For all models, at the beginning the inputs have the following form:

PL L OT St−3 St−2 St−1

Table 5. Original input 1

PL L OT RX
t−3 RX

t−2 RX
t−1 St−3 St−2 St−1

Table 6. Original input 2

where:

• PL - programming language = Python, JavaScript etc.

• L - license type = MIT License, GNU General Public License etc.

• OT - owner type = User or Organisation

• RX
t - type of release in week t = major/minor/no release

• St = stars at month t

However, machine learning algorithms do not understand labels such as
’Python’, ’Java’, ’MIT License’. They need inputs of numerical form. If
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every programming language is thus labeled ’Python’: 0, ’JavaScript’:1, ’C’
: 5 and so on .., how will the machine learning algorithm adjust the weights
when for instance ’Python’ repositories have more stars than ’C’ reposito-
ries? A working approach is one that makes every instance of the categorical
variable into a new variable, with 1 representing that the variable is present,
and 0 that it is not. Therefore, the input for the machine learning algorithm
is transformed into the final form:

PL1 PL2 .. PLn L1 L2 .. Lm OT1 OT2 St−3 St−2 St−1

0 1 .. 0 1 0 .. 0 1 0 102 136 112

Table 7. Input 1 specific for ML algorithm

PL1 .. PLn L1 .. Lm OT1 OT2 Rm
t−3 .. RM

t−1 St−3 St−2 St−1

0 .. 1 0 .. 1 0 0 1 0 1 102 136 112

Table 8. Input 2 specific for ML algorithm

As seen in Table 7, PL2 has value 1 and all the other PL variables have
value 0, meaning only PL2 is present and the others are not. This translates
to PL2 is maybe Java, therefore the repository has the main programming
language Java), and the other PLs are omitted because they are not the
main programming language of the project. The same applies for L and OT.

In table 8, each release type are each turned into a variable representing
whether it is present or not. If for example week t - 3 has a minor release
but no major release, then Rm

t−3 = 1, if week t - 3 also has a major release,
then only RM

t−3 = 1. Same applies for RX
t−2 and RX

t−1.

The idea of the 2 different inputs is to see whether GitHub releases
can help predict star counts better with releases than without. The data
used in the model’s predictions is comprised of 1277 of the most popular
projects, because these had their stars timestamps and releases mined. For
all repositories, every 4 weeks is considered a data point as we need the first
3 weeks in order to predict the 4th. This amounts to 505132 data points.
The data is split into 2 groups, of which 80% is training data and 20% is
testing.
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4.6.1 Baseline model: Multiple linear regression

Multiple linear regression [12] is an algorithm that finds a line that min-
imizes the error between the predicted and actual values, with multiple
variables. In this case, the equation of the line found by multiple linear
regression follows an equation with the variables from Tables 7 and 8:

S1t = a1 ·PL1 + a2PL2 + ..+ anPLn + b1L1 + b2L2 + ..+ bmLm + d1OT1 +
d2OT2 + d3St−3 + d4St−2 + d5St−1 + c

Eq 11. Linear regression equation for input 1.

S2t = a1 · PL1 + a2PL2 + ..+ anPLn + b1L1 + b2L2 + ..+ bmLm +
c1R

M
t−3 + c2R

m
t−3 + c3R

e
t−3 + ..+ c7R

M
t−1 + c8R

m
t−1 + c9R

e
t−1 + d1OT1 +

d2OT2 + d3St−3 + d4St−2 + d5St−1 + e

Eq 12. Linear regression equation for input 2.

where:

• St ∈ N - number of stars at month t

• a1..an, b1..bm, c1..d9, d1..d5, e ∈ R+, constants

• PL1, PL2, ..PLn - programming languages 1..n, where PLx ∈ {0, 1}

• L1, L2, ..Lm - licenses 1..m, where Lx ∈ {0, 1}

• OT1, OT2 - organisation type, where OTx ∈ {0, 1}

• RX
t - type of release, with X ∈ {M,m, e} and RX

t ∈ {0, 1}

The table below shows the RMSE score of multiple linear regression in
prediction:

