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Abstract

In this research, we jointly train openAI’s speech recognition system with
two closely related tasks: speaker and speech recognition. We extend the
multitasking setup of the whisper network to carry out speaker recogni-
tion tasks alongside automatic speech recognition. We show that Whisper’s
timestamp tokens can be repurposed as speaker IDs, and that Whisper can
learn speakers’ discriminative features through these tokens. Furthermore,
we show that the integration of these specialized tokens during the fine-
tuning process of the network benefits automatic speech recognition perfor-
mance.
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Chapter 1

Introduction

The speaker and speech recognition market has significantly increased in the
last decade and is anticipated to further increase in the coming years [1].
With the growing reliance on speaker recognition (SR) for security access to
authenticate users and speech recognition (ASR) for  ̏hands-free˝ interaction
with devices, researchers continue to explore these two fields despite the
significant improvements already achieved. One remarkable point in this
progress is that these two tasks are treated separately, although closely
related.

The interrelation between speaker and speech recognition stems from
their mutual reliance on acoustic features extracted from the speech sig-
nal and similarities in network architecture, although for different purposes.
ASR models aim to identify the sequence of words that correspond to a
given speech signal. SR models aim to extract discriminative features from
speech signals that describe a certain speaker. In essence, this problem is
cast to extracting local and global features from the speech signal, that is,
ASR tries to capture information that varies quickly in speech like words,
subwords, or any speech unit. While SR tries to capture general information
that describes the whole speech signal to verify or identify the speaker [18].

State-of-the-art SR systems are based on deep neural networks, such as
RNNs and CNN to extract a fixed length speaker embeddings [10], [24] from
a given utterance, this is usually done by extracting frame-level embeddings
and then aggregate them to produce utterance-level speaker embeddings of
fixed length. Similarly, ASR models used the same network as an acoustic
model to extract linguistic units from a speech signal [15]. With the intro-
duction of transformers, attention is shifted toward pre-training large models
for ASR tasks [4]. This network has been successfully used for SR with a
minimal change in the architecture due to the capability of transformers to
extract local and global features [19]. Moreover, it has been shown that
phonetic representation, usually used in ASR tasks, can enhance SR perfor-
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mance [21]. Recently, Openai has introduced the state-of-the-art Whisper
model [20]. The model excels in various tasks including speech activity
detection, language identification, speech translation, and ASR with an im-
pressive performance particularly in accurately transcribing English speech.
The of this model stems from the large data used in the training phase
and the task-specific tokens that guide the model to perform different tasks.
However, The model lacks SR capability.

In this research, we further explore the Whisper network to perform SR
tasks alongside ASR. We use timestamp tokens as speaker IDs to train the
model to distinguish between different speakers without changing the net-
work structure. Further, we evaluate the performance of the model trained
to distinguish between different speakers in the ASR task.

The rest of this paper is structured as follows: Chapter 2 gives an
overview of the concepts and metrics of deep learning used in this research.
The next section explains the research done for this paper. Previous re-
search into the subject of employing ASR and SR is delved into in section
4, and section 5 closes off with the conclusions drawn from our research.
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Chapter 2

Preliminaries

This chapter provides an overview of the basic requirements that have been
used in this paper: an overview of acoustic features, transformers, auto-
matic speech recognition (ASR), speaker recognition (SR), and the inner
architecture of the Whisper model.

2.1 Feature extraction

Feature extraction is converting speech signals into acoustic feature vectors
that describe them over a fixed time. Logarithmic Mel spectrogram is a type
of spectrogram commonly used in speech recognition [3, 9]. Generating log-
mel spectrogram is created through several steps: First, the speech signal
is divided into short overlapping frames (usually these frames range from
20 to 40 ms in duration, with an overlap of 50%, also known as the stride
or shift, between consecutive frames). Each frame is then passed through
a windowing function, typically a Hamming window [23], as shown in Fig-
ure 2.1a, to reduce spectral leakage, this crucial step as the speech signal is
non-stationary.

