
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

Summarization for Long-Form Documents

Leveraging Transformer Models for U.S. Patents Summarization

Author:
Andrei-Sorin Ujica
s1102725

First supervisor/assessor:
Prof. Dr. Ir. David van Leeuwen

Second assessor:
Dr. Harrie Oosterhuis

June 14, 2024

Abstract

This thesis investigates the application of transformers for summarization of
lengthy documents, specifically U.S. patents from the big patent dataset
and introduces a method called Summary of Summaries (SOS) which is
shown to improve summary quality over trivial truncation. The central
research question aims to identify the best out-of-the-box model for sum-
marization of U.S. patents and how this model can be fine-tuned for even
better results. Key findings include that models optimized for longer se-
quences, such as BigBird and Long-T5, demonstrate superior performance,
with Pegasus-Large achieving a ROUGE-1 score of 0.3245, without any task-
specific fine-tuning. Fine-tuning LED improved the performance drastically
compared to the pre-trained model, with ROUGE-L increasing from 0.0485
to 0.2430 after only three epochs of training. Incorporating global atten-
tion, even on just the first token, increases the ROUGE-LSum score by 0.03
points, resulting in better summary quality.

Contents

1 Introduction 2
1.1 Research Question . 3
1.2 Structure of the Thesis . 3

2 Preliminaries 4
2.1 Deep Learning Basics . 4
2.2 The Transformer Architecture 5
2.3 Large Language Models (LLMs) 6
2.4 Text Summarization Techniques 7
2.5 Evaluation Metrics for Summarization 8

3 Related Work 10
3.1 Extractive & Abstractive Summarization 10
3.2 Long-Document Summarization 12
3.3 ROUGE, BLEU & METEOR 13

4 Research 15
4.1 Benchmarking . 15
4.2 Fine-tuning . 19

5 Results 24
5.1 Benchmarking Results . 24
5.2 Comparative Analysis of Summary of Summaries Approach . 25
5.3 Prompt engineering . 26
5.4 Maximum Length Variation During Inference 28
5.5 Global Attention . 30

6 Conclusions 32
6.1 Key Findings . 32

A Implementation Details 36
A.1 Computational Setup . 36
A.2 Benchmarking . 36
A.3 Fine-Tuning . 38

1

Chapter 1

Introduction

The transformer architecture, first proposed in the 2017 paper by Vaswani
et al. [20], has been one of the most impactful ideas in recent years in the
field of Deep Learning. Before its rise, different neural network architectures
like the RNN [5, 18], GRU [6] or LSTM [9] were used for different modalities
- text, images, audio, but recently there has been a convergence towards a
single architecture - the transformer. This is largely due to the fact that,
theoretically, given enough compute resources, the transformer’s attention
mechanism has an infinite reference window - which means that all input to-
kens are taken into consideration, improving contextual understanding and
enabling parallelizing computations.

One of the tasks where transformers shine are Natural Language Processing
(NLP) tasks, and by extension, text summarization tasks. This task can
either be extractive - selecting a subset of words from the original document
in order to make a summary, or abstractive - paraphrasing the content while
capturing the key ideas. While the former was viable using LSTMs, it pro-
duced summaries that felt mechanical, not very human-like. The latter can
be achieved by leveraging transformer architectures, as their attention mech-
anism is able to weigh the importance of all the words in the context. [15]

U.S. Patents are a form of intellectual property protection granted for novel
inventions that give the holder exclusive rights to the selling and making of
the object of that patent. These are usually lengthy documents that follow
a standardized format and contain technical jargon. Therefore, they are
usually challenging to understand by the general public and would greatly
benefit from summarization. Most models targeted at summarization are
fine-tuned on standard datasets like the CNN Daily Mail, which may not
align well with the specific structure and complexities that U.S. patents have.

This thesis explores the application of transformer architectures in the con-

2

text of abstractive summarization. It aims to do that by performing a
comparative analysis of the most used models on Hugging Face, the lead-
ing platform for open-source transformer models. This analysis will take
into consideration both quantitative metrics like BLEU, ROUGE, and ME-
TEOR and qualitative metrics like human evaluation. Then, it follows by
fine-tuning one of the models on a U.S. Patents dataset, optimizing for the
specialized language and structure that they have.

1.1 Research Question

Central to this paper is the question: Which transformer model performs
the best summarization of U.S. Patents and how effectively can this model
be adapted and fine-tuned for even better results for this specific dataset?

1.2 Structure of the Thesis

• Chapter 2: Preliminaries explains the transformer architecture,
Large Language Models (LLMs), and fine-tuning, among other as-
pects.

• Chapter 3: Related Work assesses existing papers, identifying gaps
regarding summarization on datasets related to U.S. patents.

• Chapter 4: Research outlines how the model comparison and sub-
sequent fine-tuning was performed.

• Chapter 5: Results describes the outcomes of the experiments.

• Chapter 6: Conclusions summarizes the paper’s findings.

3

Chapter 2

Preliminaries

This chapter provides the essential background needed in order to under-
stand the rest of this thesis. It covers the basics of deep learning, neural
networks, and the transformer architecture. Key concepts such as large-
language models (LLMs), fine-tuning, and text summarization techniques
are discussed. Also, evaluation metrics and dataset characteristics relevant
to summarization are also presented. By the end of the chapter, the reader
should have a solid understanding of the foundations needed in order to
grasp the next chapters.

2.1 Deep Learning Basics

Deep Learning is a subset of machine learning that involves training neural
networks with many layers, hence the term “deep”. These networks can
model and understand complex patterns in data and can be visualized as a
graph. They consist of an input layer, multiple hidden layers, and an out-
put layer, each with activation functions (functions that, given input and
weights, return the output of the node).

There exist multiple types of neural network architectures, depending on
the type of task. Feedforward Neural Networks (FNNs) [17] pass infor-
mation in one direction, from the input layer to the output layer, making
them suitable for simple tasks like classification or regression. Convolutional
Neural Networks (CNNs) [13] process grid-like data, making them ideal for
image and video recognition. Recurrent Neural Networks (RNNs) [5, 18]
handle sequential data by maintaining memory of previous inputs, making
them good for language modeling tasks, even though they struggle with
long-term dependencies in the text. To address this issue, Long Short-Term
Memory Networks (LSTMs) [9] retain context over longer sequences, making
them good for text generation.

4

2.2 The Transformer Architecture

Transformers are highly effective for multiple different modalities, due to
their self-attention mechanism. In order to better understand how they
work, a run-through of the encoder mechanism will be presented based on
the schematic 2.1. The decoder process is similar due to having the same
layers.

Figure 2.1: Picture taken from the original paper [20]. The transformer
architecture.

The first step in generating text with a transformer is feeding the input
into a tokenizer. A tokenizer splits the input text into smaller units called
tokens (words, subwords, characters). The input embedding layer then con-
verts each token into numerical vectors of fixed size, in order to turn them
into representations that the model can process. The next step is to inject
positional information about each token into their embeddings. This is done
using the sine and cosine functions.

Next, the data is fed into the Encoder Layer. The Encoder layer is respon-
sible for adding context to the embedding. It consists of two submodules:
Multi-Head Attention followed by a Feed Forward Network. The former is
depicted in figure 2.2. Multi-headed Attention in the encoder applies a spe-
cific mechanism called Self-Attention. Self-Attention allows it to associate
each individual word in the input with other words in the input.