Model
RMSE
all repos

RMSE repos

w last month

< 1000 stars

RMSE repos

w last month

< 500 stars

RMSE repos

w last month

< 300 stars

RMSE repos

w last month

< 1000 and

> 500 stars

RMSE repos

w last month

< 500 and

> 300 stars

RMSE repos

w last month

< 300 and

> 200 stars

RMSE repos

w last month

< 200 and

> 100 stars

Model 1 94.13 41.17 32.24 27.81 541.46 269.27 165.38 74.59

Model 2 92.12 41.16 30.03 27.87 540.38 268.68 164.71 74.32

Table 9. RMSE of multiple linear regression testing different intervals of stars
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Figure 28. Linear regression predicted and actual values

Fig 29. Linear regression prediction and error with inputs 1 and 2 with
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predicted values > 500 and < 1000

Fig 30. Linear regression prediction and error with inputs 1 and 2 with
predicted values > 200 and < 300

Table 9 and Figures 28, 29, 30 provide us with enough insights of the
limitations of Multiple Linear regression. Table y shows the average error
of prediction within different intervals, and the fact that the average error
is quite close to the minimum value to be predicted, this reflects the bad
quality of MLR in this instance. The plots in Figure 28. show that both
models have predicted small values when the actual value was quite high.
Even though predicting a small number of stars is feasible, predicting stars
> 300 becomes a daunting task for MLR, as seen in Fig 29, 30. Using Input 2
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(incorporating releases in the data) gives overall very slightly better results,
however, it is not a good method for prediction in this circumstance, as it
cannot understand non-linear data.
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4.6.2 Neural network prediction

Neural networks are complex architectures that can learn any output
given a certain input [10]. Different model hyperparameters can change the
performance of the model, either making it overfit, underfit or fit well with
the data. The hyperparameters that will be tested in this research will be
the number of hidden layers and the number of neurons in those hidden
layers.

Model
RMSE
all repos

RMSE repos
w last month
< 1000 stars

RMSE repos
w last month
< 500 stars

RMSE repos
w last month
< 300 stars

RMSE repos
w last month
< 1000 and
> 500 stars

RMSE repos
w last month
< 500 and
> 300 stars

RMSE repos
w last month
< 300 and
> 200 stars

RMSE repos
w last month
< 200 and
> 100 stars

Model 1
1HL: 64

95.44 44.03 35.03 30.67 564.85 278.88 183.46 81.89

Model 2
1HL: 64

92.41 36.5 28.25 21.02 537.27 257.78 148.57 63.23

Model 1
1HL: 128

92.05 35.32 25.52 20.55 516.31 249.77 142.21 59.57

Model 2
1HL: 128

92.96 38.69 28.87 23.79 544.8 269.44 166.69 72.38

Model 1
1HL: 256

92.72 38.16 29.09 24.51 522.12 258.75 160.97 73.69

Model 2
1HL: 256

92.22 36.49 26.35 21.24 533.29 257.49 153.44 64.95

Model 1 2HLs:
128FL, 64 SL

92.23 36.72 27.2 24.51 521.39 252.80 149.42 62.81

Model 2 2HLs:
128FL, 64 SL

92.05 36.52 27.11 22.51 517.26 249.43 148.42 62.87

Model 1 2HLs:
256FL, 64 SL

92.28 35.32 25.24 20.03 521.85 253.65 143.37 59.54

Model 2 2HLs:
256FL, 64 SL

92.51 36.79 27.55 22.88 515.39 253.60 153.4 68.96

Model 1 2HLs:
128FL, 128 SL

93.27 35.87 25.68 20.4 529.48 257.50 142.66 60.77

Model 2 2HLs:
128FL, 128 SL

92.98 38.54 28.79 23.96 531.46 255.88 158.91 67.31

Model 1 2HLs:
256FL, 128 SL

93.66 39.97 30.37 25.6 549.86 269.33 170.81 72.95

Model 2 2HLs:
256FL, 128 SL

92.18 35.95 25.87 20.34 527.68 253.93 145.45 60.74

Model 1 3HL:
64FL, 64SL,

64TL
93 38.72 29.08 24.15 540.72 266.88 162.83 68.78

Model 2 3HL:
64FL, 64SL,

64TL
97.76 41.47 30.12 24.08 602.58 298.24 168.52 76.41

Model 1 3HL:
64FL, 128SL,

64TL
95.44 42.35 31.93 24.15 594.35 296.05 193.73 85.6

Model 2 3HL:
64FL, 128SL,

64TL
92.43 36.79 26.65 21.48 535.96 260.24 158.71 68.19

Table 10. RMSE of Neural Networks with different hyperparameters
testing different intervals of stars