Next, the short-time Fourier transform (SFT) is applied to each win-
dowed frame to convert the signal from the time to frequency domain, pro-
ducing a power spectrum [11]. From the power spectrum, Mel filterbanks
are applied Figure 2.1b. These filterbanks are designed to mimic the non-
linear human perception of sound [9], where frequencies are binned into mel
frequency bins rather than linear frequency bins. Finally, we take the log-
arithm of each of the Mel spectrum values. The model used in this paper
takes as input a log-mel spectrogram with 80 channels (bins).

1Source: https://web.stanford.edu/~jurafsky/slp3/16.pdf
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(a) 25 ms rectangular window with a 10ms
stride

(b) The mel filter bank Each triangu-
lar filter, spaced logarithmically along the
mel scale, collects energy from a given fre-
quency range

Figure 2.1: 1

2.2 Convolutional layer

A convolutional layer is commonly used in neural networks to process image
data. A convolutional filter, defined by the kernel size parameter, is essen-
tially a small window that slides over the input image. At each position, the
filter computes a weighted sum of the pixels it covers. The kernel size pa-
rameter specifies the dimensions of these filters. Pading and stride, are also
commonly used to adjust the size of the output. While the former extends
the dimension of the output, the latter reduces it by adjusting the step in
which the sliding window operates. For an input with dimension (inh,inw),
kernel of size (kh, kw), padding (Ph, Pw), and stride (Sh, Sw), the dimension
output can be computed by:

Outh ×Outw = ⌊ inh − kh + Ph + 1)

Sh
⌋ × ⌊ inw − kw + Pw + 1)

Sw
⌋

The convolutional layer can be used to reduce the computational complexity
of processing a spectrogram [3].

2.3 Byte level encoding

Byte-level BPE is a compression technique frequently employed in natural
language processing (NLP) to tokenize text. It operates by iteratively merg-
ing the most common pairs of bytes until it achieves the desired vocabulary
size or a specified level of compression. The tokenizer breaks down the text
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into individual bytes. Each character in the text is represented by one or
more bytes according to its encoding (UTF-8 is used in the case of Whisper’s
tokenizer).

2.4 Transformers

Transformers were first introduced in 2017 by Ashish Vaswani in the paper
Attention is all you need. They transform a set of vectors X = (x1, . . . , xN )
in some representation space into a corresponding set of vectors Y = (y1, . . . , yN ),
having the same dimension in some new space with richer representation.
xi can represent a word in a sentence, a patch in an image, a frame in a
speech signal. The output yi, depends on the entire input sequence X. The
foundation that underpins the transformer is attention and parallelism. At-
tention is where the model learns to focus more on parts of the input that
are more relevant to the output and  ̏ignore˝ those that are not relevant.
the relevance is computed by; First, creating three matrices that serve as
query (Q), key (K), and value (V ). These matrices are created by projecting
the input X onto three learned weight matrices WQ, WK ,and WV . Second,
compute the attention scores which can be dot product between Q and K
matrices scaled by a factor proportional to their dimension; Finally, these
scores are passed through a softmax function to obtain attention weights,
which are then applied to V to produce the context vectors. A single trans-
former layer is composed of two components: multi-head attention, which is
attention applied multiple times in parallel, and a fully connected layer to
adjust the output of one transformer layer to be an input for the next layer.

The transformer encoder and decoder have an equal number of trans-
former layers. The difference is that the transformer decoder layer employs
two types of attention: self-attention and cross-attention. Self-attention is
attention applied within a single sequence, where the key, query, and value
are constructed from the same sequence. Cross-attention, also known as
encoder-decoder attention, involves two sequences. In this case, the key
and value are derived from the encoder’s hidden states, whereas the query
is derived from the output of the decoder’s self-attention. In this case,
cross-attention computes the relevance of the encoder’s hidden state to the
decoder’s prediction. One more difference in the attention is that; attention
used in an encoder’s transformer layer is full, i.e., the attention is computed
over the whole sequence, whereas in the decoder’s layer, attention is causal,
that is, at time step t, attention is computed over only the previous  ̏past˝
tokens i < t.
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2.5 Automatic Speech recognition

Automatic speech recognition (ASR) models aim to accurately map a se-
quence of acoustic features O = (o1, . . . , oT ) to a sequence of words/tokens
W = (y1, . . . , yn). These acoustic features are extracted from the audio sig-
nal as explained in section 2.3. Traditionally, ASR models are composed of
three sub-models [22]: acoustic model, lexical model, and a language model.
The role of the acoustic model is to map acoustic features to a linguistic
unit, widelly used unit are phonemes. The lexical model which is simply a
dictionary that describes how words are pronounced phonetically. Finally
the langage model [7] estimates the order of this sequence of words. This
approach is complicated to optimize, as each model is optimized separately.