5

Figure 2.2: Picture taken from the original paper [20]. The Multi-Head
Attention Mechanism.

To achieve Self-Attention, the input is fed through three distinct layers to
create the query, key and value vectors. These terms come from retrieval
systems (like searching for videos) where a query is mapped against a set
of keys (video title) in order to return a value (video). In the context of
Self-Attention, the queries and keys undergo matrix multiplication in order
to produce a score matrix. This score matrix determines how much focus
a word should put on other words. Then, these scores are ran through a
softmax function, which returns probability values between 0 and 1. After-
wards, the attention weights are multiplied by the values in order to generate
the output.

The Multi-Headed Attention output vector is then added to the original
input. This is called a residual connection. The residual output gets fed
into a feed-forward network for further processing in order to enrich the
representation. This wraps up the encoder layer, whose sole purpose is to
encode the input to a continuous representation with attention information.

Proceeding to the Decoder Layer, its primary function is to generate text
sequences. It has similar layers as the Encoder - two Multi-Headed Atten-
tion layers and a Feed-Forward layer, with residual connections after each
sublayer. The Decoder is auto-regressive - it takes in a list of previous out-
puts as inputs, as well as the encoder outputs that contain the attention
information. The Decoder stops decoding when it generates an < end >
token as an output.

2.3 Large Language Models (LLMs)

Large Language Models (LLMs) are advanced neural networks designed to
understand and generate human language. They consist of millions to bil-

6

lions of parameters (weights and biases that the model adjusts to learn
from data), enabling them to capture complex patterns, which is why they
are called “large”. LLMs can be pre-trained and then subsequently fine-
tuned for specific purposes. Pre-training involves training the model on
large amounts of data in order to learn general language features for a task,
like summarization or classification. Fine-tuning then adapts this model to
a niche task, like summarization for patents, using a smaller, task-specific
dataset. Examples of LLMs include GPT [4], BERT [7], T5 [16]. In order
to limit computational complexity, the input length is limited to a certain
number of tokens, usually between 512 tokens and 32K tokens, which might
make usage with longer texts harder.

Fine-tuning adapts LLMs to specific tasks by adjusting several key param-
eters:

• Learning Rate - Controls how fast or slow the model learns. A small
value like 0.001 helps the model learn steadily, without mistakes.

• Batch Size - The number of samples the model processes at once. A
higher batch size, like 32, speeds up training but needs more memory.

• Number of Epochs - How many times the model goes through the
entire dataset. A higher number might lead to overfitting, while a
small number might lead to not enough data being processed in order
for the model to learn.

• Gradient Accumulation - This technique allows the model to handle
larger batches by spreading it over multiple steps. For example, with
a batch size of 4 and accumulating gradients over 8 steps, it acts like
a batch size of 32.

2.4 Text Summarization Techniques

Summarization aims to turn large pieces of text into shorter pieces, while
still preserving key information. There are two main approaches: extractive
and abstractive [19]. Extractive summarization consists of combining exist-
ing sentences from the text while mainintaing the original wording. This
might sometimes lead to summaries that lack cohesion and sound robotic.
Abstractive summarization, on the other hand, generates new sentences that
keep the same ideas from the original text, similar to how a human would
summarize. The problem with abstractive summarization is that it is more
computationally intensive, and can sometimes generate grammatically or
semantically inaccurate sentences.

7

2.5 Evaluation Metrics for Summarization

Evaluation Metrics assess the quality of the generated summary against
a given reference summary. The ones most commonly used are ROUGE,
BLEU, and METEOR. All of these give back scores between 0 and 1, where
0 indicates no match between the generated summary and the reference
summary, and 1 means a perfect match. An example will be explained for
ROUGE as it contains a lot of the fundamental ideas used by the other
metrics as well.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [11] measures
the overlap of n-grams between the generated summary and the reference
summary. There are multiple variants of this: ROUGE-1, ROUGE-2, etc.
(collectively called ROUGE-N), and ROUGE-L (which measures the longest
sequence of matching words between the reference and generated summary).
N-grams represent contiguous sequences of n items (words) from a given
text. The example below explains the computation:

Reference Summary: “Police killed the gunman with a knife.”

Generated Summary: “Police killed the gunman.”

ROUGE-1 (unigram) and ROUGE-2 (bigram) scores are calculated as fol-
lows:

Unigrams:

• Reference: {“Police”, “killed”, “the”, “gunman”, “with”, “a”, “knife”}

• Generated: {“Police”, “killed”, “the”, “gunman”}

ROUGE-1 =
Number of overlapping unigrams

Total unigrams in reference summary
=

4

7
≈ 0.571

Bigrams:

• Reference: {“Police killed”, “killed the”, “the gunman”,
“gunman with”, “with a”, “a knife”}

• Generated: {“Police killed”, “killed the”, “the gunman”}

ROUGE-2 =
Number of overlapping bigrams

Total bigrams in reference summary
=

3

6
= 0.5

8

ROUGE measures recall, which measures how many of the relevant words
were generated. With generated summaries that are significantly longer than
the reference summary, this can become misleading as the score increases
but the summary contains information that is not relevant. BLEU (Bilin-
gual Evaluation Understudy) [14] on the other hand, measures precision,
which is calculated as the number of matching n-grams divided by the total
number of n-grams in the generated sentence. This helps in understanding
how much of the generated summary is actually relevant.

METEOR (Metric for Evaluation of Translation with Explicit ORdering) [2]
encompasses both precision and recall, then it computes the harmonic mean
of these in order to come up with an F1-Score, which is the final reported
score of this metric. Also, it takes into account synonyms and stem (base
versions of the words) matching in order to get a more comprehensive eval-
uation.

Summary

The Preliminaries chapter introduces essential background knowledge nec-
essary for understanding the thesis. It starts with a short overview of deep
learning and the existing types of neural network architectures, followed
by an in-depth look of the transformer architecture. It then continues with
Large Language Models (LLMs), describing how pre-training and fine-tuning
differ. Finally, the chapter concludes with an explanation of the difference
between extractive and abstractive summarization techniques and an exam-
ple computation of ROUGE-1 and ROUGE-2.

9

Chapter 3

Related Work

An extensive literature review is necessary in order to understand the current
state of research, what the existing gaps in the literature are, and how
these gaps can be bridged by the current paper. This chapter is structured
into three main sections. First, papers that relate to summarization in
general are discussed in order to understand the enhancements that these
provide over regular models. Then, an overview of how BigBird [21] and
Longformer [3] handle attention is presented. Finally, evaluation metrics
such as BLEU, ROUGE, and METEOR are discussed.

