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Abstract

We consider the classic problem of black-box conformance testing. Suppose
that we have a known specification FSM/Mealy Machine S and a hidden
implementation FSM/Mealy machine M. We can use k-complete test suites
to test if they are equivalent, under the assumption that M has at most k
more states than S. We build on recent work in conformance testing and the
L# algorithm to prove a new set of sufficient conditions for k-completeness
in terms of Observation trees and apartness.
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Chapter 1

Introduction

If we have a known system and a hidden system (black box), can we somehow
infer if they display exactly the same behaviour? Can we design a set of tests
to show if the systems are equivalent? This is the main question posed in
the field of black-box conformance testing.

The problem consists of two Mealy machines (a.k.a. Finite State Machines,
FSM): A visible specification S and a hidden implementation M. We want
to design a finite set of test words which we call a test suite T . A test passes
if the outputs of S and M are equal for this particular test, otherwise it
fails. This idea goes back to work by Moore [10].

If it were possible, we would design complete test suites. These would be
test suites where S and M are equivalent if and only if every test passes.
Intuitively speaking, this is impossible because M can always have states
that ’pretend’ to be states in S up to a certain point, and then start behaving
differently. Then, even though S and M are not equivalent, it would take a
word of infinite length to show this.

However, we can do something similar to complete test suites by making an
additional assumption about S and M. We assume that for some k P N,
M has at most k more states than S. Then we can make a test suite where
S and M are equivalent if and only if every test passes. We call this a
k-complete test suite.

Over the years various methods to construct k-complete test suites have
been proposed. The first and most well-known of these is without a doubt
the W -method by Vasilevskii and Chow [16] [3]. An advantage of the
W -method is that its definition is relatively simple. The main downside
is that it generates a lot of redundant tests. Removing these tests from the
test suite would still result in a k-complete test suite. This is why various
other test suites build on the W -method in order to decrease the amount
of redundant tests. A few prevalent examples are the HSI-method [7] [11],
the UIOv-method [2] and the ADS-method [6]. We will discuss these in

5



chapter 4.

A very recent development is a 2024 paper by Vaandrager [14] in which
quite a different approach to conformance testing is presented. Instead of
considering individual tests, a tree structure called an Observation tree is
used to store test results. Vaandrager proves that a test suite is k-complete,
given a set of assumptions on states in the Observation tree. This approach
was mostly inspired by the L# algorithm [15], and the concept of apartness
[5].

In this bachelor thesis, we continue this idea. We show that for a set of
slightly different assumptions on states in the observation tree, a test suite
is also k-complete. We use a different, more direct approach to proving
k-completeness than in previous work. Interestingly enough, it appears that
our assumptions do not imply the results of Vaandrager, and neither the
reverse.

Our results might help future researchers in designing more efficient
test suites. Furthermore, they contribute towards a deeper theoretical
understanding about conformance testing. Our results may also help in
finding necessary conditions for k-completeness. These are conditions where
if they do not hold, it follows that a test suite is not k-complete.

Apart from our work on k-completeness, we take a closer look at the
identification property of states in observation trees. The goal was to find
clever ways to identify states with the least amount of tests possible.

We provide a brief outline of the future chapters.

2. Preliminaries: We present the necessary background theory needed for
our results in sufficient detail. In particular, the concepts of apartness
and Observation trees.

3. Research: We provide a Theorem about k-completeness. Additionally,
we provide a counterexample to a hypothesis about identification and
prove a related Theorem about identification.

4. Related work: We give an overview of most methods for generating
test suites from the literature. We show that the k-completeness of
each of these is a Corollary from our Theorem about k-completeness.

5. Conclusion & future work: We discuss the implications of our results
and propose applications and future work.
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Chapter 2

Preliminaries

This chapter is inspired by the 2022 L# paper by Vaandrager et al. [15] and
the 2024 conformance testing paper by Vaandrager [14].

2.1 Mealy Machines / FSMs

A Mealy Machine, also known as a Finite State Machine, is a state machine
where each transition has both an input symbol and an output symbol. They
were first created by George H. Mealy in 1955 [8]. Figure 2.1 shows an
example of a simple Mealy Machine called M.

Figure 2.1: Simple example of a Mealy Machine called M

The input alphabet of Mealy Machine M is I “ ta, bu, and the output
alphabet of Mealy Machine M is O “ tX,Y u. The set of states of M
is QM “ tq0, q1u.

Transitions are denoted as arrows. Take for example q0
a{X
ÝÝÑ q1. Here a{X

means that for this transition, the input symbol is a and the output symbol
is X. q0 is left of the arrow and q1 is at the right of the arrow, hence the
transition is from state q0 to q1.
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Formally, transitions are defined by transition function δ and output function
λ, which describe for some state q P QM and some letter i P I, to what state
the transition should go, and what should be the output symbol of this

transition. For the transition q0
a{X
ÝÝÑ q1, δpq0, aq “ q1, and that λpq0, aq “

X.

We extend the domain of these functions to define them for words of
length greater than one. Then we simply continue to the next transition,
using the next input letter. In Figure 2.1, δpq0, aaq “ δpq1, aq “ q0 and
λpq0, aaq “ λpq0, aq ¨ λpq1, aq “ X ¨X “ XX. Note that we use the symbol
¨ for concatenation, but we leave this implicit most of the time.

Definition 2.1 (Mealy machine). A (partial) Mealy machine M is a
tuple M “ pQ, q0, δ, λq, where:

• QM is the finite set of states of M.

• q0 is the initial state.

• the (partial) transition function δ : Qˆ I˚ á Q, which satisfies the
equations:

δpq, ϵq “ q

δpq, iσq “ δpδpq, iq, σq

• the (partial) output function λ : Q ˆ I˚ á O, which satisfies the
equations:

λpq, ϵq “ ϵ

λpq, iσq “ λpq, iq ¨ λpδpq, iq, σq

Note that δpq, iq Ó if and only if λpq, iq Ó.

We might write δpM, σq or λpM, σq. This is equivalent notation to δpqM0 , σq
or λpqM0 , σq.

As we see in Definition 2.1, for some state q P Q and some letter i P I, it
is not always the case that λpq, iq Ó. If the state’s transition and output
functions are defined for all letters, the state is called complete. If not it is
called partial.

We can also extend this notion to Mealy machines themselves, not just their
states. We say that a Mealy machine is complete, if all of its states are
complete.
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Definition 2.2 (Complete and partial). Let M be a Mealy machine.

A state q P QM is complete if λpq, iq Ó for all i P I. If q is not complete,
then it is partial.

A subset W Ď QM is complete if @q P W : q is complete. Otherwise W is
partial.

M is complete if QM is complete. Otherwise M is partial.

We discussed transitions before, but now we formally define them. In this
bachelor thesis, we will use both transitions and the λ and δ functions. They
are equivalent notations and we might implicitly switch between them.

Definition 2.3 (Transition). Let M be a Mealy machine with states q, r, P
QM, σ P I˚, and χ P O˚, and let n P N, then:

q
σ{χ
ÝÝÑ
n

r ðñ δpq, σq “ r ^ λpq, σq “ χ^ |σ| “ n^ |χ| “ n

q
σ{χ
ÝÝÑ r, then n “ 1.

q
σ{χ
ÝÝÑ

˚
r, then n ě 0

q
σ{χ
ÝÝÑ

`
r, then n ą 0

We might omit σ, r, or χ if they are irrelevant.

2.2 Apartness and equivalence

The idea of apartness in this bachelor thesis is adapted from Vaandrager
et al. in 2022 [15], although its origins can be traced through Geuvers &
Jacobs in 2021 [5] back to Brouwer.

Suppose we have states q and r. Then q and r can be either apart or
non-apart. If they are apart, this means that there is some word σ P I˚

where λpq, σq and λpr, σq are both defined, but λpq, σq ‰ λpr, σq. We then
say that σ witnesses their apartness. If no there is no such witness they are
non-apart.

Figure 2.2 shows partial states q, r and s, along with all their successors.
States q and r are apart (denoted q#s). This is shown by witness aa.
(denoted aa $ q#s). The word aa is a witness because λpq, aaq Ó and
λps, aaq Ó and λpq, aaq “ XX ‰ XY “ λps, aaq.

To the contrary, for q and r there is no such witness that tells them apart.
Then q and r are non-apart, denoted by q��#r.
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Figure 2.2: States q, r and s that demonstrate apartness.

Definition 2.4 (Apartness). Let M and N be (possibly equal, possibly
partial) Mealy machines and q P QM and r P QN :

• If there exists a word σ P I˚, such that λpq, σq Ó and λpr, σq Ó and
λpq, σq ‰ λpr, σq, then q and r are apart, denoted q#r. Moreover, we
say that σ witnesses that q and r are apart, denoted σ $ q#r. σ is
called a witness or separating sequence.

• If q and r are not apart, then @σ P I˚, λpq, σq Ó ^λpr, σq Ó: λpq, σq “
λpr, σq. We say that states q and r are non-apart, denoted q��#r.

Note that in most testing literature a witness is known as a separating
sequence.

There is a useful property of apartness, called Weak co-transivity. For the
proof, we refer to Vaandrager et al. in 2022 [15].

Lemma 2.1 (Weak co-transivity, Lemma 2.8 in [15]). In every Mealy
machine M,

σ $ r#s^ δpq, σq Óùñ r#q _ s#q

We define a notion that is similar to apartness and non-apartness but it
works on complete Mealy machines instead of states, namely Mealy machine
equivalence.

Definition 2.5. Let M and N be complete Mealy machines:

• M and N are equivalent, if for all σ P I˚ : λpM, σq “ λpN , σq. We
denote this as M « N .

• If M and N are not equivalent, then Dσ P I˚ : λpM, σq ‰ λpN , σq We
say that N and M are inequivalent. We denote this as M ff N .
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2.3 Conformance testing

In order to explain conformance testing, we first need to define the
specification and the implementation. The fixed specification S is some
Mealy machine where we have access to all states and transitions. The fixed
implementation M is a Mealy machine for which we do not have access to
the inner workings. We can only give input sequences to M and observe
the outputs. We assume that both S and M are complete, and that S is
minimal.

The problem of conformance testing can be stated as follows: we would like
to know if S is a correct specification of M. That is, whether S « M or
S ffM.

For this purpose, we create a test suite. This is a set of words that are fed
into both S and M in order to see whether they give the same output. We
would like a test suite to be complete, which means that S «M, if and only
if all tests in the test suite get the same output from both S and M.

Definition 2.6 (Test suite). A test suite is a finite subset T Ă I˚.

Test suites are always finite. As it turns out, this means that a test suite
can never be complete. This is illustrated by Figure 2.3. It takes a word of
length greater than n P N to show that S « M, but n can be arbitrarily
large.

Figure 2.3: Example that demonstrates that no test suite is complete

To resolve this, we have to resort to making an additional assumption about
the implementation. Namely that M has at most k P N more states than
S, i.e. |QM| ď |QS | ` k. If we work under this assumption, we are doing
k-conformance testing, with test suites that are k-complete.

Definition 2.7 (k-complete test suite). A test suite T is k-complete, if
and only if |QM| ď |QS | ` k and @σ P T, λpS, σq “ λpM, σq implies that
S «M.
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As aforementioned, there exists various methods to generate test suites that
are k-complete.

2.4 Observation trees

We might think of test suites not as a set of individual tests, but and
Observation tree. This idea is by no means new, going back at least to
Simão et al. in 2012 [12]. The basic idea is that the information obtained
from each test is stored in a Mealy machine that takes the form of a tree.