In contrast, end-to-end ASR models map speech sequences directly to
word sequences using a single network [17] where the aim is to determine
a prediction Ŵ = argmaxWP (W |O). Most commonly used appraches to
model P (W |O) are: attention based models such as Whisper [20], Connec-
tionist Temporal Classification (CTC) [13], and RNN-T [12]. The last is
an encoder-decoder model that doesn’t rely on a cross-attention mechanism
to model the conditional probability distribution of predicting the output
units. The network consists of several components:

• Encoder: A normal acoustic model that can be a transformer encoder.

• Decoder (known as predictor): An autoregressive language model.

• Joiner: A feedforward network that concatenates the encoder and de-
coder hidden states, passes them to a fully connected linear layer and
then applies a softmax to output the probability distribution over all
vocabulary units, including a skip token Ø.

At each time step, if the prediction is not , the predicted token is added to
the decoder input, and the encoder processes the next audio frame. If not,
the decoder’s input remains unchanged while the encoder processes the next
time step. Essentially, this approach is similar to CTC but with the ability
to look at the previously generated tokens.

2.6 Whisper

Whisper [2] is a transformer encoder-decoder-based model trained in a su-
pervised manner on 680,000 hours of multilingual audio samples. The model
comes in various sizes—tiny, base, small, medium, and large—differing in
the number of transformer blocks and attention heads. Using a leading set
of special tokens, the model is guided to perform different tasks such as tran-
scribing from 99 different languages to English. All pre-trained checkpoints
are available in Hugging Face transformers. Training Whisper requires data
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Figure 2.2: Whisper [2]

consisting of speech signals paired with their corresponding transcriptions.
Training can be summarized in 6 steps:

• prepare transformer encoder input: The input of the transformer en-
coder is a sequence of vectors represent the speech signal of 30 seconds.
the speech signal is processed by the feature extractor and produces a
fixed size 2D dimension matrix of shape 80×3000, where 80 represents
the number of channels and 3000 represents the time steps. This is
further processed by two convolutional layers that further extract local
features (extending the size of the vectors from 80 to dmodel) which is
the inner dimension of the transformer encoder, and reduces the di-
mension to 1500 × dmodel. Adding a positional encoding results in a
sequence of vectors Z of shape 1500× dmodel

• prepare transformer decoder input: The tokenizer maps the input text
to a sequence of tokens in the range [0, 51864]. Tokens are transformed
to embedding vectors from the learnable embedding, which can be seen
as a look-up table over the vocabulary size; adding positional encoding.
The result is forwarded to the transformer encoder

• The transformer encoder maps the sequence Z through N blocks of
transformer encoder blocks to a context vectors C having the same
dimension.
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• transformer decoder with causal self-attention, that is, mask out the
future tokens, predicts the probability over transcriptions conditioned
through cross-attention on C.

• Fully connected linear layer processes the last decoder hidden states
and outputs a vector of dimension the size of the vocabulary for each
token, known as logits, that are transformed to probabilities using the
softmax function. Finally depending on the generation strategy, where
the simplest one is greedy search, the model selects the token with the
highest probability.

• cross-entropy is applied to measure whether the model learns the cor-
rect alignment between the predicted tokens and the truth labels dur-
ing training.

