
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

The Lsharp Algorithm for Deterministic Finite Automata

Author:
Martijn Sanders
s1028766

First supervisor/assessor:
Prof. Dr. Frits Vaandrager

Second assessor:
Dr. Jurriaan Rot

May 29, 2024

Abstract

We present L# for DFAs, an active automata learning algorithm. The L# for
DFAs algorithm is an adaptation of the L# algorithm, originally designed for
learning Mealy Machines, to learn Deterministic Finite Automata (DFAs). The
adaptation primarily involves accommodating for the differences in information
provided by the teacher in the MAT framework and the differences in properties
of DFAs and Mealy Machines. Notably, the introduction of unknown states in
the observation tree enables the algorithm to function effectively with reduced
information per query compared to Mealy machines. Additionally, the concept
of accepting states in DFAs introduces a new potential separating sequence, the
empty string. The algorithm is implemented in Rust, by adapting the code of the
original algorithm, and compared to existing active learning algorithms for DFAs.
Results indicate that the L# for DFAs variants using Adaptive Distinguishing
Sequences (ADS) are competitive with state-of-the-art algorithms for DFAs.

Contents

1 Introduction 3

2 Preliminaries 6
2.1 Example of Apartness in the Observation Tree 10

3 Research 12
3.1 Active Automata Learning in the MAT Framework 12
3.2 Structuring the Observation Tree 14
3.3 Hypothesis Construction . 16
3.4 Main Loop of the Algorithm . 17
3.5 Example Run of L# for DFAs . 19
3.6 Termination of the Algorithm . 22
3.7 Consistency Checking . 23
3.8 Counterexample Processing . 24
3.9 Adaptive Distinguishing Sequences 25

3.9.1 ADS Example . 26
3.10 Complexity . 27

3.10.1 Complexity Measures in the MAT Framework 27
3.10.2 The Complexity of L# for DFAs 28

3.11 Experimental Evaluation . 28
3.11.1 Results and Discussion . 29

4 Related Work 32

5 Conclusions 34
5.1 Future Work . 34

A Appendix 38
Proof of 2.11 . 38
Proof of 2.12 . 38
Proof of 2.13 . 38
Proof of 3.1 . 38
Proof of 3.6 . 39
Proof of 3.7 . 39
Proof of 3.8 . 40

1

Proof of 3.9 . 41
Proof of 3.10 . 41
Proof of 3.11 . 41
Proof of 3.12 . 43
Proof of 3.14 . 43
Proof of 3.15 . 44

2

Chapter 1

Introduction

Automata theory is a branch of theoretical computer science, which studies
the behaviour of abstract machines. An automaton is an abstract model of a
machine that performs computations on an input by shifting through states. The
way the automaton shifts through the states is decided by a transition function,
which at each state determines the next state on the basis of the current state
and the input. Different software systems can be modeled by automata.
Automata learning focuses on understanding the behaviour of a computer sys-
tem in minimum time and effort. The goal is to construct an automaton of
the system under test by providing inputs and observing the outputs. This
technique can be applied to systems of which the code is known (white-box)
or unknown (black-box). This can be done by passive learning, collecting and
analysing runs of the system. Or by active learning, where input is provided
to the system and its response is evaluated. In this research we consider active
learning techniques for black-box systems. Active automata learning has various
applications. Active Automata Learning has been particularly effective to find
bugs in protocol implementations. For this a model of a protocol implementation
can be learned and then compared to the RFC (document describing the official
desired behaviour of the protocol), potentially revealing inconsistencies. Another
application of active automata learning is checking refactored implementations
of legacy software. In this case both implementations are learned and checked if
they behave the same. However interactions with the system under test often
require much time, thus algorithms that require less interactions are needed.
This is where the L# algorithm comes in, presented by Frits Vaandrager, Bharat
Garhewal, Jurriaan Rot and Thorsten Wißmann in their paper "A New Approach
for Active Automata Learning Based on Apartness∗" [15], the L# algorithm
is an active learning algorithm for Mealy machines, which is as efficient as
state-of-the-art learning algorithms. The algorithm is build on the Minimally
Adequate Teacher (MAT) framework established by Dana Angluin [1]. In this
model the learning algorithm (the learner) can ask two types of queries about
an unknown regular language L (M is the minimal DFA that accepts L). The
first type of query the learner can pose is a membership query : The learner can

3

choose a word w ∈ I∗ over the input alphabet and pose the query "Is the word
w ∈ I∗ accepted by M?". The teacher responds to a membership query with a
simple yes or no, indicating the presence of the word w in the set L(M). The
second type of query the learner can pose to the teacher is an equivalence query :
The learner conjectures a hypothesis H, a DFA the learner believes describes the
observed behaviour, the teacher responds with either yes, indicating that the
hypothesis is correct (the language accepted by DFA H is equal to the language
accepted byM), or it responds with a counterexample. A counterexample is a
word σ ∈ I for which the accepting property of the hypothesis H and the DFA
M differ.