In graph theory, a tree is a graph where there is exactly one path to each
state. We apply a similar idea to Mealy machines: If for each state in Mealy
machine T , there is exactly one word that reaches this state, then T is a
tree. Figure 2.4 (left, middle) shows two examples of Trees. One of these
also happens to be an observation tree.

Definition 2.8 (Tree and access sequence). Let T be a Mealy Machine,
and let state q P QT . An access sequence of q, denoted as accesspqq is a
word in I˚ such that δpT , σq “ q.

A Tree T is a partial Mealy machine for which it holds that for each state
q P QT , there exists exactly one access sequence.

Like aforementioned, we would like to use a tree structure to store the
information that we have obtained from each test. Suppose that we have a
(hidden) implementation M and a test suite T . For each test word σ P T ,
we take the output in M, λpqM0 , σq. Then we store this output information
in an Observation tree.

Figure 2.4 shows examples of (Observation) trees. We see an example T1
(left) of an observation tree obtained by running T “ ta, babu on M (right).
Indeed, for all words σ in the test suite T , λpT1, σq is defined and it matches
the output from M. We also see a non-example T2 (middle). There, we

have one transition t0
b{Y
ÝÝÑ t2 that does not match M (right).
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Figure 2.4: Example T1 (left) of an observation tree for M (right), with
T “ ta, babu on M. T2 (middle) is a Tree, but not an observation tree for
M.

The states in T1 and M are colored. This coloring has a purpose: A word
leads to a blue state in T1 if and only if it leads to a blue state in M. The
same holds for green states.

The formal definition of an observation tree is based on this idea. We have
a function f : QT1 Ñ QM where fpt0q “ fpt2q “ q0 (green), and fpt1q “
fpt3q “ fpt4q “ q1 (blue). We call this a functional simulation.

Definition 2.9 (Functional simulation). A Functional simulation f :
T ÑM between Mealy Machines T and M is defined as a map f : QT Ñ

QM where fpqT0 q “ qM0 , and q
i{o
ÝÝÑ q1 implies fpqq

i{o
ÝÝÑ fpq1q.

Then T simply is an observation tree for M if such a functional simulation
exists.

Definition 2.10 (Observation tree). T is an observation tree for M if
T is a tree, and there exists some functional simulation f : T ÑM.

There is a Lemma on functional simulations that we will use in chapter 3
later on.

Lemma 2.2 (Lemma 2.7 in [15]). For a functional simulation f : QT Ñ QM

and q, r P QT :

q#r ùñ fpqq#fprq

We fix T as an observation tree for both S and M.

2.5 The basis and frontiers

In this section, we will be using the notion of apartness (and non-apartness)
to divide the states of T into a number of disjoint sets: the basis and the
frontiers.

We start by explaining the intuition. Consider the colored states in Figure
2.4 again. One may think of the basis B as a subset of QT where every color
appears at least once, and for every state q P B Ď QT , the predecessor of q
is also in B.

Figure 2.5 shows an example of an observation tree with a basis and frontiers.
Note that for this particular combination of T and S, there are multiple
possibilities for the basis. In this example we have B “ tt0, t1u, but B “

tt0, t1, t2u is also an option.
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The 0-level frontier F 0 is then the set of successors of B which are not in B
themselves. F 1 is the set of successors of F 0, F 2 is the set of successors of
F 1, etc.

Figure 2.5: An observation tree T (left) for specification S (right). The
basis set B of T is indicated, as well as the frontiers.

Now we formally define the basis using state covers. A state cover of a Mealy
machine S is a set of words such that all states in S are reached. In Figure
2.5, tϵ, au is an example of a state cover for M. A state cover must be finite,
as well as prefix-closed. The latter means that for every word in the state
cover, its prefix must also be present.

Definition 2.11 ((Exact) state cover). A set of words W Ď I˚ is
prefix-closed, if for all σ PW , all prefixes of σ are also in W .

A state cover AS Ď I˚ of Mealy machine S is a finite, prefix-closed set
such that: for every state q P QS : Dσ P AS , δpS, σq “ q.

A state cover is exact if there are no two words v, w P AS , v ‰ w, such that
δpS, vq “ δpS,wq.

Note that a state cover only exists if there are no unreachable states.

We fix AS as a state cover of S.

Definition 2.12 (Basis). The basis B Ď QT of a tree T , given a state
cover AS is defined as B “ tq P QT |accesspqq P ASu.

Definition 2.13 (k-level frontier). For k P Z:

14



F k “

$

’

’

’

&

’

’

’

%

tq1 P QT zB | Dq P B, i P I : q1 “ δT pq, iqu if k “ 0

tq1 P QT | Dq P F k´1, i P I : q1 “ δT pq, iqu if k ą 0

H if k ă 0

Făk “
ď

iăk

F i

Fďk “
ď

iďk

F i

We fix B to be the basis of T with state cover AS , and we fix the k-level
frontiers accordingly.

2.6 The candidate set

For each state q in QT we define a candidate set. This is the set of states in
B that are not apart from q.

Definition 2.14 (Candidate set). For each state in q P QT , q has a
candidate set Cpqq “ tq1 P B | q1

��#qu.

If |Cpqq| “ 1, then q is identified.

A subset W Ă QT is identified if @q PW : q is identified.

Figure 2.6 is an example for these candidate sets. We have an observation
tree T (left) for Mealy machine M, with basis B “ tt0, t1u.

• The only information we have about t2 is that it responds X to input
a. It is neither apart from t0 nor t1 because these both λpt0, aq “ X
and λpt1, aq “ X. Therefore both remain in the candidate set Ct2 “

tt0, t1u. t2 is not identified.

• For t3 we know that t3#t0 because λpt0, bq “ X ‰ λpt3, bq “ Y .
Therefore only t1 remains in the candidate set Ct3 “ tt1u. t1 is
identified.

• For t4 we know that t4#t1 because λpt1, bq “ Y ‰ λpt4, bq “ X.
Therefore only t0 remains in the candidate set Ct4 “ tt0u. t4 is
identified.

Because we have no observations for F 1 in this particular observation tree,
it is the case here that for each q P F 1, simply Cpqq “ B “ tt0, t1u.
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Figure 2.6: Illustration of an observation tree (left) for Mealy machine M
(right). The candidate sets of each state in F 0 are added.

We present another useful Lemma here. If the basis B is identified, then
every two non-equal states are apart. The proof has been deferred to
Appendix A.5.4.

Lemma 2.3 (Identified basis, A.5.4). If B is identified, then:

@q, r P B : q “ r _ q#r
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Chapter 3

Research

Our most notable result is the k-completeness Theorem.

Theorem 3.1 (k-completeness). Let T be an observation tree for both S
(with functional simulation f) and for M. Let AS be a state cover for S.
B is a basis set of T , based on AS. The k-level frontiers F 0 . . . F k are based
on B.

If B Y Făk is complete and B Y Fďk is identified, |QM| ď |QS | ` k, and
Assumption 3.1 holds:

Assumption 3.1. In T :

@q, r P Fďk : q ÝÑ
`

r ùñ fpqq “ fprq _ q#r

then:

S «M

Two less notable results are a counterexample for Hypothesis 3.1 and a proof
of Theorem 3.2 which is based on the Hypothesis.

Hypothesis 3.1 (Strong cascading identification). Let T be an observation
tree for both S (with functional simulation f). Let AS be a state cover for
S. B is a basis set of T , based on AS. The k-level frontiers F 0 . . . F k are
based on B.

If B Y F 0 is identified and Fďk is complete, then:

F k is identified ùñ Făk is identified

Theorem 3.2 (Cascading identification). Let T be an observation tree for
both S (with functional simulation f). Let AS be a state cover for S. B is
a basis set of T , based on AS. The k-level frontiers F 0 . . . F k are based on
B.

If AS is exact, B Y Făk is complete, and Assumption 3.2 holds:
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Assumption 3.2.

@q P Făk : @s P B : pfpqq “ fpsq _ q#sq _ p@i P I : δps, iq P Bq

then:

F k is identified ùñ Fďk is identified

We prove Theorem 3.1 in section 3.1. Furthermore, we give a proof for
Theorem 3.2 in section 3.2, and a counterexample to Hypothesis 3.1 in
section 3.3.

3.1 Proof for Theorem 3.1

In sections 3.1.1-3.1.6, we provide a series of Lemmas which are used in the
proof of Theorem 3.1 in section 3.1.7. For each Lemma, a reference of the
section of the Appendix with the proof is included in the title.

We avoid restating this boilerplate information in each Lemma.

• If T is an observation tree for S, we assume that we have functional
simulation f : T Ñ S and a state cover AS of S. The basis B for T is
based on AS and the k-level frontiers F 0 . . . F k are based on this B.

• If T is an observation tree for M, we assume that we have functional
simulation g : T ÑM.

3.1.1 Transitions and completeness

These Lemmas have in common that they work on transitions and
completeness, but have nothing to do with apartness or identification.

Lemma 3.1 (Same transition, A.1.1). Let T be a Tree.

For q, r, q1, r1 P QT , v P I˚ with q
v
ÝÑ
˚

q1 and r
v
ÝÑ
˚

r1:

q “ r ðñ q1 “ r1

Lemma 3.2 relates to the completeness of the frontiers: If Făk is complete,
then it follows for any state in F 0 that all words of length less than or equal
to k are defined.

Lemma 3.2 (Defined words, A.1.2). Let T be an observation tree for S.

If Făk is complete, then:

@q P F 0 : @σ P I˚ : |σ| ď k ùñ λpq, σq Ó
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Lemma 3.3 is somewhat similar to Lemma 3.2, but it is concerned with the
completeness of the basis instead of the frontiers.

Lemma 3.3 (Frontier prefix, A.1.3). Let T be an observation tree for S.

If B is complete, then @q, P B,@σ P I˚, λpq, σq Ò:

Dq1 P F 0 : Dv P proper-prefixpσq : q
v
ÝÑ
`

q1

3.1.2 Transition apartness and non-apartness

We present two interesting properties of apartness, namely transition
apartness and transition non-apartness. We could say that they are
opposites.

Lemma 3.4 (Transition apartness, A.2.1). Let N be a (partial) Mealy
machine.

For all q, r P QN , v, w P I˚:

vw $ q#r ðñ v $ q#r _ w $ δpq, vq#δpr, vq

Lemma 3.5 (Transition non-apartness, A.2.2). Let N be a (partial) Mealy
machine.

For all q, r P QN :

p1q @σ P I˚, δpq, σq Ó ^δpr, σq Ó: Dv P prefixpσq : λpq, vq “ λpr, vq ^ δpq, vq��#δpr, vq

ùñ q��#r

and

p2q q��#r ùñ

@v P I˚, δpq, vq Ó ^δpr, vq Ó: λpq, vq “ λpr, vq ^ δpq, vq��#δpr, vq

3.1.3 Shortest witnesses

In our proof for Theorem 3.1, the notion of the shortest witness plays a
central role.

Definition 3.1 (Shortest witness). Let N be a (partial) Mealy machine. A
word σ P I˚ is the shortest witness for states q, r, P QN , notated σ $s q#r,
if: σ $ q#r ^␣pDσ1 : σ1 $ q#r ^ |σ1| ă |σ|q.

An interesting property of a shortest witness is shortest witness consistency.
It is similar to transition apartness (Lemma 3.4), which is also used in the
proof.
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Lemma 3.6 (Shortest witness consistency, A.3.1). Let N be a (partial)
Mealy machine.

For all q, r P QN ,@v P I˚,@w P I`:

vw $s q#r ùñ w $s δpq, vq#δpr, vq

3.1.4 The functional simulation

The following Lemmas are all related to observation trees and their
functional simulations.

Lemma 3.7 quite directly follows from the definition of the functional
simulation.