2.7 Speaker Recognition

Speaker Recognition (SR) is the problem of identifying or verifying the iden-
tity of a speaker based on their voice characteristics. In practice, standard
SR protocol involves three steps [14]: training, enrollment, and evaluation.
In the training step, acoustic features are extracted from the speech signal
and passed through a DNN [5], to extract frame-level speaker features (em-
bedding), followed by statistical pooling (average) to aggregate frame-level
speaker feature vectors. The embeddings are subsequently projected over
the speaker IDs in the training, and a loss function is used such as cross-
entropy loss to penalize wrong mapping from utterance to speaker ID. The
aim of this phase is to train the model to extract compact embeddings to
be able to generalize to new speakers. At the enrollment phase, the model
is trained on a specific set of utterances belonging to new speakers. Finally
the model is evaluated on a pair of utterances, one from the enrolment set
and a verification utterance. Evaluation is based on comparing the similar-
ity of embedding pairs using a similarity function such as a cosine function.
The resulting score is then compared to a threshold to decide if they belong
to the same speaker or by different speakers. This approach requires that
the model has a prior knowledge of the speakers used during evaluation at
the training time. In this paper, we evaluate Whisper on trials involving
speakers who were unseen during the training phase. Two types of errors
can represent the performance of the SR system; False Acceptance Rate
(FAR), and False Rejection Rate (FRR). FAR occurs when the system clas-
sifies a pair of utterances uttered by two different speakers to be uttered by
the same speaker. FRR, on the other hand, is the frequency of incorrectly
classifying pairs of utterances uttered by the same speaker to be uttered by
different speakers.

This approach requires that the model has a prior knowledge of the
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speakers used during evaluation at the training time. In this paper, we
evaluate Whisper on trials involving speakers who were unseen during the
training phase.

The performance of SR system can be represented by two types of er-
rors; False Acceptance Rate (FAR), and False Rejection Rate(FRR). FAR
occurs when the system classifies a pair of utterances uttered by two differ-
ent speakers to be uttered by the same speaker. FRR, on the other hand,
is the frequency of incorrectly classifying pairs of utterances uttered by the
same speaker to be uttered by different speakers.

The receiving operating characteristic (ROC) curve is an evaluation met-
ric for the binary classifier that plots the probability of correct acceptance
(1-FRR) against FPR at various decision threshold values. Adjusting the
threshold in a binary classification model impacts the trade-off between False
Acceptance Rate (FAR) and False Rejection Rate (FRR). Increasing the
threshold tends to decrease the FAR while increasing the FRR, and vice
versa. The value for equal FRR and FAR is called the equal error rate
(EER). Evaluating SR model using EER requires many pairs of speech seg-
ments.

2.7.1 Word Error rate

The word error rate (WER) is a metric used to evaluate the performance
of ASR models by comparing the aligned actual transcription of the au-
dio (reference) and the generated output sentence (hypothesis). The WER
calculation can be expressed as follows:

WER =
S +D + I

N

Here, in the formula, S represents the number of substitutions, D represents
deletions, I represents insertions, and N is the total number of words in
the reference sentence. The closer the WER value is to 0, the fewer errors
there are between the reference and hypothesis, indicating better ASR model
performance.
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Chapter 3

Research

In this chapter, we will first provide an overview of the data pipeline, explain
the steps used to fine-tune the Whisper models with and without speaker
IDs. and finally, evaluate the performance of the models in both tasks as
well as the effect of finetuning using speaker ids on the ASR task.

3.1 Data

Our research employs the clean Librispeech dataset[2] for both tasks: speaker
verification and speech recognition. The data is a corpus of English speech
derived from audiobooks designed to train and evaluate ASR systems. Each
audio file in the data set is in FLAC format. The datasets use a specific nam-
ing for each audio file, for example, the file named 1034-121119-0000.flac.
Here:

• Speaker ID: 1034

• Book ID is: 121119

• Utterance ID: 0000

Each speech signal corresponds to a sentence spoken by the speaker,
which we use as a label. We use the three partitions of this dataset: training
set, development set, and testing set. We further divide the training set into
training and validation subsets to train and validate the loss in the SR task.
Specifically, we split the training set into an 80% training subset and a 20%
validation subset. This is achieved by grouping the training set by speaker
IDs and then randomly selecting 20% from each group for the validation
set. Thus, the train and validation set have the same set of speakers. All
datasets are stored in CSV files. Each row in the file consists of:

• Path to the FLAC file: The file path to the audio file.