3.1 Extractive & Abstractive Summarization

3.1.1 Current State

The application of Transformer models for summarization has advanced sig-
nificantly since their introduction in 2017 by Vaswani et al. [20], leveraging
the architecture’s ability to capture long-range dependencies. Transformers
use self-attention mechanisms in order to weigh the importance of different
words in a sentence, which allows them to handle the relationships between
words better, compared to previous architectures like the Recurrent Neural
Networks (RNNs) [5], which process sequences sequentially. [20]

Recent studies have shown that transformer models such as BERT [7] or
GPT [4] excel in summarization tasks due to their pre-training on large
datasets, followed by task-specific fine-tuning. These models achieve supe-
rior results on metrics such as ROUGE. For example, a pre-trained Trans-
former achieved a ROUGE-2 score of 0.131, using only 1% of the training
data (approx. 3000 samples), while pre-trained encoder-decoder models
scored only 0.023 ROUGE-2 under similar conditions. [10]

Liu and Lapata (2019) [12] introduced a document-level encoder based on
BERT for both extractive and abstractive summarization. In this approach,

10

the BERT [7] model first processes individual sentences, generating repre-
sentations that also contain the context (can be seen on the first line in
figure 3.1). Then, additional transformer layers are stacked on top of these
sentences in order to capture the different relations across the document.
This is useful for maintaining logical flow in the summary as it helps the
model understand how the sentences relate to each other in the context of
the entire document.

Figure 3.1: Image from the original paper [12]. It shows a comparison
between BERT(left) and BERTSum(right). BERTSum inserts CLS tokens
after every separator token in order to segment the input into sentences.

For abstractive summarization, Liu and Lapata (2019) [12] proposed a new
fine-tuning schedule that uses two different optimizers for the encoder and
decoder, each with its own warmup steps and learning rates. Since the en-
coder is pretrained and the decoder must be trained from scratch, this results
in a mismatch. For example, the encoder might overfit on data while the
decoder underfits, or vice versa. Using two different optimizers solves this
problem. Additionally, a two-step fine-tuning process is presented: The first
step consists of extractive summarization in order to get the most impor-
tant sentences, followed by a second step where abstractive summarization
is employed in order to make the summary more coherent and logically
connected.

3.1.2 Gaps in the Literature

Despite the progress, several gaps remain in transformer-based summariza-
tion. First of all, extractive summarization, while able to identify key sen-
tences, results in summaries that are not fully coherent and readable. Also,
the ability of extractive models to generalize across different domains is lim-
ited, with their performance depending heavily on the structure and writing
style of the training data. [15]

Another gap is the scalability of transformers for long documents. Trans-
formers use self-attention, where each token relates to all other tokens. [20].

11

Therefore, the runtime increases quadratically with the size of the input,
limiting their applicability to longer texts. In other words, for an input of
size N , the time complexity of the self-attention mechanism is O(N2), which
is sub-optimal.

3.2 Long-Document Summarization

3.2.1 Current State

Summarizing long documents poses problems due to the context that needs
to be maintained across all sentences. Traditional sequence-to-sequence
models struggle with long documents because their memory usage increases
quadratically with the input length. Recent advancements in long-document
summarization address these issues, with solutions such as combining ex-
tractive and abstractive techniques or changing the window across which
attention is computed.

Pilault et al. (2020) [15] proposed a hybrid approach for summarizing long
documents by combining extractive and abstractive summarization. The
method begins with an extractive step, which selects the sentences that have
the most salient (relevant for the summary) content. Then, an abstractive
summarizer rewrites the previously generated summary into the final sum-
mary. This process reduces the computational resources needed while also
ensuring that only the most relevant content is included. This approach
achieved higher ROUGE-1, ROUGE-2, and ROUGE-L scores compared to
other methods, achieving 0.396, 0.121, and 0.357 respectively on the arXiv
dataset. [15]

BigBird, introduced by Zaheer et al. (2020) [21] addresses the issue of the
increased computational complexity for large inputs by introducing a sparse
attention mechanism (visually explained in figure 3.2). Instead of attending
to every single token in the sequence, BigBird combines local attention -
which restricts the tokens that one other token can relate with to a prede-
fined window; global attention - which lets one token relate to all the others
and random attention - where some tokens relate to a random number of
tokens, at random positions in the input. This reduces the quadratic com-
plexity to linear complexity, making it feasible to process long documents.

Beltagy et al. (2020) [3] proposed Longformer, another transformer model
that is optimized for long documents. Similarly to BigBird, it addresses
the problem of the quadratic time complexity by changing the attention
mechanism. A new model is introduced, the Longformer Encoder-Decoder
(LED), which uses both global and local attention. This model has both
the encoder and the decoder from the original Transformer architecture [20]

12

Figure 3.2: Image from the original paper [21]. It shows a comparison
between different types of attention. White color represents no attention.

but instead of having full self-attention in the encoder, it uses the sparse
attention mechanism described earlier. The decoder maintains the full self-
attention. The LED parameters are initialized from BART, therefore, in
order to process 16K token inputs, the 1K positional embeddings of BART
have been copied over 16 times. [3]

3.2.2 Gaps in the Literature

Even though the techniques introduced here address the problem of long
document inputs, one gap still remains: the ability of these models to gen-
eralize across multiple domains. As most summarization models are trained
on news datasets, which are highly extractive due to having most of the
salient content (content that is relevant to the summary) in the beginning,
the model does not learn any patterns that can be transferred over to other
domains. [19]

3.3 ROUGE, BLEU & METEOR

3.3.1 Current State

In order to evaluate the quality of generated summaries, evaluation met-
rics are crucial. ROUGE (Recall-Oriented Understudy for Gisting Evalua-
tion) is widely used for comparing the overlap of n-grams between gener-
ated summaries and reference summaries. [11]. The paper presents multi-
ple variants: ROUGE-1 (measures unigram overlap), ROUGE-N (measures
n-gram overlap), ROUGE-L (measures the longest common subsequence).
One metric commonly used for summarization is ROUGE-LSum (which is
also called Union LCS), which splits the summary into sentences, then com-
putes ROUGE-L for each pair of sentences, finally averaging them out for
a final score. In this way, ROUGE-LSum penalizes differences in sentence
structure more than ROUGE-L. [11]

13

BLEU (Bilingual Evaluation Understudy) [14] and METEOR (Metric for
Evaluation of Translation with Explicit ORdering) [2] are also used in sum-
marization evaluation. BLEU has a similar approach to ROUGE, as it also
counts matching n-grams, but BLEU looks at precision (what percentage of
the generated n-grams are matching n-grams). One other difference between
them is that BLEU applies a brevity penalty for shorter summaries, which
might end up prioritizing precision over recall [14]. METEOR fixes some
of BLEU’s limitations by incorporating synonym matching. Therefore, it
depicts the quality of both abstractive and extractive summaries more ac-
curately. Also, METEOR uses stemming, the process of reducing words to
their root form (for example, “running” becomes “run”). This approach
helps recognize different forms of the same word.

3.3.2 Gaps in the Literature

ROUGE, BLEU, and METEOR primarily focus on n-gram overlap and
might not accurately represent the fluency of a generated summary. Instead,
these metrics reward verbatim copy-pasting over abstractive summarization,
missing the nuances of the text.

Summary

To summarize, transformer models have improved at the task of summa-
rization, due to their self-attention mechanism capturing long-range depen-
dencies better than RNNs. Models like BERT and GPT are very good due
to their large training sets, achieving high ROUGE scores and improved
coherence. However, they struggle with coherence in extractive summaries
and generalization as they are usually fine-tuned on news datasets, which
are highly extractive. This thesis contributes to addressing these gaps by
fine-tuning Longformer Encoder-Decoder (LED) on the big patent dataset,
which is inherently more abstractive and has the salient content better dis-
tributed throughout the data. Therefore, this enhances the existing under-
standing related to improving summary coherence and recall.