Lemma 3.7 (Functional simulation consistency, A.4.1). Let T be an
observation tree for N with functional simulation h.

For all q, r P QT , v P I˚ with q
v
ÝÑ
˚

r:

hpqq
v
ÝÑ
˚

hprq

Lemma 3.8 is largely based on Lemma 3.7. It states that a state in T should
be non-apart from its corresponding state in N . This also stems from the
definition of the functional simulation.

Lemma 3.8 (Observation tree consistency, A.4.2). Let T be an observation
tree for N with functional simulation h.

@q P QT : q��#hpqq

3.1.5 Identification and basis

These three Lemmas are all related to identification and the basis B.

Lemma 3.9 (Bijective fB, A.5.1). Let T be an observation tree for S. Let
fB such that @q P B : fBpqq “ fpqq.

p1qAS is exact ùñfB : B Ñ QS is injective

p2qB is complete ùñfB : B Ñ QS is surjective

Lemma 3.10 allows us to reason about identification in terms of the
functional simulation. This simplifies our proofs since we can abstract away
from reasoning about candidate sets.
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Lemma 3.10 (Identification, A.5.2). Let T be an observation tree for S
with B is complete and AS is exact.

For q P QT :

p1q q is identifiedðñ @s P B : fpqq “ fpsq _ q#s

p2q Cpqq “ tcqu ùñ fpqq “ fpcqq

Lemma 3.11 (Basis size, A.5.3). Let T be an observation tree for S where
B is complete.

p1qB is identified ùñ AS is exact

p2qAS is exact ùñ |B| “ |QS |

3.1.6 Applied Lemmas

We can state our proof for Theorem 3.1 more concisely if we use weaker
versions of some of the previous Lemmas. Lemma 3.12, 3.13 and 3.14 are
based on Lemma 3.8, 3.4 and 3.6 respectively.

Lemma 3.12 (Applied observation tree consistency, A.6.1). Let T be an
observation tree for both S and M.

For all q P QT , σ P I˚:

p1q σ $ fpqq#gpqq ùñ λpqT0 , σq Ò

and equivalently:

p2q λpqT0 , σq Óùñ ␣pσ $ fpqq#gpqqq

Lemma 3.13 (Applied transition apartness, A.15). Let T be an observation
tree for both S and M.

For all q, q1 P QT and @v, w P I˚ where q
v
ÝÑ q1:

vw $ fpqq#gpqq ðñ v $ fpqq#gpqq _ w $ fpq1q#gpq1q

Lemma 3.14 (Applied shortest witness consistency, A.16). Let T be an
observation tree for both S and M.

For all q, q1 P QT and @v P I˚,@w P I` where q
v
ÝÑ q1

vw $s fpqq#gpqq ùñ w $s fpq1q#gpq1q

21



3.1.7 The proof itself

Using the Lemmas presented in sections 3.1.1-3.1.6, we can now prove
Theorem 3.1.

Theorem 3.1 (k-completeness). Let T be an observation tree for both S
(with functional simulation f) and for M. Let AS be a state cover for S.
B is a basis set of T , based on AS. The k-level frontiers F 0 . . . F k are based
on B.

If B Y Făk is complete and B Y Fďk is identified, |QM| ď |QS | ` k, and
Assumption 3.1 holds:

Assumption 3.1. In T :

@q, r P Fďk : q ÝÑ
`

r ùñ fpqq “ fprq _ q#r

then:

S «M

Proof. We provide a proof by contra-positive. We show that:

B Y Făk is complete^B Y Fďk is identified^ Assumption 3.1 holds^ S ffM
ùñ |QM| ą |QS | ` k

We assume everything at the left side of the implication. We first claim that
the following then holds:

1. Dp P F 0, Dw P I˚ : w $s fppq#gppq ^
␣pDq1 P F 0 : Dw1 P I˚ : w1 $s fpq1q#gpq1q ^ |w1| ă |w|q.

Now let w P I˚ and p P F 0 such that these satisfy the conditions of claim 1.
(These will be fixed throughout this proof.) We define the following subset
Pw of QT based on this word w. Intuitively, it includes all frontier states
that are on the path of this word w.

Pw “ tq P F
ďk | Dx P proper-prefixpwq : p

x
ÝÑ
˚

qu

Now we make three claims about Pw. Each of these is substantiated in its
own subsection.

2. @q, r P Pw, q ‰ r : gpqq ‰ gprq. (Here we use Assumption 3.1).

3. @q P Pw,@r P B : gpqq ‰ gprq.

4. |Pw| “ k ` 1.
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Now we make yet another claim A, which we immediately prove:
@q, r P B Y Pw, q ‰ r : gpqq ‰ gprq.

Let states q, r P B Y Pw, q ‰ r: Now we have three cases:

• Case 1, q, r P B: We have that B is identified. Then we have per
Lemma 2.3 that q “ r _ q#r. Since we have that q ‰ r, we get
that q#r. Now apply Lemma 2.2 to get that gpqq#gprq, and therefore
gpqq ‰ gprq.

• Case 2, q, r P Pw: In this case we get from claim 2 that gpqq ‰ gprq.

• Case 3, q P Pw, r P B: (Note that we can assume this without loss of
generality) In this case we get from claim 3 that gpqq ‰ gprq.

In each of these cases, we have shown that gpqq ‰ gprq. Therefore, A holds.
Since g is a total function, it follows from A that |QM| ě |B Y Pw|.

We get from Lemma 3.11 that |B| “ |QS |, and from claim 4, that |Pw| ą k.
Then:

|QM| ě |B Y Pw| “ |B| ` |Pw| “ |Q
S | ` |Pw| ą |Q

S | ` k

We have now shown that |QM| ą |QS | ` k. We have proven Theorem 3.1
using a proof by contra-positive.

Claim 1

Dp P F 0, Dw P I˚ : w $s fppq#gppq^

␣pDq1 P F 0 : Dw1 P I˚ : w1 $s fpq1q#gpq1q ^ |w1| ă |w|q

Proof. We have that S ff M. Then it follows by definition that Dσ P I˚,
such that σ $ qS0#qM0 . Let σ be such a witness.

By definition of the functional simulation, it follows that fpqT0 q “ qS0 and
gpqT0 q “ qM0 , So σ $ fpqT0 q#gpqT0 q. We get from Lemma 3.12 (1) and the
fact that σ $ fpqT0 q#gpqT0 q, that λpq

T
0 , σq Ò.

From the definition of the basis, it follows that qT0 P B. Now we can
apply Lemma 3.3 with q “ qT0 , σ “ σ. We get that Dq P F 0 where
Dv P proper-prefixpσq such that qT0

v
ÝÑ q. Since v P proper-prefixpσq, let

w P I˚ such that σ “ vw.

We have that σ “ vw $ fpqT0 q#fpqT0 q. Now we apply Lemma 3.13 with q “
qT0 , q

1 “ q v “ v, w “ w. We get that v $ fpqT0 q#gpqT0 q _ w $ fpqq#gpqq.

We have that qT0
v
ÝÑ q and therefore that λpqT0 , vq Ó. Then it follows

from Lemma 3.12 (2) that ␣pv $ fpqq#gpqqq. Then it follows that
w $ fpqq#gpqq.
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Since fpqq#gpqq, it follows that there exists a shortest witness uq that
separates fpqq and gpqq, i.e. Duq P I

˚ : uq $
s fpqq#gpqq.

Now we have shown that a state q P F 0 exists for which there exists a
shortest witness uq P I

˚ : uq $
s fpqq#gpqq. This might be true for multiple

states. Simply select on of these states p such that there is no other state
q1 P F 0 where |uq1 | ă |up|, and let w “ up.

Then we have proven claim 1.

Claim 2

@q, r P Pw, q ‰ r : gpqq ‰ gprq

Proof. By definition of Pw and the fact that q, r P Pw, we have that Dx, u P
proper-prefixpwq, such that p

x
ÝÑ
˚

q and p
u
ÝÑ
˚

r. We also have that q ‰ r.

Then we can assume without loss of generality that |x| ă |u|, and therefore

that Dy, z P I` : p
x
ÝÑ
˚

q
y
ÝÑ
`

r, where u “ xy and w “ xyz. (y ě 1 since

|x| ă |u| “ |xy| and z ě 1 since u “ xy is a proper prefix of w “ xyz.)

We consider two cases: Either fpqq “ fprq or fpqq ‰ fprq. We show that in
either of these, gpqq ‰ gprq.

Case fpqq ‰ fprq:

We have that q
y
ÝÑ
`

r. By Assumption 3.1, then we get that fpqq “

fprq _ q#r. We already have that fpqq ‰ fprq. So it follows that q#r.
Then we apply Lemma 2.2 to get that gpqq#gprq, and therefore that
gpqq ‰ gprq.

Case fpqq “ fprq:

This is a proof by contradiction. Suppose that gpqq “ gprq.

Since fpqq “ fprq, and p
x
ÝÑ
˚

q
y
ÝÑ
`

r, it follows from Lemma 3.7, that

fppq
x
ÝÑ
˚

fpqq
y
ÝÑ
`

fpqq
z
ÝÑ
˚
.

Likewise, since gpqq “ gprq, and p
x
ÝÑ
˚

q
y
ÝÑ
`

r, it follows from Lemma 3.7,

that gppq
x
ÝÑ
˚

gpqq
y
ÝÑ
`

gpqq
z
ÝÑ
˚
.

Now from Lemma 3.14, it follows that since w “ xyz $s fppq#gppq, that
both yz $s fpqq#gpqq and z $s fpqq#gpqq. However, since |y| ě 1, it
follows that |z| ă |yz|.

According to the definition of shortest witnesses, this is a contradiction.
Therefore our assumption that gpqq “ gprqmust be wrong. Then it follows
that gpqq ‰ gprq.

Then we have shown that @q, r P Pw, q ‰ r : gpqq ‰ gprq. As such, we have
proven claim 2.
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Claim 3

@q P Pw, r P B, gpqq ‰ gprq

Proof. Let q P Pw and r P B.

By definition of Pw, and the fact that q P Pw, we have that Dx P

proper-prefixpwq : p
x
ÝÑ
˚

q. Then Dy, z P I˚ such that yz P I` and w “ xyz.

We consider two cases: either fpqq “ fprq or fpqq ‰ fprq. We show that in
either of these, gpqq ‰ gprq.

Case fpqq ‰ fprq:

We have that B Y Fďk is identified. Since q P Pw Ď B Y Fďk, we also
have that q is identified. By Lemma 3.10 (applies because AS is exact,
this in turn follows from Lemma 3.11 and the fact that B is identified and
complete) with q “ q and s “ r, it then follows that fpqq “ fprq _ q#r.

We have that fpqq ‰ fprq, therefore q#r. Then we apply Lemma 2.2. We
get that gpqq#gprq, and consequently, gpqq ‰ gprq.

Case fpqq “ fprq:

This is a proof by contradiction: Suppose that gpqq “ gprq.

Since fpqq “ fprq and p
x
ÝÑ
˚

q, it follows from Lemma 3.7 that fppq
x
ÝÑ
˚

fprq.

Likewise, since gpqq “ gprq, it follows from Lemma 3.7 that gppq
x
ÝÑ
˚

gprq.

Show that Dr1 P F 0 : gprq
y
ÝÑ
`

gpr1q
z
ÝÑ
`

and fprq
y
ÝÑ
`

fpr1q
z
ÝÑ
`
:

From claim 1 and the fact that w “ xyz, we have that xyz $s

fppq#gppq. Then by Lemma 3.14, it follows that yz $s fprq#gprq.

It follows from Lemma 3.12 that λpr, yzq Ò.