• Speaker ID: The identifier for the speaker in the audio file.
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• Utterance ID: The identifier for the specific utterance.

• Transcription: The textual transcription of the spoken utterance.

Dataset samples speakers av.length

train 22725 251 12.68

validation 5814 251 12.71

development 2692 40 7.07

test 2609 40 7.32

Table 3.1: Number of samples, number of unique speakers, and average
length of utterances for each of the datasets we consider for our experiments

3.2 Pre-processing

To fine-tune multilingual Whisper models. The data requires pre-processing
steps. Fine-tuning requires pairs of audio and labels; the maximum audio
length that Whisper can handle is 30 seconds; the maximum length of labels
is 448. The encoder stack takes as input a sequence of acoustic features
extracted from the audio signal, while the decoder takes as input a sequence
of word tokens, in the range of the vocabulary size, extracted from the labels.
Both audio and labels have to be processed separately before starting the
training process.

The pre-trained Whisper checkpoints provided by HuggingFace1 Trans-
formers are used in this research. The complete code is shared on GitHub2

3.2.1 Filtering the data

Audio files that are longer than 30 seconds are removed from the data. we
use Liberosa to load and convert the audio files from FLAC to waveform
with a 16000 sampling rate. The output of this function is an array that
represents frequency information in the audio file. The duration of the audio
can be determined as:

d =
N

R
(3.1)

where N is the total number of samples in the waveform, and R is the
sampling rate

1Whisper: https://huggingface.co/docs/transformers/model_doc/whisper
2GitHub: https://github.com/faycel-dev/bachelor_thesis
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3.2.2 Feature-extraction

Feature extraction is performed using Librosa, which processes the waveform
array extracted from a speech signal into a log-mel spectrogram representa-
tion. This function performs the following:

• Padding: The waveform representation is padded to a fixed length of
30 seconds by appending zeros at the end of the array. These zeros
represent silence in the frequency representation of speech.

• Log-Mel Spectrogram Transformation: The padded waveform is then
transformed into a log-mel spectrogram representation, as explained
in section 1. The sampling rate parameter is set to 16,000 Hz

3.2.3 Label tokenization

Whisper’s tokenizer encodes and decodes the labels for both the SR and ASR
tasks. The tokenizer can be seen as a bijective function that maps a sequence
of words to a sequence of integers within the range of 0 to 51,464. Similarly,
the tokenizer decoder performs the inverse mapping. The output of the
tokenizer is a dictionary with input IDs and an attention mask, unlike the
input speech, the transformer encoder requires attention mask information
as the labels are of variable lengths. In the ASR task, encoding the labels
is straightforward, however, encoding the speaker IDs is challenging as we
need to keep track of these tokens in the last hidden layers. For example, a
speaker with the id 134 is divided [13, 4], then it maps them to [4762, 18].
We want all speaker ID information to be encoded in a single embedding,
so we need a single-token encoding of the speaker ID. Therefore we used the
time stamp tokens, i.e. [50364,..,501464], as speaker IDs. This is done by
sorting speaker IDs in data and incrementing each speaker ID by its index
in the list and 50363. To fine-tune the model on the ASR task, we utilize
the encoded labels generated by the Whisper tokenizer. In both SR and
ASR tasks, the speaker ID is encoded in the token sequence. Specifically,
the speaker ID is included as the third position in the tokenized labels array.
Table 3.2 provides an example. To this point, the class LibriSpeechDataset
is used for the previously explained processing steps, the class initializes the
parameters by parsing a CSV file and uses Liberosa to load the audio files.
Get Item to process feature extraction and tokenization as well as encoding
the speaker IDs in the tokenized labels. Returns a dictionary with keys
input features, input-ids, and speaker-ids and values array.