Mealy machines are a variation of Finite State Machines (FSM), which are
different from DFAs. In contrast to DFAs, Mealy machines have associated output
symbols to transitions, and Mealy machines do not contain a set of accepting
states. This difference gives rise to a modification in the MAT framework.
Where the teacher responds to membership queries in the case of DFAs with
only the accepting property of the destination state, the teacher gives the string
of all output symbols in the case of a Mealy Machine. This same difference
in responds holds for counterexamples. This means that the learner of a DFA
obtains considerably less information about the hidden machine per query than it
would in the case of a Mealy Machine. And for this reason the L# algorithm for
Mealy Machines does not work for DFAs without adaptations that accommodate
for this lack of knowledge.

In this thesis we present L# for DFAs, an adaptation of L# such that it
learns Deterministic Finite Automata. For this transformation we adapted the
definitions and proofs of the original paper. Note that this thesis is not self
contained and we often refer to Vaandrager et al. [15] for background information
about the L# algorithm. The adaptations to the L# algorithm presented in
this thesis are necessary to ensure that the L# algorithm for DFAs learns the
correct DFA, while still maintaining the same query and symbol complexity as
the original L# algorithm. We also adapted the implementation of L# in Rust
to an implementation of L# for DFAs. Our experiments suggest that, like the
original algorithm, the adapted algorithm is competitive with other algorithms
implemented in LearnLib and AALpy. The development of a version of L#

for DFAs is interesting for various reasons. The main reason is that DFAs are
fundamental in Computer Science. Another reason is that register automata, a
richer modelling framework where input symbols carry data parameters, which
are crucial if we want to scale automata learning to richer settings, are often
defined as direct extensions of DFAs. Thus adapting L# to DFAs will be a first
step toward generalizing L# to richer modeling frameworks.

The rest of this thesis is organized as follows. It starts with a preliminary
chapter, where some concepts and definitions needed for the L# for DFAs
algorithm are introduced. This is followed by the research part of the thesis,
which starts with an introduction to the Minimally Adequate Teacher (MAT)
model. Then the L# algorithm for DFAs is presented, an example run is
shown, the correctness is proven and the complexity is studied. In the results

4

chapter the performance of an implementation of the algorithm written in Rust
is compared to some of the best known active automata learning algorithms
for DFAs implemented in both LearnLib and AALpy. In the second to last
section there is looked at related work, here the algorithm is compared with the
QSM algorithm, which is another active learning algorithm for DFAs that uses
observation trees as the primary datastructure. And the thesis ends with some
conclusions and suggestions for future work.

5

Chapter 2

Preliminaries

In this chapter and the rest of the thesis a lot of information and definitions will
come from the paper "A New Approach for Active Automata Learning Based
on Apartness" [15], as the algorithm presented in this thesis is an adaption of
the L# algorithm presented by Vaandrager et al. [15]. Some other definitions,
like the definition of a DFA come from the book "Introduction to Automata
Theory, Languages, and Computation" [4]. A DFA is a finite-state machine that
recognizes a certain language. A language is a subset of all possible words of an
alphabet. This is formally defined below. The primary datastructure of the L#

algorithm is a partial DFA. The notation for partial maps is fixed here.

Definition 2.1 (Partial Map)
A partial map f : X ⇀ Y is a function from X to Y where f is not necessarily
defined for all of its input values.
f defined on x: f(x)↓ ⇐⇒ ∃y ∈ Y : f(x) = y
f undefined on x: f(x)↑ ⇐⇒ ∄y ∈ Y : f(x) = y

An undefined value in a partial transition map represents lack of knowledge. The
hidden DFA is complete, so if a value is undefined, this value can be obtained
from the teacher. The composition of partial maps f : X ⇀ Y and g : Y ⇀ Z is
denoted by g ◦ f : X ⇀ Z and (g ◦ f)(x)↓ ⇐⇒ f(x)↓ and g(f(x))↓.