14

Chapter 4

Research

This chapter delves into the methodology used to measure the current ca-
pabilities of state-of-the-art summarization models and, subsequently, the
effects of fine-tuning on their performance when dealing with datasets char-
acterized by longer inputs, such as big patent. This analysis is structured
into two principal sub-chapters: the first one evaluates various models in
their ’out-of-the-box’ state, in order to gain a better understanding of their
baseline capabilities; the second one focuses on the fine-tuning of the Long-
former Encoder-Decoder on the big patent dataset, chosen due to its large
context, suitable for the description lengths that will be fed into the model.
The findings from these studies will be examined in-depth in the Results
chapter, providing insights into both the general applicability of these mod-
els to long-document summarization and the advantages of fine-tuning them
for this specific task.

4.1 Benchmarking

4.1.1 Model Selection

In order to choose the appropriate models for the benchmarking, the dataset
was analyzed. With description lengths between 150 and 80.000 words [19],
it required models capable of handling long input sequences. Therefore,
models with large input context windows were prioritized, such as BigBird,
Long T5, and LED, which can manage input lengths up to 16.384 tokens.

Afterwards, various model sizes were included in order to ensure a com-
prehensive range of capabilities. Smaller models like t5-base (223M pa-
rameters) and bart-base (139M parameters) were added to evaluate their
performance in contrast to the larger models.

Finally, both fine-tuned and base versions were selected to assess the im-
pact of task-specific fine-tuning on performance and efficiency. This helps

15

determine if fine-tuned models significantly outperform the base ones in
summarization tasks.

Model Name Max Input Fine-Tuned? No. of params.

t5-base 512 tokens No 223M

bart-base 1024 tokens No 139M

pegasus-large 1024 tokens No 568M

bigbird-pegasus-large-arxiv 4096 tokens Yes 568M

long-t5-tglobal-base-sci-simplify 16384 tokens Yes 248M

led-base-16384 16384 tokens No 406M

Table 4.1: Overview of Selected Models

4.1.2 Dataset Description

The BigPatent dataset is an extensive collection of over 1.3 million U.S.
patent documents, curated for research into summarization. It comprises of
nine different categories, labeled A – H and Y. In our benchmarking and
fine-tuning research, we are only interested in section G (Physics), solely
based on its dissimilarity to the usual news summarization datasets. The
data in category G is split into train, validation and test splits as follows:

• Training Set: 146K rows

• Validation Set: 14.4K rows

• Test Set: 14.4K rows

Most existing summarization datasets are comprised of news articles, where
the summary-worthy content is usually in the beginning. Moreover, in these
datasets, large segments of text are usually present word for word in the
summary, a characteristic called low abstractiveness. These issues impede
the learning of models meant to understand the article’s global structure as
well as produce highly abstractive summaries.

Summary-worthy content, as referred to in the last paragraph, is called
salient content in the literature. Salient content distribution is one of the
strong characteristics of this dataset. In popular summarization datasets
based on news articles such as CNN/Daily Mail or Newsroom, this content
is concentrated in the beginning. In BigPatent documents, on the other
hand, this content is distributed throughout the entire document - figure 4.1
gives an intuition on this matter. This means that, to generate a complete
summary, a model would need to understand the entire text, not just the
beginning.

16

CNN/DM XS NYT NR BP
0

20

40

60

80

100

63
57

53

29

80

P
er
ce
n
ta
ge

of
D
o
cu

m
en
t
(%

)

Figure 4.1: Percentage of the document required to cover all salient words for
different datasets for CNN/DM(CNN/Daily Mail), XS(XSum), NYT(NYT),
NR(Newsroom), BP(BigPatent) [19]

An n-gram is a sequence of n items from a text or speech. For exam-
ple, in the phrase “This dataset is big.” some bigrams (2-grams) are “This
dataset”, “dataset is”, etc. Abstractiveness measures the number of new
n-grams that do not appear in the input text. BigPatent documents are
highly abstractive, containing a higher percentage of new n-grams compared
to other datasets. [19]

Therefore, to sum up, this dataset was chosen for its uniform distribution of
salient content and high abstractiveness, which require models to understand
the global context and generate new summaries.

4.1.3 Evaluation Metrics

To measure the quality of the summaries several evaluation metrics were
used: ROUGE, BLEU and METEOR.

ROUGE has been chosen because it effectively measures the overlap of n-
grams, which is important when trying to determine how much information
from the reference summary has been captured in the generated summary.
BLEU is included because it measures precision, which is particularly im-
portant for models with smaller contexts, like t5-base. Precision refers to

17

the percentage of matching n-grams that are present in the generated sum-
mary, ensuring that even shorter outputs are represented fairly. METEOR
was selected because, unlike BLEU and ROUGE which measure the syntac-
tic similarity, measures the semantic similarity, accounting for variations in
wording or structure.

4.1.4 Experimental Setup

This section will describe the procedure used in conducting the benchmark.
It is implementation-agnostic, as it should be reproducible by anyone reading
this paper; for specific implementation details, please refer to the Appendix.

The procedure begins with loading the dataset, more specifically the test

split of the g category. The reasoning here is that this split consists of data
that will not be encountered during training, so it’s a more accurate measure
of how it will perform on real-world scenarios.

Then, once a model is chosen, it is loaded onto the GPU if available, oth-
erwise onto the CPU. The corresponding tokenizer for the selected model is
also initialized. A tokenizer’s role is to pre-process and transform the input
data from a string to a list of numerical representations, to be then fed into
the model. During tokenization, the input is padded to the required length
of each model. If the input exceeds the model’s maximum token length,
the overflow is handled by returning two chunks: the first one contains the
tokens that fit, the other one contains the tokens that did not. If the tok-
enizer returned two chunks, the approach detailed in 4.1.4 will be performed.

Afterwards, the summarization step begins. Due to the nature of the dataset,
with inputs between 150 and 80.000 words [19], chunking of the input is
often required.

Chunking involves breaking down the text into smaller, more manageable
pieces that fit inside the model context window; each of these chunks have an
overlap of 16 tokens with each other so that the context is preserved. If the
input fits into a single chunk, it is directly passed to the model. Otherwise, if
the input spans multiple chunks, each one is summarized individually. These
chunks are then concatenated and summarized again to produce the final
summary. In the following chapter, this method will be called “Summary of
Summaries” or SOS, in short.

Finally, once inference finishes running, the prediction and its correspond-
ing reference are stored. Once every document in the dataset has been
processed, the evaluation metrics - ROUGE, BLEU and METEOR, are com-
puted using the predictions and references arrays.

18

Figure 4.2: Chunking process with visible overlaps. Each chunk is then
concatenated, tokenized and fed through the model again.

4.1.5 Summary

This benchmarking subchapter outlined the process of evaluating various
summarization models on the BigPatent dataset. It began by justifying
the model selection, which was largely influenced by the maximum input
length of the models. Then, the dataset characteristics have been discussed,
arguing that salient content distribution and abstractiveness are two of the
main advantages of using BigPatent over a regular new summarization
dataset. Afterwards, the choice of evaluation metrics was explained - to de-
velop a balanced evaluation framework which would measure both syntactic
and semantic similarity. Finally, the experimental setup was presented, de-
scribing the chunking mechanism used in order to fit the description of the
patents into the selected models.