3.2.4 Shift-right and padding

The model internally appends a token ID of the start of the sentence to
the input IDS of the decoder; hence, to preserve alignment between the true
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type SID label decoder input IDs

1 50366  ̏Hi˝ [<SOT>, 50259, 50359, 50363, 17155, 50257]

2 50366  ̏Hi˝ [<SOT>, 50259, 50359, 50363, 50366,17155, 50257]

Table 3.2: decoder input IDs used during fine-tuning ASR (type 1) task and
jointly ASR and SR (type 2). SID denotes speaker ID.

labels and the predicted labels, removing the start of the transcription token
from the true label is required to keep alignment between the true labels and
the predicted labels. The model is trained to minimize the cross entropy loss
between the ground-truth labels and the predicted labels. Since the labels
are of different lengths, padding to the maximum length in a mini-batch
is required. Whisper encodes padding tokens as −100, which are mapped
internally to <|endoftext|>, but are ignored in computing the loss.

3.3 Finetune Whisper models

We fine-tune four whisper models: tiny, base, small, and medium with and
without freezing the encoder parameters. We use PyTorch Lightning to
simplify the fine-tuning process. We train all models for 6000 steps (ap-
proximately 4 epochs). We used a two-stage learning rate scheduler with
ADAM optimizer [16], we make use of 10% of the training steps for warmup,
followed by exponentially decreasing in the remaining training steps. the
maximum learning rate and the proportion of the steps used during training
are summarized in table A.

We use an effective batch size of 16 for all models; depending on the
batch size that we can use for each model, we increase the gradient accu-
mulation steps to mimic training with a batch size of 16 for bigger models;
that is, the model weights will be updated after accumulating the gradients
of 16 data samples.

3.4 Evaluation

The fine-tuned models are evaluated based on their performance on ASR
and SR tasks. Evaluation is done by comparing the decoded output by the
model (also known as the hypothesis) with the decoded ground-truth labels
(also known as the reference).

To evaluate the performance of the models on ASR task, we use the
WER metric. The WER penalizes ASR models for trivial differences, such
as punctuation and casing. To ensure that these are not mistakenly con-
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sidered errors in the ASR task, we normalize the models’ output before
computing the WER. Furthermore, we remove speaker identities from the
models’ output and labels before decoding them to the text format.

Performance on the SR task is evaluated using the equal error rate
(EER). Computing EER requires extracting embedding for each speaker
in the development and test sets. Whisper predicts the probability distri-
bution for the next token Yi by conditioning on all previous tokens and the
encoder’s last hidden states

P (Yi|C) =

i∏
t=1

P (Yi|Yt≤i−1, C)

where C is the encoder’s last hidden states, Y is the decoder input IDs
with length T, and Y0 = <|startoftranscript|>.Since speaker ID tokens
are encoded at the third time step in the decoder input IDs, the model is
designed to predict the token at that time step. We assume that,

argmaxP (Y3|Y0, Y1, Y2, C) ∈ [50364, . . . , 51464]

And since P (Y 3|Y 0, Y 1, Y 2, C) is just the projection of the decoder’s last
hidden states over the vocabulary size, which is the logit at the third time
step

P (Y 3|Y 0, Y 1, Y 2, C) = argmax(logits(t3))

, then embedding at index three of the decoder’s last hidden state is the
most representative of the speaker ID token. To verify this assumption,
we examined the number of samples in the development and test datasets
where the speaker ID token is correctly predicted at the third time step.
We found that in the validation set, all speaker IDs were predicted correctly
at time step three. In the development and test sets, the speaker tokens
appeared correctly in all samples for the tiny model. However, for the other
models, there was a small number of samples where the speaker tokens did
not appear, as shown in Table A.1

SR models are evaluated by giving them many pairs of speech segments.
However, creating pairs from the test dataset can be redundant. Assume
we have N audio samples, for each sample i, we extract speaker embedding
vector ei. Let E ∈ RN × d, be the matrix of embeddings, where d is the
dimension of each embedding vector.

E =


e1

e2

..

..

eN
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First, normalize each embedding vector ei to have unit length by dividing
it by its Euclidean norm. Compute the cosine similarity matrix between all
pairs of embeddings. Let E be the matrix of normalized embeddings, where
each row represents an embedding.

S = EE⊤ (3.2)

Here, S is the similarity matrix, where Sij is the cosine similarity score
between the embeddings i and ej . Since cosine similarity is symmetric, S is
also symmetric and the diagonal will be 1 (since the similarity of a vector
with itself is 1). Therefore, for efficient computation of the EER, we can
consider only the upper triangle matrix.