We have that r P B and that B is complete. Then we may apply
Lemma 3.3 with q “ r, σ “ y, v “ x, w “ yz. We get that Dr1 P

F 0, Dy P proper-prefixpyzq : r
y
ÝÑ
`

r1. Then it follows that |y| ě 1.

Then λpr, yq Ó. It also follows that |z| ě 1 since otherwise it would
follow that λpr, yzq Ó, which is a contradiction.

From Lemma 3.7, it follows that gprq
y
ÝÑ
`

gpr1q
z
ÝÑ
`

and fprq
y
ÝÑ
`

fpr1q
z
ÝÑ
`
.

Since yz $s fprq#gprq, and z P I` (since |z| ě 1), it follows from Lemma
3.14 that z $s fpr1q#gpr1q.

Since |y| ě 1, it follows that |z| ă |yz| ď |xyz| “ |w|.

Now we have shown that: Dr1 P F 0 : Dz P I˚ : z $s fpr1q#gpr1q^|z| ă |w|.

However, according to claim 1: ␣pDr1 P F 0 : Dz P I˚ : z $s fpr1q#gpr1q ^

|z| ă |w|q

This is a contradiction. Therefore the assumption that gpqq “ gprq must
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be wrong. It follows that gpqq ‰ gprq.

Then we have shown that @q P Pw, r P B, gpqq ‰ gprq. Hence we have proven
claim 3.

Claim 4

|Pw| “ k ` 1

Proof. We show that |w| ą k by contradiction:

Suppose that |w| ď k. Then it follows from Lemma 3.2 (applies because
Făk is complete) with q “ p, σ “ w, we get that λpp, wq Ó. From claim
1, we have that w $ fppq#gppq. Then it follows from Lemma 3.12 that
λpp, wq Ò. This is a contradiction, so it must be the case that |w| ą k.

Now it follows from the definition of Pw that |Pw| “ k ` 1:

Since |w| ą k, it follows that proper-prefixpwq contains |w| words of length
0, . . . k, . . . |w| ´ 1. Then if we take only the words with length ď k, we
are left with k ` 1 words of length 0, . . . k.

Then by definition of Pw, it follows that for each of these words, there is
a state q P Pw. Hence |Pw| “ k ` 1.

3.2 Proof for Theorem 3.2

We require Assumption 3.2 in for Theorem 3.2 work. Intuitively speaking,
we assume that for any state s P B where not all of the successors of s are
in B, q P Făk is already identified ’relative to’ s. Then we prove that in the
opposite case, q is also is identified.

Theorem 3.2 (Cascading identification). Let T be an observation tree for
both S (with functional simulation f). Let AS be a state cover for S. B is
a basis set of T , based on AS. The k-level frontiers F 0 . . . F k are based on
B.

If AS is exact, B Y Făk is complete, and Assumption 3.2 holds:

Assumption 3.2.

@q P Făk : @s P B : pfpqq “ fpsq _ q#sq _ p@i P I : δps, iq P Bq

then:

F k is identified ùñ Fďk is identified
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Proof. We present a proof by induction on the n-level frontier with n ď k.
We already have that F k is identified (base case with n “ k). Then we show
the inductive case where n ă k.

Let q P Fn. We show that fpqq “ fpsq _ q#s.

Suppose that ␣p@s P B : ␣p@i P I : δps, iq P Bqq, then we get from
Assumption 3.2, that @s P B : fpqq “ fpsq _ q#s. Then it follows from
Lemma 3.10 (applies since AS is exact and B is complete) that q is identified.

Suppose that @s P B,@i P I : δps, iq P B:

Proof by contradiction. Suppose that q is not identified. Then either
Cpqq “ H or Dr, t P Cpqq : r ‰ t.

Case Cpqq “ H :

Suppose that Cpqq “ H. Then by definition of the candidate set, it
follows that @s P B : q#s. Then it follows according to Lemma 2.2,
that fpqq#fpsq and therefore fpqq ‰ fpsq.

Then Dfpqq P QS : ␣pDs P B : fpqq “ fpsqq. Then fB : B Ñ QS

is not surjective. But according to Lemma 3.9 (2) (applies since B is
complete), fB is surjective. This is a contradiction.

Case Dr, t P Cpqq : r ‰ t:

Let r, t P Cpqq Ď B, r ‰ t. Then since @s P B,@i P I : δps, iq P B, it
follows that δpr, iq, δpt, iq P B.

By definition of the candidate set and the fact that t P Cpqq, it follows
that q��#t. Then apply Lemma 3.5 (2) with q “ q, r “ t, and v “ i. We
get that δpq, iq��#δpt, iq.

Similarly, by definition of the candidate set and the fact that r P Cpqq,
it follows that q��#r. Then apply Lemma 3.5 (2) with q “ q, r “ r, and
v “ i. We get that δpq, iq��#δpr, iq.

Let r1 “ δpr, iq and t “ δpt1, iq. Then from Lemma 3.1 (negated, left to
right) and the fact that r ‰ t, r ÝÑ

˚
r1 and t ÝÑ

˚
t1, we get that r1 ‰ t1.

Since q1
��#r1 and q1

��#t1, it follows that r1, t1 P Cpq1q. Now we have shown
that Dq1, r1 P Cpq1q : q1 ‰ r. Now since Cpq1q has at least two unequal
elements, it follows that Cpq1q ě 2. Then, according to the definition
of identification on states, q1 is not identified.

But q1 P Fn`1 and Fn`1 is identified. Then q1 is identified. This is a
contradiction.

We have shown that assuming that q is not identified always leads to a
contradiction. Therefore it must be the case that q is identified.

Since we have shown that an arbitrary element q P Fn is identified, it follows
that Fn is identified. So we have shown the inductive case. Then we have
proven by induction that Făk is identified.
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3.3 Counterexample to Hypothesis 3.1

Initially, we thought that Hypothesis 3.1 would hold. It turns out that this
is not the case. Finding a counterexample proved to be difficult.

In order to find a counterexample for Hypothesis 3.1, we have to find a tree
T for complete Mealy machine S, where there is some q P Făk that is not
identified, even though all of its successors in F k are identified. Furthermore,
we have just proven that we need a situation in which Assumption 3.2 does
not hold.

With this in mind, we came up with the following counterexample presented
in Figure 3.1. In order to keep the figure reasonably readable and concise,
we had to resort to some unusual notation:

• Symbol x is an element of I. A transition using this x, q
x{o
ÝÝÑ t is in

fact a shorthand notation for two transitions: q
a{o
ÝÝÑ t1 and q

b{o
ÝÝÑ t2.

If there is a circle labeled t, it in fact represents states t1 and t2 (with

t1 ‰ t2 but t « t1). We then call the transition q
x{o
ÝÝÑ t.

• A dotted arrow is a series of transitions where the states are left
implicit. It is similar to having a ˚ under a transition arrow.

• The γ on the left simply means that we repeat the states and
transitions within the square on the right that is also labeled γ.

• The dotted lines around circles are semantically equivalent to the
non-dotted lines and highlight states of interest.

Now we show that this is, in fact, a counterexample to Hypothesis 3.1.

Hypothesis 3.1. Let T be an observation tree for both S (with functional
simulation f). Let AS be a state cover for S. B is a basis set of T , based
on AS. The k-level frontiers F 0 . . . F k are based on B.

If AS is exact, and B Y F 0 is identified, and B Y Fďk is complete, then:

F k is identified ùñ Făk is identified

In Figure 3.1, we have here an observation tree T (top right, bottom left,
bottom right) for a specification S (top left), with I = {a, b} and O “

tR,G, Y, ?, B, P u. All states in QT up to F 2 are shown, other states are left
implicit.

We have exact state coverAS “ tϵ, a, b, ba, bb, aa, aaa, aaaa, aaaaa, ab, aba, abaa, abaaau.
B is based on this AS . B Y F 0 is identified, and B Y Fďk is complete.
Furthermore, F 2 is identified.
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Now take k “ 2. Then if Hypothesis 3.1 were true, it would follow that F 1

is identified.

However, F 1 is not identified:

We have p01, b01 P F 1 where Cppo1q “ tp0, b0u and Cpbo1q “ tp0, b0u.
Then by definition of identification, it follows that p01 and b01 are not
identified. Then by definition of identification on sets, it follows that F 1

is not identified, since p01, b01 P F 1.

Then this is a counterexample to Hypothesis 3.1.
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Figure 3.1: Counterexample to Hypothesis 3.1.
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Chapter 4

Related Work

4.1 Conformance testing

This section is based on chapter 2 of the PhD-thesis of Joshua Moerman [9].
Note that the terms witness and separating sequence are synonyms.

As was mentioned in chapter 1, various methods for generating test suites
have been proposed. We will discuss most of these methods here, and show
that their correctness follows from Theorem 3.1.

4.1.1 The W -method

As aforementioned, the W -method is relatively simple. We need the
following three components:

• State cover AS of the specification S.

• The set Iďk`1, which contains all words with input alphabet I of
length less than or equal to k ` 1.

• Characterization set WS of S. (See Definition 4.1)

Definition 4.1 (Characterization set). For some Mealy machine N , a
characterization set WN is a subset of I˚, such that for any two states
q, r P QN there exists a word σ PWN such that σ $ q#r.

Then we can define the W -method as:

Tw “ AS ¨ Iďk`1 ¨WS

Based on the W -method was, Fujiwara et al. created the more efficient
Wp-method in 1991 [4]. We will not discuss this method here. The next
HSI-method is based on the Wp method.
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4.1.2 The HSI-method

HSI stands for ”harmonized state identifiers”. The method was proposed
by Luo et al. in 1995 [7] and Petrenko et al. in 1993 [11]. In addition to the
aforementioned AS and Iďk`1, we also need a separating family H (instead
of a characterization set WS).

In order to define a separating family, we first explain the concepts of state
identifiers and harmonization. We also define concatination on families,
which is different from regular concatonation.

Definition 4.2 (State identifiers). Let N be a Mealy machine. A state
identifier of a state s P QN is a set Ws Ă I˚ such that for every state
q P QN where q#s, there exists a word σ PWs such that σ $ q#s.

Note that state identifiers are different from characterization sets: state
identifiers only contain witnesses between one state and all other states that
are apart from this state. On the other hand, characterization sets contain
a witnesses for any pair of apart states. Taking the union of the state
identifiers of all states (except one) would result in a characterization set.

Definition 4.3 (Harmonization and separating family). A set of state
identifiers H is harmonized if for any two state identifiers Ws,Wt P H,
Dσ PWsXWt such that σ $ s#t. A harmonized set of separating sequences
is called a separating family.

We explain the intuition behind harmonization. It might seem that it follows
by definition that any set of state identifiers should be harmonized. However,
here is a counterexample:

Suppose that we have Mealy machine M in Figure 4.1. Then Ws “ tau is a
set of state identifiers for s (because a $ s#t) and Wt “ tbu is a set of state
identifiers for t (because b $ t#s). However, Ws XWt “ H, so tWs,Wtu is
not harmonized. If we takeW 1

t “ tau, however, then tWs,W
1
tu is harmonized

because we use the same witness for states s and t: Ws XW 1
t “ tau and

a $ s#t.

Intuitively speaking, having a harmonized set of separating families ensures
that the same seperating sequence is being used for the same pair of states
in every state identifier.
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Figure 4.1: Example Mealy machine M to explain harmonization

Now for the HSI method, we leverage this idea of assuring that the same
witness is being used for the same pair of states. We need to define
concatenation on separating families with special operator d to ensure that
the right separating family is used for each state:

Definition 4.4 (Family concatenation). Let X be a set of words and Y be
a family. Then X d Y “ tx ¨ y | x P X, ys P Y where x “ accesspsqu

Consider the following example: in our specification S, we have states q, r P
QS with access sequences aq and ar, and state identifiers Wq “ tv, uu and
Wr “ tw, tu. Then: taq, aru d tWq,Wru “ taqv, aqu, arw, artu. The right
separating family is used for each state.