4.2 Fine-tuning

4.2.1 Dataset Preparation

In order to preprocess the data effectively, it is important to understand
the distribution of the token lengths within the descriptions and the sum-
maries. This can be achieved by taking a sample from the validation set,
tokenizing it and finally generating a histogram of the tokenized lengths in
order to better visualize the distribution. To determine the number of bins,
the Freedman-Diaconis rule was applied, which considers the interquartile
range and the number of data points, helping ensure an accurate represen-
tation. [8] The histograms reveal that the mean and median lengths of the
descriptions were approximately 10,000 tokens, while the summaries aver-

19

aged around 100 tokens (figure 4.3), which will be helpful in setting up the
padding and truncation strategies.

Figure 4.3: Length distribution of a 10.000 rows sample of the validation
split. The mean and median are displayed.

Now that there is a clearer understanding of the lengths of both descriptions
and inputs, a chunking strategy can be established for the ones that exceed
LED’s 16K tokens input. The approach used involves using an NLP library
in order to split the summary into sentences. If a summary contains fewer
than two sentences, a default value of five is used. This was done in order
to ensure that the input chunks that result are not too large for the model.

For the input descriptions, the text was divided into n chunks, where n
represents the number of sentences in the corresponding summary. This ap-
proach ensures that the mappings of the description chunks and summary
chunks are proportionally aligned, which ensures that the context is not lost.
If the chunk size is larger than 16K tokens, it is truncated. This chunking
strategy was applied uniformly to both the training split and the valida-
tion split, essentially transforming a single description and its summary into
multiple smaller, aligned parts.

Afterwards, each chunk was tokenized and a data collator was employed. As
the data is processed in batches, the data collator finds the maximum length
within each batch and pads all the input sequences and their corresponding
labels to that length, ensuring uniformity in the input of the model.

20

Figure 4.4: The visualization of the chunking process. The mapping between
the chunks are represented by the different colorings.

4.2.2 Hyperparameter Optimization with Optuna

Optuna is a hyperparameter optimization framework designed to automate
the search for optimal hyperparameters for model training - it involves run-
ning multiple trials and evaluating which one performs best. In order to
decide which hyperparameters to try next, it leverages a technique called
Tree-Structured Parzen Estimator (TPE), which involves two big steps.

First, as the trials are completed, Optuna builds a probabilistic model of
the objective function based on the results of the previous trials which es-
timates the likelihood of different hyperparameters achieving good perfor-
mance. Then, it uses an acquisition function in order to balance exploration
(trying new, less certain parameters) and exploitation (focusing on param-
eters that have performed well in the past). This is repeated for each trial
run in order to evaluate different hyperparameter combinations. [1]

In this study, several key hyperparameters were targeted for optimization:
learning rate, number of training epochs, batch size, and gradient accumu-
lation steps. First, the batch size and gradient accumulation steps were
manually increased in order to find the biggest effective batch size (batch
size × gradient accumulation steps) - this is compute-dependent. Then, the
learning rate was varied between 1 × 10−5 and 5 × 10−5 on a logarithmic
scale. The number of epochs was set between 3 and 6, in order to balance
training time and compute power against overfitting. Mixed precision was
used (fp16) - using 16-bit floating-point types as well as the regular 32-bit, in
order to speed up computation, which is particularly useful for large models
such as LED.

The hyperparameter optimization study was conducted with the objective of
maximizing the ROUGE-LSum score, a metric commonly used to evaluate
the quality of generated text by measuring the longest common subsequence
between the reference and generated summaries. The study used Optuna’s
pruning capabilities to terminate unpromising trials early, based on inter-

21

mediate evaluation losses, thus conserving computational resources.

Trial ROUGE-LSum Learning Rate Number of Epochs

0 0.1839 1.44e-05 3

1 0.2022 4.89e-05 3

2 0.1931 4.33e-05 5

3 0.1980 4.50e-05 4

4 0.1931 1.38e-05 4

5,6,7,8,9 Pruned - -

Table 4.2: Results of Hyperparameter Optimization Trials

The optimization results indicate that the highest ROUGE-LSum was achieved
with a learning rate of 4.89e-05 over three epochs - 0.2022. Due to compute
and cost limitations, other hyperparameters were manually set. For exam-
ple, mixed precision float type (both 16-bit and 32-bit representations) was
used in order to reduce computational usage.

4.2.3 Training Process

The training process for fine-tuning began with the initialization of the
model using pre-trained weights from the allenai/led-base-16384 model.
The training and validation datasets were loaded, specifically the g split.
A subset of 9000 samples from the training set and 1000 samples from the
validation set were randomly selected by shuffling the dataset in order to
manage the computational load. Each sample was further split into approx-
imately 6 chunks on average, effectively increasing the number of training
examples to around 50.000 for the training set and 5000 for the validation
set. The training loop involved iterating over the dataset for three epochs,
with each epoch involving forward and backward passes to update the model
parameters based on the computed loss.

The following hyperparameters were used during training:

• optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

• gradient accumulation steps: 2

• learning rate: 4.89e-05

• learning rate scheduler type: linear decay

• train batch size: 2

• eval batch size: 8

22

• num epochs: 3

Evaluation was an important part of the training process, as it helped moni-
tor the model’s performance and ensure it was not overfitting to the training
data. The evaluation occurred at the end of every epoch on the validation
split, with ROUGE-LSum being the primary metric used. ROUGE-LSum is
a variant of ROUGE, in which ROUGE-L is computed at the sentence level,
taking the longest sequence of words that match. Then, the sentence-level
scores are averages in order to get the final score. This is more accurate for
summarization as it penalizes for a structure that is different to the reference
structure.

Training Loss Epoch Validation Loss Rouge1 RougeLSum Generated Length

0.2195 1.0 0.2350 0.2858 0.2370 50.5544

0.1754 2.0 0.2363 0.2895 0.2389 49.5847

0.1428 3.0 0.2412 0.2972 0.2430 46.3260

Table 4.3: Results of Evaluation During Training. Generated Length repre-
sents the length, in tokens, of the generated summary.

As shown in table 4.3, the training loss has decreased consistently across the
epochs, indicating that the model was effectively learning from the training
data. This is a positive sign, showing that the model’s predictions have
become more accurate. While the validation loss remaining relatively stable
is not optimal, as it should have ideally decreased along with the training
loss and then plateaued, the ROUGE scores increasing and the generation
length decreasing are positive signs. This reflects that the summaries are
becoming more concise and potentially more accurate.

4.2.4 Summary

This subchapter details the preprocessing, hyperparameter optimization and
training of the Longformer Encoder-Decoder (LED) model. Token length
distributions are computed - the mean is 10.000 tokens for the descriptions
and 100 tokens for the summaries. Then, the chunking algorithm is de-
scribed - each summary is split into ‘n‘ sentences and then the description
is split into ‘n‘ chunks. After performing a study using Optuna, the model
is fine-tuned with the resulting hyperparameters, showing decreasing train-
ing loss and increasing ROUGE scores, with a final ROUGE-LSum score of
0.2022, indicating effective model training.

23

Chapter 5

Results

This chapter presents the results of multiple experiments to evaluate and
improve LED’s performance on long-form documents. It starts with an
analysis of the benchmarking results from Chapter 4. Then, it continues with
a look into how different prompts influence the output quality of the model,
by looking at standard prompts, instruction-based prompts and example-
driven prompts. Next, we examine the impact of manipulating the length
parameter at inference-time, and how this relates to ROUGE. Finally, we
investigate the role of global attention in handling long-context documents.