UpperTri(S) = {Sij | i < j} (3.3)

Similarly, we generate a binary label matrix L, where Lij = 1 if the
embeddings i and j belong to the same speaker and Lij = 0 otherwise, and
we consider only the upper triangle matrix. Flattening these two matrices
results in two arrays: one for labels and one for scores, where each score
is labeled with 1 for the same speaker and 0 for different speakers. These
arrays are then used to compute the EER.

3.5 Experiments & Results

In this section, we evaluate the performance of the fine-tuned models. The
experiments are conducted in the Radboud cluster. We fine-tuned each
model separately for ASR and jointly for ASR and SR using the same hy-
perparameters. Checkpoints were saved at the end of each training epoch.
We evaluated the performance of the saved checkpoints using the develop-
ment set. The checkpoint with the lowest EER was selected as the fine-tuned
model, which was then used to test the performance on the test dataset.

Model
Tiny Base Small Medium

Dev Test Dev Test Dev Test Dev Test

HF 8.16 7.55 6.01 5.04 3.41 3.5 3.44 2.88

ASR 6.67 6.82 4.76 4.6 3.23 3.37 2.32 2.56

ASR + SR 6.75 6.9 4.78 4.76 3.21 3.44 2.32 2.55

EER 11.4 12.6 10.81 9.83 10 10.4 7.5 7.9

Table 3.3: compare WER and EER on the development and test data sets
for models fine tuned on ASR, ASR + SR. HF refers to the base multilangual
chekpoints (not fine-tuned).
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3.5.1 Speaker recognition

In this Section, to answer our first research question, from the results in
Table 3.3, we observe that the models fine-tuned using speaker ID tokens
are comfortably under 50%. This indicates that Whisper can perform SR
tasks. The lowest EER achieved is for the medium model with 7.5 and 7.9
for the development and the test datasets, respectively. Whisper is originally
pre-trained for ASR task, therefore, it may be possible that the model loses
speaker features before reaching the last layer.

By further inspecting speaker embedding from different layers of the de-
coder stack but in a similar way, i.e., third index in the decoder hidden layer.
The results in Table 3.3 show that the EER for almost all models is increas-
ing in the top layer compared to the lower layers. Therefore, extracting
speaker embeddings from lower layer is more beneficial for SR.

3.5.2 Speech recgnition

Fine-tuning Whisper multilingual checkpoints indeed enhanced the models’
capability and improved the WER scores. Results in Table 3.3 show sig-
nificant improvement for the tiny model, with a reduction from 7.55% to
6.82%. The overall best performance is achieved by the larger models, with
the Medium model achieving 2.32% and 2.55% for the development and test
datasets, respectively.

Fine-tuning using speaker ID tokens shows a slight degradation in the
models’ performance. This might be because we trained the models with
the same training effort. However, the performance of the medium model
did not degrade and even showed a slight improvement.
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decoder layer
Tiny Base Small Small

Dev Test Dev Test Dev Test Dev Test

0 50 50 50 50 50 50 50 50

1 16.04 14.29 12.25 11.14 10.84 10.47 36 38.2

2 13.27 13.67 13.43 11.65 10.30 8.33 27.1 30.5

3 12.6 12.59 12.72 11.1 10.76 8.48 24.5 27.6

4 11 12.6 12.96 11.28 8.45 6.87 22.6 23.7

5 - - 11.38 9.78 7.78 6.84 12.8 14.4

6 - - 10.81 9.83 7.38 7.03 12.6 13.9

7 - - - - 7.42 7.32 13.8 15.1

8 - - - - 7.88 7.99 14.5 15.6

9 - - - - 6.73 6.94 14.2 15.4

10 - - - - 8.10 6.85 12.5 14.9

11 - - - - 7.72 7 13 15.2

12 - - - - 10.04 10.35 15 16.9

13 - - - - – – 14.5 15.6

14 - - - - – – 13.1 14

15 - - - - – – 8.4 8.5

16 - - - - – – 8.1 8.5

17 - - - - – – 7.7 8.5

18 - - - - – – 7.9 8.6

19 - - - - – – 7.5 7.7

20 - - - - – – 7.8 8.2

21 - - - - – – 8 8

22 - - - - – – 8 8.1

23 - - - - – – 8 8.2

24 - - - - – – 7.5 7.9

Table 3.4: EER for development and test sets for different models. Speaker
embeddings are extracted from all decoder’s output layers at the third time
step
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Chapter 4