Table 10 shows different Neural Network architectures that have been
explored for predicting stars at month t given the input as defined in Tables
7,8. Both the models with input 1 and 2 perform modestly because of the
unpredictability of the numbers of stars even following weeks with releases.
(If for example the release happens in the first day of the week then the
number of stars of that week will be higher, however, if the release happens
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on the last day of the week then the number of stars will be higher next
week), and so models with input 2 sometimes perform worse than the models
with input 1. It is important to note that the overall best prediction is made
by a model with a simple architecture, with only one hidden layer and 128
neurons on that layer. Both the predictions done within a certain interval
and under a threshold of stars for this model are the best overall.
Figure 31. shows the best performing model’s (1HL 128) accuracy with a
scatter plot and the distribution of errors.
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Figure 31. NN with 1HL and 128 neurons predicted and actual value plot
for different intervals of stars.
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Figure 32. NN with 2HLs (1L - 256 neurons, 2L - 128 neurons) predicted
and actual values plots for multiple intervals of stars
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Figure 31 depicts the best model for input 1 and figure 32 depicts the
best model for input 2. The model for input 2 has larger errors as can be
seen in the histograms. The model for input 1 is better overall than the
model for input 2, with all the metrics from table 10 being larger for the
model of input 1. It appears that for this data, releases do not drastically
help the model in giving a more accurate prediction.

It is crucial to note that the score achieved predicting the number of
stars > 100 in the Neural Networks tested is not reliable. Even though
Neural Networks can learn any output from any input, the input does not
have enough information to properly predict a reliable output.
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4.6.3 Random forest prediction

Random Forest is an ensemble learning method that can be used in
classification and regression. Ensemble learning refers to the aggregation of
results of multiple decision trees. For regression, the mean of all resulting
values of the decision trees is taken as the prediction of the random forest.
In our case, multiple decision trees are fit on the data, i.e. either using input
1 and input 2 and they split the data points such that the difference of the
variance in the split is lowest.

Model
RMSE
all repos

RMSE repos
w last month
< 1000 stars

RMSE repos
w last month
< 500 stars

RMSE repos
w last month
< 300 stars

RMSE repos
w last month
< 1000 and
> 500 stars

RMSE repos
w last month
< 500 and
> 300 stars

RMSE repos
w last month
< 300 and
> 200 stars

RMSE repos
w last month
< 200 and
> 100 stars

nr. estimators: 40
depth: 20, input 1

110.59 72.02 67.7 65.73 523.11 273.12 205.98 96.54

nr. estimators: 40
depth: 20, input 2

105.85 64.77 59.95 57.65 521.08 274.67 227.17 96.55

nr. estimators: 40
depth: 40, input 1

109.75 71.31 66.94 65.04 523.21 265.65 211.42 95.7

nr. estimators: 40
depth: 40, input 2

107.01 66.71 62.03 59.69 522.04 280.51 231.77 101.27

nr. estimators: 50
depth: 50, input 1

110.53 72.02 67.92 65.93 510.5 274.92 212.83 96.89

nr. estimators: 50
depth: 50, input 2

105.76 64.87 60.12 57.80 518.07 275.04 225.29 97.47

nr. estimators: 60
depth: 60, input 1

112.24 74.6 70.54 68.7 517.6 269.55 210.49 97.64

nr. estimators: 60
depth: 60, input 2

107.18 66.80 62.22 60.01 516.97 273.99 214.42 94.47

nr. estimators: 80
depth: 80, input 1

110.12 71.4 67.11 65.07 518.94 276.58 207.81 94.19

nr. estimators: 80
depth: 80, input 2

105.01 63.47 58.49 56.14 523.84 273.63 229.81 97.63

nr. estimators: 100
depth: 100, input 1

110.82 72.47 68.16 66.27 524.13 268.91 221.85 94.4

nr. estimators: 100
depth: 100, input 2

93.66 39.97 30.37 25.6 549.86 269.33 170.81 72.95

Table 11. RMSE of Random Forests with different hyperparameters
testing different intervals of stars

From table 11 we can see that the random forest model is not fit for
predicting the data, with the minimum RMSE for repositories < 300 stars
at 56.14. It is not good at predicting small intervals of stars either, with the
smallest RMSE of predicting stars between 100 and 200 being 94.4 which
is an extremely poor performance. This happens as the model predicts a
very large number of stars e.g. 950 for a repository that has 0,2,5 as last
stars, because it has seen some examples with the pattern with the previous
3 weeks having few stars and the next with many stars, and so it started to
overfit.
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4.6.4 Performance comparison

Multiple linear regression (MLR) performed well, with accurate predic-
tions on weeks with < 200 stars. The Neural network outperformed both
MLR and RF scoring decent results in predicting values < 300 stars. Ran-
dom Forest (RF) had the worst scores overall, as it overfit on training sam-
ples that had a high number of stars in the predicted week, thus predicting
very large numbers for some weeks that had a small amount of stars.