We define the HSI-method as follows.

THSI “ AS ¨ Iďk`1 dH

4.1.3 The ADS-method

The ADS-method can be simply considered as a particular case of the
HSI-method, where only one word is required to identify a state, i.e.
|Ws| “ 1 for all Ws P H. We call this particular word an adaptive
distinguishing sequence. For the example that we presented in Figure 4.1,
this is actually the case. This particular technique does not work on every
Mealy machine because not every Mealy machine admits an ADS. Moerman
[9] describes ADS in more detail.

4.1.4 The UIOv-method

Like the HSI-method, the UIOv-method can be considered a generalization
of the ADS-method. Instead of relying on harmonization, it uses
UIO-sequences.
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Definition 4.5 (UIO). Let N be a Mealy machine. Given a state s P QN ,
a Unique Identifying Output (UIO) for s is a word σ P I˚ such that
for all states t P QN with s#t, σ $ s#t.

Now we let U be a set of UIO-sequences for all states in S. Then we may
define the UIOv-method as follows:

TUIOv “ AS ¨ Iďk ¨ U YAS ¨ Iďk`1 d U

Note that we use U twice here: in the first instance, we simply take a
concatenation, meaning that we use all elements of U . In the second instance
we use family concatenation; we only use the specific UIO that corresponds
to the correct state.

4.2 Applying Theorem 3.1

In this section, we demonstrate how to apply our Theorem 3.1 to show that
any of the aforementioned test suites are k-complete, under the assumption
that AS is exact.

When we say that a test suite T generates a tree T , we mean that T is a
tree such that @σ P T : δpqT0 , σq “ δpqS0 , σq.

The proofs of the following Lemmas can be found in Appendix A.7.

Lemma 4.1 (Complete tree). Let test suite T with AS ¨ Iďk`1 Ď T .

Then T generates a tree T where B Y Făk is complete.

Lemma 4.2. Let test suite T with AS ¨ Iďk`1 ¨D Ď T .

Then T generates a tree T where for all q P B Y Fďk and δpq,Dq Ó

Lemma 4.3. Let test suite T and Y either a separating family or family of
UIOs, such that AS ¨ Iďk`1 d Y Ď T .

then T generates a tree T where for all q P B Y Fďk : δpq, yqq Ó.

Corollary 4.1. The W -method, HSI-method, ADS-method and
UIOv-method are k-complete.

Proof. Assume that |QM| ď |QS | ` k. We show that Theorem 3.1 can by
applied.

We let T be a tree generated by T on S. Let f be the functional simulation
from QT to S. Let f be the functional simulation from T Ñ QS .

It follows from Lemma 4.1 that B Y Făk is complete.

Let q P BYFďk and r P BYFăk, such that fpqq ‰ fprq. We show that for
every test method it follows that Dσ P I˚ : where σ is defined on both q and
r, and σ $ fpqq#fprq.

34



• For the W -method: By definition of the characterization set W , we
have that Dσ P W : σ $ fpqq#fprq. From applying Lemma 4.2 with
D “W we get that λpq, σq Ó and λpr, σq Ó.

• For the HSI-method and ADS-method: We have that there exists a
separating family H which is harmonized. Therefore there exist Wq

and Wr which are separating families for q and r respectively, with
Dσ P Wq XWr with σ $ fpqq#fprq. From applying Lemma 4.3, we
get that λpq, σq Ó and λpr, σq Ó.

• For the UIOv-method: We have a family of UIOs, U . From AS ¨

Iďk`1dU and Lemma 4.3, we get that λpq, UIOfpqqq Ó. FromAS ¨Iďk¨U
and Lemma 4.2 with D “ U , we get that λpr, UIOfpqqq Ó.

By definition of UIOfpqq, it follows that UIOfpqq $ fpqq#fprq.

Now we get from Lemma 3.8 (with h “ f) that fpqq��#q and (with h “ g, q “
r) that fprq��#r. Then by definition of non-apartness, λpq, σq “ λpfpqq, σq ‰
λpfprq, σq “ λpr, σq. Thus by definition of apartness, q#r.

Assumption 3.1 immediately follows from this.

We have shown that fpqq “ fprq _ f#r. We apply 3.10 (possible since AS

is exact). We get that q is identified. Since q is an arbitrary element in
B Y Fďk, it follows that B Y Fďk is identified.

Then all the conditions that Theorem 3.1 requires are met.

4.3 Comparison to Vaandrager’s Theorem

Our work is most similar to a paper by Vaandrager in 2024 [14]. Vaandrager
shows k-completeness given slightly different conditions from ours.

Theorem 4.1 (Theorem 3.5 in [14]). Let T be an observation tree for both
S and for M.

If B Y Făk is complete and B Y Fďk is identified, and |QM| ď |QS | ` k,
and Assumption 4.1 holds:

Assumption 4.1.

@r P B,@t1 P F k,@t2 P Făk : r#t1 ùñ r#t2 _ t1#t2

then:

S «M

The only thing that differs between the two Theorems is the assumption.
Note that in Vaandrager’s paper, a different definition of complete is used,
but we have restated Theorem 4.1 using our definition.
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At first glance, it might not be clear how Vaandrager’s Assumption 4.1
and our Assumption 3.1 relate. It turns out, however, that we can restate
Vaandrager’s Assumption such that it uses the same terminology as our
Assumption.

Lemma 4.4 (Equivalent assumptions, A.8.1). Let T be an observation tree.

If B Y Fďk is identified, then:

Assumption 4.1ðñ @q P Făk,@r P F k : fpqq “ fprq _ q#r

We can now see that the assumptions are actually quite similar. There
is an important difference however about for which pairs of frontier states
q, r P Fďk we require that fpqq “ fprq _ q#r. Vaandrager requires this
for q P Făk and r P F k. Whereas we require this for q, r P Fďk such that
q ÝÑ

`
r.

Interestingly enough, neither assumption seems to imply the other.
However, they do both imply a third condition. It would then make sense
that this is a sufficient condition to prove k-completeness.

Conjecture 4.1. Let T be an observation tree for both S and for M.

If B Y Făk is complete and B Y Fďk is identified, and |QM| ď |QS | ` k,
and Assumption 4.2 holds:

Assumption 4.2.

@q P Făk,@r P F k, q ÝÑ
`

r : fpqq “ fprq _ q#r

then:

S «M

We have attempted a proof for Conjecture 4.1 that is similar to our proof
for Theorem 3.1. In our proof for Claim 2 (section 3.1.7), we show that
@q, r P Pw : gpqq ‰ gprq, where Pw is our set of path states. We have
tried to show by a proof by contradiction that Assumption 4.2 implies that
@q, r P Pw : gpqq ‰ gprq, but we were unable to do so. If Conjecture 4.1
holds, then a different proof strategy may be required.

4.3.1 The number of state pairs

We can compare our Assumption 3.1 with Vaandrager’s Assumption 4.1 in
terms of performance.

Let w be the number of states q, r P Fďk where we require that fpqq “
fprq _ q#r. Let n “ |F 0| and m “ |I|, and k such that |QM| ď |QS | ` k.
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For Vaandrager’s Assumption: 4.1, w “ n2mkpmk´1q

m´1 .

For our Assumption: 3.1, w “ nmpkmk`1´pk`1qmk`1q

pm´1q2
.

Both of these statements are proven in Appendix section A.8.2. For
illustration, if we take n “ 3, m “ 5 and k “ 2, then w “ 1350 for
Vaandrager’s assumption and w “ 165 for our assumption.

In conclusion, our Theorem 3.1 requires less states q, r P Fďk where it
is required that fpqq “ fprq _ q#r, although the number still grows
exponentially.

It should be noted that from the proof of Corollary 4.1, it already follows that
in all the testing methods that we discussed, @q, r P Fďk : fpqq “ fprq_q#r.
It remains to be seen if there are scenarios in which Theorem 3.1 catches
more redundant tests than Theorem 4.1, in particular if we take into account
harmonized state identifiers.

4.3.2 We definitely need the assumptions

Vaandrager also gives an example that shows that we actually need an
assumption: In Figure 4.2, we have a specification S and an implementation
M where S ffM, since input word rrrlll tells them apart. We take k “ 1,
then |QM | ď |QS | ` k. In Figure 4.3, we have an observation tree for both
S and M where B Y Fďk is identified and B Y Făk is complete.

Suppose that BYFďk is identified and BYFăk is complete were sufficient
conditions for k-completeness. Then this would imply that S « M.
However, we have that S ffM.

Figure 4.2: Mealy machines S and M. Taken from Example 3.8 in [14]
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Figure 4.3: Observation tree T . Taken from Example 3.8 in [14]

Neither Vaandrager’s Assumption 4.1 nor our Assumption 3.1 holds, because
t6 P F

0 and t13 P F
1, t6 ÝÑ

`
t13 and fpt6q ‰ fpt13q ^ t6��#t13.

4.4 Active automata learning and L#

Since much of our work is inspired by the L# algorithm, it makes sense to
give a brief overview. L# solves a problem called active automata learning.

4.4.1 Active automata learning

Active automata learning is a problem that was first introduced by Dana
Angluin in 1987 [1] for various types of state machines. In the case of Mealy
Machines, it works as follows. Suppose that you have some black-box Mealy
Machine M. We call this the SUL (System Under Learing). Then you have
a Learner and aTeacher. The Learner tries to infer M by asking two kinds
of queries to the Teacher:

1. In Output queries, the Learner gives some input word σ P I˚ to the
Teacher. The Teacher then returns λpqS0 , σq.

2. In Equivalence queries, the Learner gives some hypothesis Mealy
Machine H to the teacher and asks whether H « M. If this is the
case, the Teacher returns yes and the Learning is succesfull. If not it
returns no along with a counterexample σ.
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In figure 4.4, a graphical representation of the active automata learning
problem is given.

Figure 4.4: Graphical overview of the active learning problem. The Learner
(right) tries to infer the SUL M by asking queries to the Teacher (left)

Active automata learning algorithms do not have to implement these two
types of queries. They treat the teacher like an oracle. For real-world
implementations, it is obviously necessary to implement these. Output
queries are very easy to implement. It suffices to just feed the input word σ
into the M and return the output.

Equivalence queries are harder. The link between conformance testing and
automata learning lies here. Since the SUL M is a black box, these are
impossible to implement because this would require a complete test suite.
We discussed in chapter 2 why this is impossible. In practice, test suites are
used that do not guarantee any k-completeness, but are optimized to find
counterexamples quickly.

4.4.2 L#

For a long time, the field of active automata learning was almost exclusively
concerned with optimizing L˚. This was until Vaandrager et al. [15]
introduced a novel approach to active automata learning in 2022. Most of
the concepts discussed in chapter 2 upon which this bachelor thesis builds
(notably apartness and observation trees), are simply adopted from this L#

algorithm.

Briefly speaking, L# uses an observation tree to store information about the
implementation, that it gets from output queries and equivalence queries.
This idea was in turn inspired by Soucha and Bogdanov in 2019 [13] who
first considered Observation trees for learning algorithms. The notion of
apartness in the L# algorithm was inspired by work by Geuvers & Jacobs
[5].

Particularly related to this bachelor thesis, is that L# also works with an
observation tree with a prefix-closed basis. In the case of L#, this contains all
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states that have been found to be apart from each other so far. L# expands
the basis state by state, and at a certain point it creates a hypothesis H,
which is directly based on the states in the basis.
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Chapter 5

Conclusions & Further work

Our most important result is without a doubt Theorem 3.1. We have shown
different conditions for k-completeness than in previous work. This provides
us with a greater understanding of the requirements of k-completeness.