Related Work

In this section, we will discuss some of the previous work that has been
done in joint training of ASR and SR recognition. As we mentioned in the
introduction, ASR and SR have been treated as two separate research areas.

Tijn [6] showed that the wave2vec.2.0 network, a self-supervised pre-
trained model, can perform three tasks: ASR, SR, and speaker change de-
tection. Tijn showed that by introducing speaker class tokens in the target
label, the network could simultaneously learn the phoneme tokens and the
speakers/speaker-change tokens. Using this approach, he showed that the
network’s performance on ASR slightly degraded when combining ASR and
SR for a single utterance. Using trials, the knowledge learned by the net-
work about the speakers enhanced its performance in ASR task
Besides this, most papers are inducting fine-tunig large model for a specific
task rather than multitasking.

[8] explored the representations extracted from transformer encoder mod-
els, specifically Wav2Vec 2.0, HuBERT, and UniSpeech-SAT to verify the
speaker. In this approach, Chen employed the ECAPA-TDNN architecture
on top of these pre-trained models to extract speaker embeddings, utilizing
input from various layers of the pre-trained models. Despite achieving com-
mendable results, Chen’s experiments indicated an interesting finding: the
lower layers of the pre-trained models exhibited a greater ability to capture
speaker-related information than their higher-layer counterparts. This ob-
servation suggests that the early layers in the transformer-based models are
more effective in capturing features relevant to speaker verification.

Contribution: The main contribution of this paper is integrating speaker
recognition (SR) capability into the multitasking stack of the Whisper archi-
tecture. We demonstrate that the Medium model can learn speaker discrim-
inative embeddings without degrading its performance on the ASR task.
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Chapter 5

Conclusions

We have shown that we can build a speaker recognition system alongside
speech recognition using a whisper network. By incorporating a speaker ID
token into the decoder input IDs, Whisper can learn to associate speaker
features with the corresponding speaker’s ID. Fine-tuning Whisper for joint
tasks has slightly increased the model’s performance in ASR tasks. Further-
more, richer speaker features can be extracted from lower decoder layers.

Although we have shown that Whisper can perform SR alongside ASR,
the data wasn’t suitable for both tasks. Librispeech consists primarily of
audiobook readings, resulting in a lack of spontaneity and natural conver-
sational speech patterns. Consequently, SR models can’t learn much from
this data. This issue can be mitigated by using a dataset specifically col-
lected for SR, such as Voxceleb, but this data lacks transcriptions, posing
a challenge for our task. Future work could, for example, use Whisper to
transcribe Voxceleb.
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Appendix A

Appendix

A.1 Trining hyperparameters

Model Max lr rate Batch size Gradient accumulation

Tiny 5e-5 16 1

Base 3e-5 8 2

Small 1.5e-5 2 8

Medium 1e-5 1 16
The learning rates are chosen after a hyperparameter search for a peak

learning rate, as we are using a two-stage learning rate schedule. For each
model, we test learning rates in the range {5, 3, 1.5, 1} × 10{−4,−5,−6}. We

then select the learning rate that produces the lowest WER in the
development set. This selected learning rate is then used to train the

model on both speaker and speech recognition tasks

Model validation development test

Tiny 0 0 0

Base 0 1 0

Small 0 1 0

Medium 0 10 32

Table A.1: number speaker ID tokens that didn’t apear at the third time
step of the models’ output tokens. These tokens didn’t appear at all in any
other time step
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Figure A.1: Loss

Figure A.2: WER
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Figure A.3: Loss training and validation

Figure A.4: Enter Caption

26



Figure A.5: WER

Figure A.6: loss
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