5.1 Benchmarking Results

The performance of multiple models was evaluated on a sample from the
test split using ROUGE, BLEU and METEOR. Figure 5.1 presents the
summarized results for each model. These results highlight several factors
that influence the summarization performance like model size and input
length capacity, to name a few.

Model ROUGE-1 ROUGE-2 ROUGE-L BLEU METEOR

T5-base 0.0897 0.0212 0.0737 0.0038 0.0400

BART-base 0.0442 0.0083 0.0396 0.0002 0.0172

Pegasus-large 0.3245 0.0883 0.1904 0.6396 0.1939

BigBird-Pegasus 0.2183 0.0362 0.1410 0.6689 0.1412

Long-T5 0.2821 0.0388 0.1529 0.8348 0.2030

LED-base 0.0563 0.0112 0.0486 0.0387 0.0292

Table 5.1: Benchmark Results on the big patent Dataset

Firstly, it is obvious that larger models (refer to table 4.1.1) perform better
on long-document summarization tasks. For example, Pegasus-large and
Long-T5 both outperformed smaller models like T5-base and BART-base.

24

This is most likely due to the larger number of parameters in the first models,
allowing them to capture more complex patterns and dependencies. Specifi-
cally, Pegasus-large achieved a ROUGE-1 score of 0.3245, significantly higher
than the 0.0897 of T5-base.

Secondly, the ability to handle longer input sequences (refer to table 4.1.1)
seems to be of great importance for extensive documents. Models designed
to process longer sequences, such as BigBird-Pegasus and Long-T5, had
superior performance compared to those with shorter input contexts. For
example, BigBird-Pegasus, with an input length of 4096 tokens, achieved
a ROUGE-1 score of 0.2183, whereas BART-base, limited to 1024 tokens,
only scored 0.0442. This highlights the importance of optimizing for long
contexts, therefore ensuring that the input is not truncated and that the
generated summary is complete and relevant.

Lastly, the degree of fine-tuning and the model objectives impact the perfor-
mance of summarization. Pegasus-large, with its specialized summarization
training, outperformed other models, indicating that models pre-trained on
tasks that closely align to the target task perform better. On the other
hand, the LED-base model, despite having the capacity to handle long inputs
(16384 tokens), achieved lower scores, suggesting that further fine-tuning on
summarization tasks is needed to increase the performance.

5.2 Comparative Analysis of Summary of Sum-
maries Approach

In this experiment, a comparative analysis between a trivial truncation ap-
proach and the Summary of Summaries (SOS) approach (refer to subsection
4.1.4) has been conducted in order to understand if the latter brings any
improvements to the summarization process. The model used in this exper-
iment is the fine-tuned version of LED presented in the previous chapter.

The analysis has been conducted on a sample from the test split, where
the trivial approach truncated each input to 16K tokens, while the SOS ap-
proach used a chunk size of 4K tokens and an overlap of 128 tokens. The
boxplots above present the distributions of ROUGE, BLEU and METEOR
for both methods. All three evaluation metrics have been employed in order
to understand both recall and precision.

Looking at the boxplots, it is obvious that the SOS approach scored better
on every metric. For ROUGE, scores range from 0.081 to 0.574 for the trun-
cation, while for the SOS approach, they range from 0.137 to 0.500, showing
a smaller range and thus more stable results. The mean scores are also

25

Figure 5.1: Boxplots comparing truncation(left) with summary of sum-
maries(right). All scores were scaled by a factor of 100 to display them
better .

higher - 0.276 for SOS compared to 0.236 for truncation. BLEU scores are
drastically better in the second approach, with a mean of 0.083 for SOS and
0.023 for truncation. This shows that the truncation method lacks precision,
meaning that it generates content that is not relevant to the reference sum-
mary. Finally, METEOR scores, the most comprehensive of the three due to
it comparing both recall and precision, with synonym matching, also show
that the SOS approach performs more qualitative summaries. The mean
score for SOS was 0.223, while the mean score for the truncation method
was 0.127. Therefore, it is clear that using a two-step approach like SOS
helps in generating more relevant summaries (shown by the higher precision)
and to also retain the key information (shown by ROUGE and METEOR).

5.3 Prompt engineering

Prompt engineering is the practice of optimizing the prompts that are fed
into the model in order to maximize the model’s performance. For this
experiment, the fine-tuned LED model from the previous chapter is used.
Mathematically, given a prompt P , the model generates a response R by
sampling from the probability distribution P (R | P). The model calculates
the probability of each token ri in the response sequence r1, r2, .., rn based
on the prompt P and previously generated tokens.

P (R | P) =

n∏
i=1

P (ri|r1:i−1, P)

Changes in the prompt P can significantly influence the values of these

26

probabilities and therefore change the response R. Every transformer model
has a vocabulary - a list of all the words it can use. For each ri, a raw
prediction score (logit) is generated for every single word in the vocabulary.
Finally, these are passed through a softmax function in order to make sure
all the probabilities sum up to 1. This example showcases how the prediction
step works for the basic prompt “The device converts thermal energy”:

P (“into” | “The device converts thermal energy”) = 0.7

P (“to” | “The device converts thermal energy”) = 0.2

P (“and” | “The device converts thermal energy”) = 0.05

P (other tokens | “The device converts thermal energy”) = 0.05

The highest probability is assigned to “into”, so the model would likely
generate “into” as the next token. In order to evaluate the influence of
different prompts on the quality of the output, an experiment was conducted
using these four prompt categories:

• Basic: “Summarize the following patent:”

• Contextual: “Summarize the following patent related to Physics:”

• Instruction-Based: “Provide a brief summary highlighting the key
innovations and technical details of the following patent:”

• Example-Driven: “Here is an example of a good summary: {example}.
Now, summarize the following patent in a similar manner:”

For each one, inference was run on a sample from the validation split and
the ROUGE-LSum score was computed. The results are plotted on the can-
dlestick chart in figure 5.2.

Quantitatively, the results indicate that, while the prompts influence the
result, they do it in a manner that marginally modifies the ROUGE scores.
These scores can be split in two categories: a broad interquartile range and a
higher median (Basic and Example-Driven) or a narrower interquartile range
but a lower median (Contextual and Instruction-Based). The first category
shows variability but effective performance, suggesting that providing ex-
amples during inference, also known as few-shot inference, improves (even if
marginally so) the results of the basic prompt. The second category shows
more stability but suggests that adding context alone is not sufficient, but
rather detrimental to the quality of the output.

27

Figure 5.2: Distribution of ROUGE-LSum scores for each prompt type on
the fine-tuned LED model. The candlestick body represents Q1 to Q3,
the dot represents the median and the line extends to the minimum and
maximum values.

5.4 Maximum Length Variation During Inference

When generating summaries with a model, the minimum and maximum
length parameters can be modified during inference. Practically, the model
will not generate an <end> token until it reaches the minimum length, and it
will forcefully generate the same token if it goes past the maximum length.
This allows for observations into how variation in the length of the output
influences the quality. In this experiment, various minimum - maximum
length ranges were examined (8-16 tokens all the way up to 128-256 tokens)
and ranked based on the ROUGE-LSum score of the generated summaries.
The model used in this experiment is the fine-tuned version of LED presented
in the previous chapter. Table 5.2 outlines these results.