In the related work section, we discuss that our Theorem 3.1 requires
less pairs q, r P Fďk : fpqq “ fprq _ q#r than Vaandrager’s Theorem.
To the contrary, we were not able to show that the conditions of
Vaandrager’s Theorem imply our conditions. Our Theorem might filter out
more redundant tests than Vaandrager’s, although this requires additional
research to verify.

We have provided a proof using a novel proof technique (shortest witnesses)
to show k-completeness. This differs from the technique that Vaandrager
[14] uses to show k-completeness (bisimulations). Our proof technique
could be used by future researchers to prove truly weaker conditions for
k-completeness using observation trees, in particular Conjecture 4.1. It must
be noted that we are not entirely convinced that this conjecture actually
holds.

Our less notable result is an enquiry into the idea of cascading identification.
We have shown with a counterexample that F k is identified does not imply
that Făk is identified. However, using an additional assumption, we were
able to prove Theorem 3.2. This is still a reasonably interesting result.

We provide some directions for future research.

• Look for different or weaker conditions for k-completeness.

• Vaandrager’s Theorem 4.1 might be provable using a proof by shortest
witnesses. Conversely, our Theorem 3.1 might be provable using
bisimulations.

• It might also be possible to show that Vaandrager’s Assumption 4.1
implies our Assumption 3.1, under the condition that B Y Fďk is
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identified and B Y Făk is complete, or the reverse.

• It might be possible to prove Conjecture 4.1. This would also solve
the aforementioned.

• Theorem 3.1 might be used to either create more efficient test suites,
or prune existing ones.

• Given a test suite T , it might be interesting to look into if certain
tests are more likely to run into a counterexample than others. This
could reduce the amount of tests that need to be executed to find a
counterexample.

• Theorem 3.1 might be used to integrate learning and testing more
efficiently in L#, if we are interested in k-completeness guarantees
while learning.

• Related to our enquiry about identification, we present Conjecture 5.1.
Suppose that we have a tree T where F k is identified. Then it would
follow from Conjecture 5.1 that in most cases, we can make a Tree T 1

which is a copy of T such that r P Făk is identifed without adding any
words to r, but instead adding words to basis states.

Conjecture 5.1 (Weak cascading identification). Let T be an observation
tree for S with AS is exact.

F k is identified ùñ

@q P Făk : @s P B, fpqq “ fpsq :

Dσ P I˚, λpq, σq Ó: σ $ q#fpsq
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Appendix A

Deferred proofs

A.1 Transitions and completeness

A.1.1 Same transition

Proof for Lemma 3.1

Lemma A.1 (Same transition). Let T be a Tree.

For q, r, q1, r1 P QT , v P I˚ with q
v
ÝÑ
˚

q1 and r
v
ÝÑ
˚

r1:

q “ r ðñ q1 “ r1

Proof. From left to right:

From q
v{o
ÝÝÑ q1 and r

v{o1

ÝÝÑ r1, we have that q1 “ δpq, vq and r1 “ δpr, vq. We
have that q “ r. Then q1 “ δpq, vq “ δpr, vq “ r1.

From right to left:

We have that q1 “ r1

By the definition of a Tree, it follows that there is exactly one
accesspqq, accessprq P I˚ such that δpT , accesspqqq “ q, δpT , accessprqq “ r.

Now suppose that q ‰ r. Then it follows that accesspqq ‰ accessprq. Because
q

v
ÝÑ q1 and r

v
ÝÑ r1, it follows that accesspq1q “ accesspqqv ‰ accessprqv “

accesspr1q.

But since q1 “ r1, by definition, accesspq1q “ accesspr1q. This is a
contradiction, therefore the assumption that q ‰ r must be false. Therefore
q “ r.

A.1.2 Defined words

Proof for Lemma 3.2
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Lemma A.2 (Defined words). Let T be an observation tree for S.

If Făk is complete, then:

@q P F 0 : @σ P I˚ : |σ| ď k ùñ λpq, σq Ó

Proof. Let q P F 0 and σ P I˚ such that |σ| ď k.

By induction on σ, we show that Dr1 P F 0 : q
σ
ÝÑ
˚

r1:

Base case: σ “ ϵ

Let r1 “ q. δpr1, σq “ δpq, ϵq “ q, q P F 0. Then Dr1 P F 0 : q
σ
ÝÑ
˚

r1

Inductive case: σ “ vi and |σ| ď k

From the Inductive Hypothesis we get that Dr P F |v| : q
v
ÝÑ
˚

r. Since

|σ| “ |vi| ď k it follows that |v| ă k. Then F |v| is complete. Therefore, r

is complete. Then Dr1 P F |v|`1 : r
i
ÝÑ
˚

r1.

Then by definition of transitions and the fact that |σ| “ |vi| “ |v| ` 1, we
get that Dr1 P F |σ| : q

σ
ÝÑ
˚

r1

By induction, for all σ P I˚, |σ| ď k : Dr1 P QT : q
σ
ÝÑ
˚

r1, and equivalently

λpq, σq Ó.

A.1.3 Frontier prefix

Proof for Lemma 3.3

Lemma A.3 (Frontier prefix). Let T be an observation tree.

If B is complete, then @q, P B,@σ P I˚, λpq, σq Ò:

Dq1 P F 0 : Dv P proper-prefixpσq : q
v
ÝÑ
`

q1

Proof. Let q, P B and let σ P I˚, λpq, σq Ò.

We do a proof by induction on the word w, which is a prefix of σ.

Base case: w “ i

Because B is complete, it follows that q is complete. Then Dr1 P QT : q
i
ÝÑ
˚

r1.

λpq, iq Ó and λpq, σq Ò. Therefore w “ i ‰ σ. Since w is a prefix of σ, and
w ‰ σ, it follows that w P proper-prefixpσq.

Inductive case: w “ vi.

From the Inductive Hypothesis we get that Dr P B : q
v
ÝÑ
˚

r where v P

proper-prefixpσq. Because B is complete, it follows that r is complete.

Then Dr1 P QT : r
i
ÝÑ r1. Then by definition of transitions and the fact

that w “ vi, it follows that q
w
ÝÑ r1.
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λpr, wq Ó and λpr, σq Ò. Therefore w ‰ σ. Since w is a prefix of σ, and
w ‰ σ, it follows that w P proper-prefixpσq.

Now, according to the definition of the k-level frontiers, we have two cases:

Case 1: r1 P B

Then we have that Dr1 P B : q
w
ÝÑ
˚

r1. We can apply the inductive

case again. Since the basis B is finite, it follows that Case 1 cannot be
applied forever (this would require an infinite basis set B)

Case 2: r1 P F 0

Now we have shown that Dr1 P F 0 : q
w
ÝÑ
˚

r1. Since |w| “ |vi| ě |i| “ 1,

it also follows that q
w
ÝÑ
`

r1.

Then we have proven by induction that Dq1 P F 0 : Dw P proper-prefixpσq :
q

v
ÝÑ
`

q1.

A.2 Transition apartness and non-apartness

A.2.1 Transition apartness

Proof for Lemma 3.4

Lemma A.4 (Transition apartness). Let N be a (partial) Mealy machine.

For all q, r P QN , v, w P I˚:

vw $ q#r ðñ v $ q#r _ w $ δpq, vq#δpr, vq

Proof. From left to right:

We do a proof by contradiction. Suppose that ␣pv $ q#r _ w $

δpq, vq#δpr, vqq. Then it follows by De Morgan’s laws that ␣pv $ q#rq
and ␣pw $ δpq, vq#δpr, vqq.

Then by definition of apartness, λpq, vq “ λpr, vq and λpδpq, vq, wq “
λpδpr, vq, wq. But then by definition of the λ function:

λpq, vwq “ λpq, vq ¨ λpδpq, vq, wq “ λpr, vq ¨ λpδpr, vq, wq “ λpr, vwq

Then by definition of apartness, ␣pvw $ q#rq.

Since we have shown a contradiction, our assumption must be false.
Therefore v $ q#r _ w $ δpq, vq#δpr, vq.

From right to left:

We consider two cases:

Case v $ q#r:

By definition of apartness, λpq, vq ‰ λpr, vq.
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Case w $ δpq, vq#δpr, vq:

By definition of apartness, λpδpq, vq, wq ‰ λpδpr, vq, wq.

Then in either case, it follows by definition of the λ function that:

λpq, vwq “ λpq, vq ¨ λpδpq, vq, wq ‰ λpr, vq ¨ λpδpr, vq, wq “ λpr, vwq

Then it follows by definition of apartness that vw $ q#r.

A.2.2 Transition non-apartness

Proof for Lemma 3.5

Lemma A.5 (Transition non-apartness). Let N be a (partial) Mealy
machine.

For all q, r P QN :

p1q @σ P I˚, δpq, σq Ó ^δpr, σq Ó: Dv P prefixpσq : λpq, vq “ λpr, vq ^ δpq, vq��#δpr, vq

ùñ q��#r

and

p2q q��#r ùñ

@v P I˚, δpq, vq Ó ^δpr, vq Ó: λpq, vq “ λpr, vq ^ δpq, vq��#δpr, vq

Proof. For 1:

Let σ P I˚, q, r P QN such that λpq, σq Ó and λpr, σq Ó.

Now from our assumptions we have that there exists some v, w P I˚ such
that σ “ v ¨ w, λpq, vq “ λpr, vq, and δpq, vq��#δpr, vq.

Since we have that λpq, vq “ λpr, vq, it follows by definition of apartness
that ␣pv $ q#rq. Since we have that δpq, vq��#δpr, vq, it follows by
definition of non-apartness that ␣pw $ δpq, vq��#δpr, vqq.

Then we have that ␣pv $ q#rq^␣pw $ δpq, vq��#δpr, vqq. By De Morgan’s
laws, this equivalent to ␣pv $ q#r _ w $ δpq, vq��#δpr, vqq.

Now we can apply Lemma 3.4. Since it is a bi-implication, having the
right side false implies that the left side is false. Then it follows that
␣pvw $ q#rq. Since σ “ vw, also ␣pσ $ q#rq.

Since we have shown that for any arbitrary element σ P I˚ that ␣pσ $
q#rq, it follows by definition of non-apartness that q��#r.

For 2:

Let v P I˚ such that λpq, vq Ó ^λpr, vq Ó. Now let w P I˚ such that
λpδpq, vq, wq Ó ^λpδpr, vq, wq Ó.
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Since q��#r, it follows by definition of non-apartness that␣pvw $ q#rq. Then
it follows from Lemma 3.4 that ␣pv $ q#r _ w $ δpq, vq��#δpr, vq. By De
Morgan’s laws, this is equivalent to ␣pv $ q#rq and ␣pw $ δpq, vq��#δpr, vqq.

From ␣pv $ q#rq, it follows by definition of apartness that λpq, vq “ λpr, vq.

From ␣pw $ δpq, vq��#δpr, vqq, it follows by definition of apartness that
λpδpq, vq, wq “ λpδpr, vq, wq.

Then we have shown that @w P I˚, λpδpq, vq, wq Ó ^λpδpr, vq, wq Ó:
λpδpq, vq, wq “ λpδpr, vq, wq. Then by definition of non-apartness,
δpq, vq��#δpr, vq.

A.3 Shortest witnesses

A.3.1 Shortest witness consistency

Proof for Lemma 3.6

Lemma A.6 (Shortest witness consistency). Let N be a (partial) Mealy
machine.