The best model for predicting stars is the Neural Network with 1HL, 128
neurons on the HL and input 1. It has an average error of only 20 for values
< 300, an average of 59.57 for repositoriess < 200 and > 100, 142.21 for
repositories < 300 and > 200, which is decent for an environment as unpre-
dictable as Github. Not very far off is the model with input 2, 2HLs, 256
and 128 neurons on the first and second layer respectively.

Most interestingly, the models without releases performed better than the
models with releases. This shows that even though releases help in detecting
a pattern in the stars to be predicted, it will make the model have a bias
towards giving more/less stars than usual.
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4.6.5 Feature importance

Understanding what variables influence the prediction of the model is
one of the most important aspects in machine learning. SHAPley Additive
explanations are a way to describe what features had the most impact on
the predictions of the model.

Figure 33. Feature importance in predicting the number of stars

The plot above (Figure 33) shows the importance of the variables in
the prediction. Evidently, the stars in the week before the predicted week
helped the prediction most. Programming language is the 2nd most impor-
tant feature which is somewhat surprising. Thus, programming language
does influence the stars repositories gain even on average every week. Also
surprising is the fact that the number of stars in week 1 influences the pre-
diction more than the number of stars in week 2. Releases in the week before
prediction (releaseW3) also play a role in predicting the number of stars, as
was expected. Owner type is not regarded as an important feature for this
particular problem, and neither are releaseW1 and releaseW2.
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Chapter 5

Discussion

This paper studies the effect of different features on the number of stars,
GitHub star growth, the effects of releases on star growth, and popularity
prediction.

The correlation part of the paper reaches the same conclusions as [4],
from which this paper gets its inspiration from, the exception being the
ratio between closed issues and all issues and licenses. It was expected
that the high number of commits will not translate into a large number of
stars, which proved to be correct. However, programming language, licenses,
owner type, forks and watchers all are related to the number of stars.

The GitHub growth part is similar to [4]’s, but different thresholds of
percentages of stars were analysed than the ones covered by [4], as it was
necessary to see whether the percentage of stars was gained in the same per-
centage of time (which depicts a rather average growth trend) which turned
out to be true. Also, as opposed to [4]’s thresholds at 10%,50%,90%, this
thesis put the thresholds of stars at 10%, 25%, 50%, 75% to gain informa-
tion about how many repositories gain that percentage in a short span, i.e.
1%-10% of their age, which reflects viral projects in their inception, and how
many projects gain those stars later.

The different effects of releases on the number of stars was discussed in
detail, with this thesis being the sole study which visualises and explains
all possible patterns that releases have on the number of stars. It arrives at
the conclusion that there are 4 possible patterns that releases have on the
number of stars:

1. major releases and subsequent minor releases impact the popularity
the most as they most often reside on peaks of popularity

2. releases may happen in periods of low popularity, but after a small
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period of time, the project will reach a new peak.

3. When there are periods of inactivity and a release happens, the repos-
itory will most likely find itself on a spike of popularity.

4. After a spike of growth either because of a major or minor release, the
trend will stabilise and can also decrease.

This work tried to predict the number of stars like other studies [2][4][5],
and tried 3 different machine learning models, in order to see which one of
them performs best. The machine learning models in question are Multi-
ple Linear Regression used by [4][5], Neural Networks and Random Forest.
Though there are not studies that use Neural Networks and Random Forest
in predicting the number of stars of GitHub, there are some works that used
different machine learning models such as LSTMs [2] and RNNs [15], which
are more advanced Neural Networks.