Length Range Q1 Median Q3 IQR

8-16 tokens 0.1197 0.1561 0.1730 0.0533

16-32 tokens 0.1623 0.2109 0.2625 0.1002

32-64 tokens 0.2336 0.2810 0.3897 0.1561

64-128 tokens 0.2624 0.3668 0.5709 0.3085

128-256 tokens 0.2606 0.3608 0.6057 0.3451

Table 5.2: ROUGE-LSum Scores for Different Length Parameters. IQR here
represents the interquartile range.

28

Looking at it from a quantitative standpoint, the data indicates that, as the
maximum length parameter increases, the ROUGE-LSum score increases
as well, meaning that long outputs present better results. For example, the
median score rises from 0.15 for the 8-16 tokens range to 0.36 for the 128-256
tokens. This was expected, as the median length of the summaries in the
training set is around 150 tokens, which suggests that allowing the model
to generate longer text helps with improving contextual understanding.

However, it is important to note that higher ROUGE scores might also
be due to the higher number of words generated, meaning that there is a
higher likelihood that one of the generated words is in the reference sum-
mary. Since ROUGE does not penalize for additional content not in the
reference, longer summaries might simply score higher due to their length,
which is why there is a need to also perform a qualitative analysis. Despite
this, the interquartile range increases from 0.05 to 0.34 as the length of the
output increases, which indicates higher variability.

Next, a qualitative analysis will be performed in order to better understand
the differences. Here are examples of generated text with 32 and 128 tokens
to illustrate the practical impact and compare key ideas:

Reference Summary: “A magnetic resonance imaging method for high-
quality short echo time imaging uses FID-acquired-echoes. Gradient recalled
echoes are excited in two short echo time acquisition sequences having op-
posite polarity reading gradients. Half-echoes for corresponding phase en-
coding steps are concatenated to reconstructed echoes. An image is recon-
structed from the reconstructed echoes using a Fourier transform reconstruc-
tion method. With the method, artifact-free high-quality images with echo
times below 4 msec can be obtained, even under unfavorable conditions,
such as fast blood flow.”

32-token Output: “The invention relates to a magnetic resonance imag-
ing method, in which an object is situated in a stationary homogeneous
magnetic field and is subjected to an acquisition sequence”

• Missing key ideas: FID-acquired echoes, gradient-recalled echoes, artifact-
free high-quality images

128-token Output: “The invention relates to a magnetic resonance imag-
ing method in which an object is situated in a stationary homogeneous
magnetic field and is subjected to an acquisition sequence for acquiring a
magnetic resonance signal from a region of the object, the acquisition se-
quence comprising an rf-pulse for exciting atomic spins in the object, a phase
encoding gradient, and a reading gradient which is reversed for acquiring the

29

magnetic resonance signal, the acquisition sequence being repeated a num-
ber of times with a different value of the time integral of the phase encoding
gradient.”

• Missing key ideas: artifact-free high-quality images

These examples showcase that the shorter output is incomplete and misses
critical details such as FID-acquired echoes and gradient-recalled echoes,
while the longer one provides a more detailed version, but still misses the
idea of an artifact-free image. This aligns with the quantitative data, demon-
strating that maximizing the minimum and maximum length parameters
during inference time can enhance the thoroughness of the generated text.

5.5 Global Attention

Attention is a mechanism in transformer models in which each token weighs
the importance of all the other tokens. This works well for shorter in-
puts, but being quadratic in time complexity, it becomes impractical for
long documents. This results in increased memory and computational re-
quirements. Therefore, in order to address this problem, the Longformer
Encoder-Decoder (LED) uses both local attention and global attention. Lo-
cal attention restricts each token to attend to a predefined number of neigh-
bors (for LED it is 1024), while global attention allows certain tokens to
attend to all the other tokens in the sequence, capturing long-range depen-
dencies more effectively.

An experiment was conducted in order to compare the performance of the
fine-tuned version of LED (presented in the previous chapter) using local
attention versus using both local and global attention. In this experiment,
global attention was applied to the first token of the input, as this token
should have the context of the entire text, while in the local attention setup,
no tokens had global access. Table 5.3 outlines the results of computing
ROUGE-LSum on the generated summaries.

Attention Type Q1 Median Q3 IQR

Local 0.2699 0.3700 0.5815 0.3116

Global 0.2692 0.3959 0.5713 0.3026

Table 5.3: ROUGE-LSum Scores for Different Attention Types. IQR here
represents the interquartile range

These results indicate that using global attention improves the model’s per-
formance drastically. Even though global attention was applied only to the

30

first token, this resulted in an increase from 0.37 to almost 0.40, demon-
strating better summary quality. Also, the interquartile range for global
attention is lower, indicating less variability with global attention and more
consistent results.

Summary

This chapter details the different experiments that were conducted in or-
der to optimize the quality and performance of the LED model fine-tuned
on big patent. First, the results of the benchmarking show that models
with longer input sequences, more parameters and with model objectives
similar to the target task perform better. Then, a look into how prompts
influence the results showed that the influence is marginal, with basic and
example-driven prompts performing slightly better. Afterwards, it is shown
that having longer outputs can improve the ROUGE scores and provide
a more complete summary. Finally, global attention is discussed, and it
is established that global attention drastically improved the quality of the
summary, at the price of extra computational resources.

31

Chapter 6

Conclusions

This thesis explored the application of transformer models in the context of
long-form documents, specifically for U.S. Patents, which have lengths that
can go up to 80.000 words. The central research question was to determine
which transformer performs the best summarization of U.S. patents and how
effectively this model can be adapted and fine-tuned for better results.

6.1 Key Findings

The key findings indicate that larger models, such as Pegasus-Large and
Long-T5 outperform smaller ones like T5, due to their ability to cover more
complex patterns. Also, models optimized for longer sequences, such as
BigBird and Longformer Encoder-Decoder(LED) demonstrated superior
performance. Fine-tuning LED on the BigPatent dataset improved ROUGE
scores compared to the non-finetuned version, although further fine-tuning
is necessary for optimal performance. Additionally, adding global attention
significantly enhanced the model performance, resulting in better summary
quality, as shown by the increasing ROUGE scores.

Implications and Future Work

The findings from this thesis contribute to understanding how transformers
can be optimized for summarization of lengthy documents like U.S. Patents.
Future work could focus on more advanced fine-tuning methods or additional
training using more powerful computing. Also, one other aspect that future
papers could focus on is using more powerful evaluation metrics, that better
capture the quality of a summary, besides n-gram overlap.

32

Bibliography

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and
Masanori Koyama. Optuna: A next-generation hyperparameter op-
timization framework. arXiv preprint arXiv:1907.10902, 2019.

[2] Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric
for MT evaluation with improved correlation with human judgments. In
Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation
Measures for Machine Translation and/or Summarization, pages 65–72.

[3] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The
long-document transformer. CoRR, abs/2004.05150, 2020.

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners.
CoRR, abs/2005.14165, 2020.

[5] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase rep-
resentations using RNN encoder-decoder for statistical machine trans-
lation. CoRR, abs/1406.1078, 2014.