For all q, r P QN ,@v P I˚,@w P I`:

vw $s q#r ùñ w $s δpq, vq#δpr, vq

Proof. Let q, r P QN , v, w P I˚ such that vw $s q#r. Let q1 “ δpq, vq and
r1 “ δpr, vq.

We do a proof by contradiction. Suppose␣pw $s q1#r1q. Then, by definition
of a shortest witness it follows that: either ␣pw $ q1#r1q or Dσ1 P I˚ : σ1 $

q1#r1 ^ |σ1| ă |w|.

Case ␣pw $ q1#r1q:

Since w P I`, we have that |w| ě 1. Then |v| ă v ` 1 ď |vw|.

From the definition of vw $s q#r, we get that ␣pDσ1 P I˚ : σ1 $ q1#r1 ^

|σ1| ă |vw|q. Since |v| ă |vw|, it then follows that ␣pv $ q#rq.

So we have that ␣pv $ q#rq, and ␣pw $ q#rq. Then according to De
Morgan’s laws, ␣pv $ q#r _ w $ q1#r1q, which is also equivalent to
␣pv $ q#r _ w $ δpq, vq#δpr, vqq.

Now we can apply Lemma 3.4. Since it is a bi-implication, having the
right side false implies that the left side is false. Then it follows that
␣pvw $ q#rq. But we have that vw $s q#r, this is a contradiction.

The assumption that ␣pw $ q1#r1q leads to a contradiction.

Case Dσ1 P I˚ : σ1 $ q1#r1 ^ |σ1| ă |w|:
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Let σ1 P I˚ such that σ1 $ q1#r1, and |σ1| ă |w|. Then it follows that
|vσ1| “ |v| ` |σ1| ă |v| ` |w| “ |vw|

Since σ1 $ q1#r1 (and equivalently, σ1 $ δpq, σ1q#δpr, σ1q), it follows by
Lemma 3.4 that vσ1 $ q#r.

So we have shown that Dvσ1 P I˚ : vσ1 $ q#r ^ |vσ1| ă |vw|.

But from the definition of vw $s q#r, we get that ␣pDvσ1 P I˚ : vσ1 $

q#r ^ |vσ1| ă |vw|q. This is a contradiction.

The assumption that Dσ1 P I˚ : σ1 $ q1#r1 ^ |σ1| ă |vw| leads to a
contradiction.

Now we have shown that assuming that ␣pw $s q1#r1q. leads to a
contradiction in all cases. Then it follows that w $s q1#r1, and equivalently,
w $s δpq, vq#δpr, vq.

A.4 The functional simulation

A.4.1 Functional simulation consistency

Proof for Lemma 3.7

Lemma A.7 (Functional simulation consistency). Let T be an observation
tree for N with functional simulation h.

For all q, r P QT , v P I˚ with q
v
ÝÑ
˚

r:

hpqq
v
ÝÑ
˚

hprq

Proof. Let q, r P QT , v P I˚ with q
v
ÝÑ
˚

r. We do a proof by induction on v.

Base case: v “ ϵ

Since q
v
ÝÑ
˚

r we have that r “ δpq, vq. Since v “ ϵ, it follows that

r “ δpq, vq “ δpq, ϵq “ q.

Likewise, we have that δphpqq, vq “ δphpqq, ϵq “ hpqq. Therefore hpqq
v
ÝÑ
˚

hpqq, and by extension hpqq
v
ÝÑ
˚

hprq.

Inductive case: v “ wi

We have that q
v
ÝÑ
˚

r. Since v “ wi, let r, r1 P QT such that q
w
ÝÑ
˚

r1 i
ÝÑ r.

From the inductive hypothesis, it follows that hpqq
w
ÝÑ
˚

hpr1q.

By definition of the functional simulation, it follows from r1 ÝÑ r that
hpr1q ÝÑ hprq. Then hpqq

w
ÝÑ
˚

hpr1q ÝÑ hprq. And then since v “ wi, it also

follows that hpqq
v
ÝÑ
˚

hprq.

Then we have shown using induction that hpqq
v
ÝÑ
˚

hprq.
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A.4.2 Observation tree consistency

Proof for Lemma 3.8

Lemma A.8 (Observation tree consistency). Let T be an observation tree
for N with functional simulation h, then:

@q P QT : q��#hpqq

Proof. Let q P QT , and let v P I˚ : λpq, vq Ó. We show that λpq, vq “
λphpqq, vq by a proof by induction.

Base case v “ ϵ:

By definition of the λ function, λpq, vq “ ϵ “ λphpqq, vq.

Inductive case v “ wi

We have that λpq, viq Ó. Then let r, r1 P QT and u, σ P O˚ such that

q
w{u
ÝÝÑ

˚
r

i{o
ÝÝÑ r1. Then u “ λpq, wq and o “ λpr, iq.

We get from Lemma 3.7 that hpqq
w
ÝÑ
˚

hprq. We get from the Inductive

Hypothesis that u “ λpq, wq “ λphpqq, wq.

From the definition of the functional simulation and the fact that r
i{o
ÝÝÑ r1,

it follows that hprq
i{o
ÝÝÑ hpr1q, so λpr, iq “ o “ λphprq, iq.

Then λpq, vq “ λpq, wq ¨ λpr, iq “ λphpqq, wq ¨ λphprq, iq “ λphpqq, vq.

Now we have shown that for all v P I˚ : λpq, vq Ó: λpq, vq “ λphpqq, vq. Then
by definition of non-apartness, it follows that q��#hpqq.

A.5 Identification and basis

Lemma A.9 is never directly used, but it plays a role in the proof of Lemma
3.9 and Lemma 3.11.

Lemma A.9 (Complete B). Let T be an observation tree for B where B is
complete.

@σ P AS : Dq P B : qT0
σ
ÝÑ
˚

q

Proof. Let σ P AS We do a proof by induction on σ.

Base case σ “ ϵ:

By definition of transitions, qT0
ϵ
ÝÑ
˚

qT0 . Since ϵ P A
S (because S always has

a qS0 ), it follows by definition of B that qT0 P B. Therefore with q “ qT0 ,
it follows that Dq P B : qT0

σ
ÝÑ
˚

q

Inductive case σ “ vi
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By the Inductive Hypothesis, we have that Dq1 P B : qT0
v
ÝÑ
˚

q1. Since B is

complete, it follows that Dq P QT : q1 i
ÝÑ q.

Then qT0
v
ÝÑ
˚

q1 i
ÝÑ q, and since σ “ vi also qT0

σ
ÝÑ
˚

q. Since σ P AS (We may

always assume this because AS is prefix-closed), it follows by definition of
B that q P B.

Then we have shown that Dq P B : qT0
σ
ÝÑ
˚

q.

A.5.1 Bijective fB

Proof for Lemma 3.9

Lemma A.10 (Bijective fB). Let T be an observation tree for S. Let fB

such that @q P B : fBpqq “ fpqq.

p1qAS is exact ùñfB : B Ñ QS is injective

p2qB is complete ùñfB : B Ñ QS is surjective

Proof. 1. Injective: Show that if AS is exact, @q, r P B : fpqq “ fprq ùñ
q “ r:

We do a proof by contradiction. Suppose that Dq, r P B such that fpqq “
fprq and q ‰ r.

Since q, r P B Ď QT , it follows by definition of Trees that Dv, w P I˚ :
qT0

v
ÝÑ q and qT0

w
ÝÑ r with v ‰ w. And it follows by definition of B that

v, w P AS .

From Lemma 3.7, and the fact that qS0 “ fpqT0 q, it follows that q
S
0

v
ÝÑ fpqq

and qS0
w
ÝÑ fprq. Then since fpqq “ fprq, it follows that δpqS0 , vq “ fpqq “

fprq “ δpqS0 , wq

But then we have that Dv, w P I˚ : v ‰ w where δpqS0 , vq “ δpqS0 , wq. Then
it follows by definition of the state cover that AS is not exact. But we
have that AS is exact. This is a contradiction, therefore q “ r.

2. Surjective: Show that if B is complete, @r P QS : Dq P B : fpqq “ r

Let r P QS . It follows by definition of the state cover AS , that Dσ P AS ,
such that qS0

σ
ÝÑ
˚

r.

By Lemma A.9, we have that Dq P B : qT0
v
ÝÑ
˚

q.

Now we apply Lemma 3.7 with h “ f and q “ qT0 , v “ σ and r “ q. We
get that fpqT0 q

σ
ÝÑ
˚

fpqq. Then since qS0 “ fpqT0 q, it follows that q
S
0

σ
ÝÑ
˚

fpqq.

Since qS0
σ
ÝÑ
˚

r and qS0
σ
ÝÑ
˚

fpqq it follows that r “ fpqq. Then we have

shown that Dq P B : fpqq “ r.
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A.5.2 Identification

Proof for Lemma 3.10

Lemma A.11 (Identification). Let T be an observation tree for S with B
is complete and AS is exact.

For all q P QT :

p1q q is identified ùñ @s P B : fpqq “ fpsq _ q#s

p2q Cpqq “ tcqu ùñ fpqq “ fpcqq

Proof. We get from Lemma 3.9 and the fact that B is complete and AS is
exact, that fB : B Ñ QS is bijective.

1. From left to right:

Let q P QT such that q is identified. Then by definition of the candidate
set, it follows that Cpqq “ 1. Let cq P B where Cpqq “ tcqu.

Show that @s P B, s ‰ cq : q#s^ fpqq ‰ fpsq:

Let state s P B, s ‰ cq. Then s R Cpqq, hence by definition of the
candidate set, it follows that q#s. Then by Lemma 2.2, it follows that
fpqq#fpsq and therefore fpqq ‰ fpsq.

Show that fpqq “ fpcqq:

Proof by contradiction. Suppose fpqq ‰ fpcqq. Then it follows by (1)
that @s P B : fpqq ‰ fpsq.

Then Dfpqq P B : ␣pDs P B : fpsq “ fpqqq. This violates the surjective
property of fB. Therefore the assumption must be false, it follows that
fpqq “ fpcqq.

1. From right to left:

Let q P QT . We have that @s P B : fpqq “ fpsq _ q#s.

Show that |Cpqq| ď 1:

Let s, t P Cpqq. We show that s “ t.

Since s, t P Cpqq, it follows that q��#s and that q��#t. We have that
fpqq “ fpsq _ q#s, and fpqq “ fptq _ q#t. Then it follows that fpqq “
fpsq “ fptq.

We have fpsq “ fptq, and s, t P B. Then it follows from the injective
property that fpsq “ fptq implies s “ t. So s “ t.

Then Cpqq ď 1.

Show that |Cpqq| ě 1:
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Proof by contradiction. Suppose that Cpqq “ H. Then by definition
of the candidate set, it follows that @s P B : q#s. Then it follows
according to Lemma 2.2, that fpqq#fpsq and therefore fpqq ‰ fpsq.

Then Dfpqq P QS : ␣pDs P B : fpqq “ fpsqq. Then fB : B Ñ QS is not
surjective. This is a contradiction. Then the assumption must be false.
It follows that |Cpqq| ě 1.

Then |Cpqq| “ 1 and by definition of the candidate set, q is identified.

For 2

This follows from our proof for 1. From left to right: we let cq P B such
that Cpqq “ tcqu, and we show that fpqq “ fpcqq. (Both are underlined.)

A.5.3 Basis size

Proof for Lemma 3.11

Lemma A.12 (Basis size). Let T be an observation tree for S where B is
complete.

p1qB is identified ùñ AS is exact

p2qAS is exact ùñ |B| “ |QS |

Proof. For 1:

Proof by contradiction. Suppose that Dv, w P AS , v ‰ w : λpqS0 , vq “
λpqS0 , wq.