There are several factors that impeded a truly accurate prediction of
the number of stars of a GitHub project. Rapid growth of a project due to
external factors could not have been taken into account given data that has
been mined only via Github API. Future improvements on the prediction
could be done by crawling blog posts and websites which promote the repos-
itories from the dataset and analyse the text using NLP (Natural Language
Processing) to find out whether there will be new updates coming soon and
what the impact it will have based on the number of likes that post has.
Another limitation of this prediction was the shortage of releases of GitHub
repositories, with some repositories not stating releases even though through
the lifespan of the projects several large changes happened. Time was yet
another factor which impacted the result of the prediction, with more data
gathered possibly resulting in more accurate predictions.

Thus, due to incomplete data and limitations of the repository data in
Github involving releases, the predictions of the number of stars made in
this research are not considered accurate enough.
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Chapter 6

Conclusion

In the correlation part of the research, we have proved that program-
ming language, owner type, license, forks and watchers all contribute to the
popularity of a repository. Commits and the ratio of issues solved

total issues do not in-
fluence the number of stars as there are projects with few developers (thus
few commits) that are highly popular and there are repositories that still
have a lot of tasks pending (features they want to release) and still have
many stars.

In the growth chapter of the research, the effect of releases on stars and
the time it takes for a project to reach a threshold of stars is discussed. There
are 90% of projects that reach 10% of stars in 4

10 of their lifetime, which
means that there are 10% of repositories that gain almost all their stars
following the 2nd half of their lifespan. As expected 50% of the projects
attain 50% of their current amount of stars within half their age. 1% of
repositories gain 75% of stars by 1

10th of their lifespan, which points to
repositories that grew exponentially at the beginning and then dimming
down. Releases have shown to have various behaviours such as residing on
peaks of popularity, starting a period of rapid growth and then a decline,
or simply not affecting the popularity at all and the project even declining
after a release. The statistical analysis proves that for 75% of projects, the
mean of stars in weeks with releases surpasses the mean of all weeks. This
was to be expected, if not even more so as in almost all repositories the
beginning releases are not even documented.

The last chapter focuses on predicting the number of stars in a week t,
with 3 different models: Multiple Linear Regression, Neural Networks and
Random Forests, given 2 inputs, an input with releases and one without re-
leases. Multiple Linear Regression performed surprisingly well at predicting
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small numbers of stars, but gradually became worse when predicting values
> 100. Neural networks performed best, however it fell into the same trap as
Multiple Linear Regression, predicting modestly for stars > 200. The worst
model was Random Forest, which overfit on samples that had few stars in
the input and a lot of stars in the output, thus predicting a high number
of stars even when the stars in the input were very small. Surprisingly, a
Neural Network model with input 1 (without releases) had the best results,
thus showing the unpredictability of Github project releases on the num-
ber of stars. Feature importance suggests that the number of stars in the
weeks before the prediction, whether a release happened in the week before
the prediction, programming language and license had the most impact in
predicting the number of stars.

To conclude, we have discovered the repository features that impact a
repository’s popularity, looked at possible growth patterns, monitored the
effect of releases on a repository’s growth and predicted the number of stars
of the most popular Github repositories.
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Appendix A

Appendix

Decision Tree splitting example

Figure 7. Decision tree splits: Split 1 minimises variance and split 2 is a
split that does not minimise variance.

By looking at figure 7, we see that the values in both parts of split 1
are closer together/have less variance than the values in split 2. This is
preferred in regression as when predicting a value we want to be as close as
possible to the actual value.

Split 1:

σ2
≤300m2=yes =

(300.000−350.000)2+(350.000−350.000)2+(400.000−350.000)2

3 = 25·108·2
3 =

16.(3) · 108.
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σ2
≤300m2=no =

(550.000−575.000)2+(600.000−575.000)2

3 = 12.5·108
2 = 6.25 · 108.

σ2
1 = 3

5 · σ2
≤300m2=yes +

2
5σ

2
≤300m2=no = 14.78 · 108

Split 2:

σ2
≥300m2=yes =

(400.000−517.000)2+(550.000−517.000)2+(600.000−517.000)2

3 = 21.539∗109
3 =

71.966 · 108
σ2
≥300m2=no =

(300.000−325.000)2+(350.000−325.000)2

2 = 12.5·108
2 = 6.25 · 108.

σ2
2 = 3

5 · σ2
≥300m2=yes +

2
5σ

2
≥300m2=no = 45.676 · 108.

From the calculations above, it arises that split 1 has a much lower
variance than split 2, thus it is preferred.
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