[6] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical evaluation of gated recurrent neural networks on se-
quence modeling. CoRR, abs/1412.3555, 2014.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language un-
derstanding. CoRR, abs/1810.04805, 2018.

33

[8] David Freedman and Persi Diaconis. On the histogram as a density
estimator: L2 theory. Probability Theory and Related Fields, 57(4):453–
476, 1981.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9:1735–80, 12 1997.

[10] Urvashi Khandelwal, Kevin Clark, Dan Jurafsky, and Lukasz Kaiser.
Sample efficient text summarization using a single pre-trained trans-
former. CoRR, abs/1905.08836, 2019.

[11] Chin-Yew Lin. ROUGE: A package for automatic evaluation of sum-
maries. In Text Summarization Branches Out, pages 74–81, Barcelona,
Spain, July 2004. Association for Computational Linguistics.

[12] Yang Liu and Mirella Lapata. Text summarization with pretrained
encoders. CoRR, abs/1908.08345, 2019.

[13] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural
networks. CoRR, abs/1511.08458, 2015.

[14] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu:
a method for automatic evaluation of machine translation. In Pro-
ceedings of the 40th Annual Meeting on Association for Computational
Linguistics, ACL ’02, page 311–318, USA, 2002. Association for Com-
putational Linguistics.

[15] Jonathan Pilault, Raymond Li, Sandeep Subramanian, and Chris Pal.
On extractive and abstractive neural document summarization with
transformer language models. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2020.

[16] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Ex-
ploring the limits of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683, 2019.

[17] Murat Sazli. A brief review of feed-forward neural networks. Commu-
nications Faculty Of Science University of Ankara, 50:11–17, 01 2006.

[18] Robin M. Schmidt. Recurrent neural networks (rnns): A gentle intro-
duction and overview. CoRR, abs/1912.05911, 2019.

[19] Eva Sharma, Chen Li, and Lu Wang. BIGPATENT: A large-
scale dataset for abstractive and coherent summarization. CoRR,
abs/1906.03741, 2019.

34

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in neural information processing systems,
volume 30, 2017.

[21] Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie,
Chris Alberti, Santiago Ontañón, Philip Pham, Anirudh Ravula, Qifan
Wang, Li Yang, and Amr Ahmed. Big bird: Transformers for longer
sequences. CoRR, abs/2007.14062, 2020.

35

Appendix A

Implementation Details

This appendix provides an overview of the implementation of the bench-
marking and fine-tuning processes for the LED model on the big patent

dataset. While the full codebase is hosted on GitHub here, the following
sections highlight some of the most interesting parts of the implementation.

A.1 Computational Setup

All development was done using Hugging Face Spaces, utilizing an Nvidia
N10G with 12 vCPUs, 46GB RAM, and 24GB VRAM. The libraries used
include:

• Transformers 4.38.2

• PyTorch 2.2.1+cu121

• Datasets 2.18.0

• Tokenizers 0.15.2

A.2 Benchmarking

In order to run the benchmark, a Hugging Face Space has been created.
Gradio is leveraged as a front-end framework, in order to iterate rapidly.
The interface takes as input a list of models, taken from a YAML file, and
outputs the Evaluation Scores (ROUGE, BLEU and METEOR) for that
model.

Listing A.1: app.py

1 i f a c e = gr . I n t e r f a c e (
2 fn=evaluate model ,
3 inputs =[

36

https://github.com/andreiujica/transformers-summarization

4 gr . Dropdown(c h o i c e s =[model [’name ’] for model in
mode l s con f i g] , l a b e l=” S e l e c t Transformer Model”) ,

5] ,
6 outputs =[
7 gr .JSON(l a b e l=” Evaluat ion Scores ”) ,
8]

The Auto Class from Hugging Face is used to load the models, as it is able
to deduce the model architecture from the name provided. Then, the model
is set to evaluation mode - this deactivates certain layers only used during
training.

Listing A.2: summarize.py/load model and tokenizer

1 model = AutoModelForSeq2SeqLM
2 . f r om pre t ra ined (model name)
3 . to (dev i ce)
4 model = model . eva l ()

Inside the summarization function, we define multiple keyword arguments.
An important one is num beams, used during Beam Search. Beam search is
an optimization algorithm that explores multiple possible sequences (beams)
simultaneously to find the most likely output. Also, no repeat ngram size

is set to 2 in order to avoiding repeating 2-grams and making more abstrac-
tive summaries. Finally, if the model supports it, global attention is used.
The difference is that, unlike normal attention, which limits each token to
attend only to a window of surrounding tokens, the global attention attends
to each one in the input, enhancing the understanding of the context.

Listing A.3: summarize.py/summarize and score

1 model kwargs = {
2 ” i n p u t i d s ” : i nput id s ,
3 ” attent ion mask ” : attent ion mask ,
4 ” r e t u r n d i c t i n g e n e r a t e ” : True ,
5 ”num beams” : 4 ,
6 ” no repea t ngram s i z e ” : 2 ,
7 ” e a r l y s t o p p i n g ” : True ,
8 ∗∗kwargs
9 }

10

11 i f hasa t t r (model . con f i g , ’ attent ion window ’) :
12 g l oba l a t t en t i on mask = torch . z e r o s l i k e (attent ion mask)
13 g l oba l a t t en t i on mask [: , 0] = 1
14 model kwargs [’ g l oba l a t t en t i on mask ’] =

g l oba l a t t en t i on mask
15

16 summary pred ids = model . generate (∗∗ model kwargs)

37

A.3 Fine-Tuning

In order to split the summary into sentences, NLTK Punkt has been used. It
is a pre-trained sentence tokenizer that utilizes unsupervised machine learn-
ing in order to find sentence boundaries.

For the training step, the Hugging Face Trainer has been used instead of a
regular training loop with PyTorch. This is because the Trainer automates
various tasks that would otherwise require custom code such as: batching,
gradient accumulation and mixed precision training. Also, it integrates with
the Hugging Face Hub, making it easy to publish a model. Here is a link to
the published andreiujica/led-base-bigpatent model. Below is a sim-
plified example of how the Hugging Face Trainer works.

1 t r a i n i n g a r g s = Seq2SeqTrainingArguments (
2 l e a r n i n g r a t e=4e −05,
3 num train epochs =6,
4 (. . .)
5)
6

7 t r a i n e r = Seq2SeqTrainer (
8 args=t r a i n i n g a r g s ,
9 t r a i n d a t a s e t=t r a i n d a t a s e t ,

10 e v a l d a t a s e t=va l da ta s e t ,
11 compute metr ics=compute metr ics
12)

38

https://huggingface.co/andreiujica/led-base-big-patent

	Introduction
	Research Question
	Structure of the Thesis

	Preliminaries
	Deep Learning Basics
	The Transformer Architecture
	Large Language Models (LLMs)
	Text Summarization Techniques
	Evaluation Metrics for Summarization

	Related Work
	Extractive & Abstractive Summarization
	Long-Document Summarization
	ROUGE, BLEU & METEOR

	Research
	Benchmarking
	Fine-tuning

	Results
	Benchmarking Results
	Comparative Analysis of Summary of Summaries Approach
	Prompt engineering
	Maximum Length Variation During Inference
	Global Attention

	Conclusions
	Key Findings

	Implementation Details
	Computational Setup
	Benchmarking
	Fine-Tuning