By Lemma A.9 (and the fact that v, w P AS and B is complete), it follows
that Dq, r P B such that qT0

v
ÝÑ
˚

q and qT0
w
ÝÑ
˚

r. Since v ‰ w, it follows by

the definition of Trees that q ‰ r.

Then from Lemma 3.7 and fpqT0 q “ qS0 , it follows that qS0
v
ÝÑ
˚

fpqq and

qS0
w
ÝÑ
˚

fprq. Then it follows from λpqS0 , vq “ λpqS0 , wq that fpqq “ fprq.

From Lemma 2.3 and the fact that B is identified, it follows that q “
r_ q#r. Then q#r. But then from Lemma 2.2 it follows that fpqq#fprq
and therefore fpqq ‰ fprq.

This is a contradiction. It follows that ␣pDv, w P I˚, v ‰ w : λpqS0 , vq “
λpqS0 , wqq. Then by definition of state covers, AS is exact.

For 2:

We have that B is complete and that AS is exact, then it follows from
Lemma 3.9 that fB : B Ñ QS is bijective. Then it follows that |B| “ |QS |.
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A.5.4 Identified basis

Proof for Lemma 2.3

Lemma A.13 (Identified basis). If B is identified, then:

@q, r P B : q “ r _ q#r

Proof. Let q, r P B, q ‰ r :

Proof by contradiction, suppose that ␣pq “ r _ q#rq. Then it follows by
De Morgan’s laws that q ‰ r ^ q��#r. It is always the case that q��#q. Then
by definition of the candidate set, q, r P Cpqq with q ‰ r. Then |Cprq| ą 1.

Since B is identified and q P B, it follows that q is identified. Then |Cpqq| “
1. This is a contradiction with |Cprq| ą 1. Then our assumption must be
false.

Now we have shown that for all q, r P B : q “ r _ q#r.

A.6 Applied Lemmas

The proofs for these are rather trivial if we apply the other Lemmas.

A.6.1 Two functional simulations

Proof for Lemma 3.12

Lemma A.14 (Applied observation tree consistency). Let T be an
observation tree for both S and M.

For all q P QT , σ P I˚:

p1q σ $ fpqq#gpqq ùñ λpqT0 , σq Ò

and equivalently:

p2q λpqT0 , σq Óùñ ␣pσ $ fpqq#gpqqq

Proof. Let q P QT and σ P I˚ such that σ $ fpqq#gpqq. We prove 1. Then
it is trivial that 2 is equivalent.

Proof by contradiction: Suppose that σ $ fpqq#gpqq and λpqT0 , σq Ó. By
Lemma 3.8, it follows that q��#fpqq, and q��#gpqq. Then since λpqT0 , σq Ó,
it follows that λpq, σq “ λpfpqq, σq and λpq, σq “ λpgpqq, σq. Since σ $

fpqq#gpqq, it follows that λpfpqq, σq ‰ λpgpqq, σq.

But then we have that:

λpq, σq “ λpfpqq, σq ‰ λpgpqq, σq “ λpq, σq

It is obviously impossible that λpq, σq ‰ λpq, σq. This is a contradiction, our
assumption must be wrong. Therefore, λpqT0 , σq Ò.
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A.6.2 Applied transition apartness

Proof for Lemma 3.13

Lemma A.15 (Applied transition apartness). Let T be an observation tree
for both S and M.

For all q, q1 P QT and @v, w P I˚ where q
v
ÝÑ q1:

vw $ fpqq#gpqq ðñ v $ fpqq#gpqq _ w $ fpq1q#gpq1q

Proof. Let q, q1 P QT and @v, w P I˚ where q
v
ÝÑ q1.

We have that q
v
ÝÑ q1. Then from Lemma 3.7, we get that also fpqq

v
ÝÑ fpq1q

and gpqq
v
ÝÑ gpq1q. Then δpfpqq, vq “ fpq1q and δpgpqq, vq “ gpq1q.

Now our property follows from applying Lemma 3.4 with v “ v, w “ w,
q “ fpqq, r “ gpqq, δpq, vq “ fpq1q and δpr, vq “ gpq1q.

A.6.3 Applied shortest witness consistency

Proof for Lemma 3.14

Lemma A.16 (Applied shortest witness consistency). Let T be an
observation tree for both S and M.

For all q, q1 P QT and @v P I˚,@w P I` where q
v
ÝÑ q1

vw $s fpqq#gpqq ùñ w $s fpqq#gpqq

Proof. Let q, q1 P QT and @v P I˚ and w P I` where q
v
ÝÑ q1.

We have that q
v
ÝÑ q1. Then from Lemma 3.7, we get that also fpqq

v
ÝÑ fpq1q

and gpqq
v
ÝÑ gpq1q. Then δpfpqq, vq “ fpq1q and δpgpqq, vq “ gpq1q.

Now our property follows from applying Lemma 3.6 with v “ v, w “ w,
q “ fpqq, r “ gpqq, δpq, vq “ fpq1q and δpr, vq “ gpq1q.

A.7 Application of Theorem 3.1

Proof for Lemma 4.1

Lemma A.17 (Complete tree). For any test suite T , if AS ¨ Iďk`1 Ď T ,
then T generates a tree T where B Y Făk is complete.

Proof.

• Let s P B. Then by definition of B, it follows that accesspsq P AS .
Since I contains only words of length less than k`1, I Ď Iďk`1. Now,
since AS ¨ I Ď T , it follows that δpqT0 , accesspsq ¨ iq Ó for all i P I. Then
it follows that δps, iq Ó Then by definition, s is complete.
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• Let n ă k and let q P Fn. By definition of the k-level frontiers, it
follows that Ds P B : Dv P I˚ where s

v
ÝÑ
`

q where |v| “ n` 1.

Let In`2 be the set of words in I˚ with length n ` 2. Since n ă k,
we have that In`2 Ď Iďk`1. Now, since AS ¨ In`2 Ď T , it follows that
δpqT0 , accesspsq ¨ v

1q Ó for all v1 P In`2. Now let i P I Then it follows
that δps, viq Ó since vi P In`2. Then it follows that δpq, iq Ó. Then by
definition, q is complete.

Then by definition of completeness on sets, it follows that B Y Fďk is
complete.

Proof for Lemma 4.2

Lemma A.18. For any test suite T , if AS ¨ Iďk`1 ¨D Ď T where D Ď I˚,
then T generates a tree T where for all q P B Y Fďk and for all σ P D,
δpq, σq Ó

Proof. Let q P B Y Fďk. Then it follows that accesspqq P AS ¨ Iďk`1. Let
σ P D. Then δpqT0 , accesspqq ¨ σq Ó. Then it also follows that δpq, σq Ó.

Proof for Lemma 4.3

Lemma A.19. For any test suite T , if AS ¨ Iďk`1 d Y Ď T where Y is a
separating family or family of UIOs, then T generates a tree T where for all
q P B Y Fďk and for all σ PWq, δpq, σq Ó.

Proof. Let q P B Y Fďk. Then it follows that accesspqq P AS ¨ Ikďk`1.

If Y is a separating family, let σ P Wq. Then by definition of d, it follows
that δpqT0 , accesspqq ¨ σq Ó. Then it also follows that δpq, σq Ó.

If Y is a family of UIOs, by definition of d, it follows that δpqT0 , accesspqq ¨
UIOpqqq Ó. Then it also follows that δpq, UIOpqqq Ó.

A.8 Comparison to Vaandrager’s Theorem

Proof for Lemma 4.4

A.8.1 Equivalent Assumptions

Lemma A.20 (Equivalent Assumptions). Let T be an observation tree.

If B Y Fďk is identified, then:

@r P B,@t1 P F k,@t2 P Făk : r#t1 ùñ r#t2 _ t1#t2

ðñ

@q P Făk,@r P F k : fpqq “ fprq _ q#r
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Proof. Left to right

Let t1 P F k, t2 P Făk.

We have that t1 and t2 are identified since t1, t2 P B Y Fďk. Then let
s, s2 P B such that Cpt1q “ ts1u and Cpt2q “ ts2u. Then it follows from
Lemma 3.10 (2) that fpt1q “ fps1q and fpt2q “ fps2q. Either s1 “ s2 or
s1 ‰ s2

Case s “ s2.

Then fptq “ fpsq “ fps2q “ fpt2q. Therefore, fpt1q “ fpt2q.

Case s ‰ s2

Then since Cpt1q “ ts1u and Cpt2q “ ts2u, it follows by definition of the
candidate set that t1#s2 and t2#s1.

Since s2#t1 and t1 P F k, t2 P Făk, it follows from the left-hand side of
the implication, that s2#t2_ t1#t2. We already have that t2

��#s2. Then
it must be the case that t1#t2.

Then we have shown that @t P Făk,@t2 P F k : fptq “ fpt2q _ t#t2.

Right to left

Let t P Făk and t2 P F k. Let r P B such that r#t1. From the right-hand
side of the implication, we get that fpt1q “ fpt2q _ t1#t2.

Case fpt1q “ fpt2q.

Proof by contradiction. Suppose that r��#t2.

Then by definition of the candidate set, Cpt2q “ tru. Then it follows
from Lemma 3.10 (2) that fpt1q “ fpt2q “ fprq.

From Lemma 2.2 and the fact that r#t1, we get that fprq#fpt1q, so
fprq ‰ fpt1q.

But then fprq “ fpt1q and fprq ‰ fpt1q. This is a contradiction, the
assumption must be wrong. Therefore, r#t2.

Case t1#t2 Trivial.

Then we have shown that @r P B,@t1 P F k,@t2 P Făk : r#t1 ùñ r#t2 _

t1#t2.

A.8.2 Amount of frontier state pairs

Let m “ |I| and n “ |F 0|. And let w be the amount of pairs of states
q, r P Fďk for which we require that fpqq “ fprq _ q#r.

Show that if Făi complete, |F i| “ n ¨mi:

Base case i “ 0: Then |F i| “ |F 0| “ n “ n ¨m0 “ n ¨mi.

Inductive case i ą 0:
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If F i´1 is complete, then every state in F i´1 has m “ |I| direct
successors. By definition, |F i| is exactly the amount of successors of
F i´1.

Hence |F i| “ |F i´1| ¨m “IH n ¨mi´1 ¨m “ n ¨mi.

For Assumption 4.1:

We require that @q P Făk, r P F k : fpqq “ fprq _ q#r. (Equivalence to
Assumption 4.1 is shown in Lemma 4.4)

Then we require for |F k| ¨ |Făk| states that fpqq “ fprq _ q#r. Then:

w “ |F k| ¨ |Făk|

“ |F k| ¨

k´1
ÿ

i“0

|F i|

“ nmk ¨

k´1
ÿ

i“0

|F i|

“ nmk ¨

k´1
ÿ

i“0

nmi

“ n2mk ¨

k´1
ÿ

i“0

mi

“ n2mk ¨
mk ´ 1

m´ 1

“
n2mkpmk ´ 1q

m´ 1

For Assumption 3.1:

We require that @q, r P Fďk, q ÝÑ
`

r : fpqq “ fprq _ q#r. Let r P F i.

By definition of the i-level frontier, it follows that r has i (indirect)
predecessors in Fďk. Then it follows that F i has |F i| ¨ i (indirect)
predecessors in Fďk. Hence we take the sum of |F i| ¨ i for all frontier
layers up to k.
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Then:

w “
k

ÿ

i“0

|F i|i

“

k
ÿ

i“0

nmii

“ n
k

ÿ

i“0

mii

“ n ¨
mpkmk`1 ´ pk ` 1qmk ` 1q

pm´ 1q2

“
nmpkmk`1 ´ pk ` 1qmk ` 1q

pm´ 1q2
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