Definition 2.2 (Alphabet)
An alphabet I is a finite set of letters. Sequences of these letters are words.
The set of all possible words from the alphabet I is denoted by I∗. We use ϵ to
denote the empty word, which is always in I∗.

Definition 2.3 (Language)
A language L over an alphabet I is a subset of I∗, that is L ⊆ I∗.

A Deterministic Finite Automaton (DFA) is defined as follows.

6

Definition 2.4 (DFA)
A Deterministic Finite Automaton M over an alphabet I is a tuple M =
(QM, qM0 , FM, δM) , where

• QM is a finite set of states

• qM0 ∈ QM is the initial state

• FM : QM ⇀ B, where B = {0, 1}, is an accepting state (final state)
function. A state q ∈ QM is accepting (final) whenever FM(q) = 1.

• δM : QM × I ⇀ QM is a transition function

Intuitively, a DFA works as follows: at any time a DFAM is in a state qM ∈ QM,
starting in the initial state qM0 . When it reads an input symbol i ∈ I,M shifts to
the successor state q′M = δM(qM, i), determined by the transition function δM.
The transition function takes a state q ∈ Q and an input i ∈ I and generates the
resulting state. The transition function is generalized to input words of arbitrary
length by composing δ with itself:

δM(q, ϵ) = q
δM(q, w · a) = δM(δM(q, w), a) ∀q ∈ QM, w ∈ I∗, a ∈ I

A DFAM accepts a word w ∈ I∗ if and only ifM ends up in an accepting state
after processing w, FM(δM(qM0 , w)) = 1. The language of an automaton is the
set of words that it accepts, this is formally defined as:

Definition 2.5 (Language of a DFA)
The language of a state q ∈ QM is:
L(q) = {w ∈ I∗|FM(δM(qM0 , w)) = 1}.
The language of a DFA M is:
L(M) = L(qM0) = {w ∈ I∗|FM(δM(qM0 , w)) = 1}.

Definition 2.6 (Completeness)
An automaton M is complete if δM and FM are total, i.e. ∀q ∈ QM, ∀i ∈ I
δM(q, i)↓ and FM(q)↓.

Note that in this thesis we assume that the hidden DFA of the teacher is
complete.

Definition 2.7 (Semantics)
The semantics of a state q ∈ Q is a map JqK : I∗ ⇀ B, indicating the language
it accepts, defined by JqK(σ) = F (δ(q, σ)) States q, q′ in possibly different DFAs
are equivalent, written q ≈ q′, if JqK(σ) = Jq′K(σ) ∀σ ∈ I∗. DFAs M and N
are equivalent if their respective initial states are equivalent: qM0 ≈ qN0 .

In this thesis the maps between DFAs that are considered preserve existing
accepting properties and transitions and possibly extend the knowledge of the
transitions. This is more formally put below.

7

Definition 2.8
For DFAsM and N , a functional simulation f :M→N is a map f : QM →
QN with

• f(qM0) = qN0

• FM(q)↓ =⇒ FM(q) = FN (f(q))

• δM(q, i)↓ =⇒ δM(q, i) = δN (f(q), i)

The datastructure of the L# algorithm is an observation tree. This observation
tree contains all observed behaviour during learning. An observation tree is
comparable to a tree datastructure, where each vertex has at most n successors,
with n the size of the input alphabet. The root of the tree is the initial state
and there are only transitions that go further down the tree, an observation
tree does not have loops, this means that for every state in the observation tree
there exists a unique path/sequence to arrive at this particular state. In the
original algorithm, that learns Mealy Machines, the observation tree is a partial
Mealy Machine. To adapt the L# algorithm to work for DFAs, the observation
tree is adapted such that it is a partial DFA. A state t ∈ QT is an accepting
(not-accepting) state whenever the sequence of inputs leading to t is known to
be accepted (not accepted). Aside from accepting and non-accepting states, an
observation tree can additionally contain states for which it is not known if the
state (that it corresponds to in the hidden DFA) is accepting or not, for these
states q ∈ QT the accepting state function is not yet defined (F T (q)↑). For
the observation trees constructed by L# for DFAs the accepting property of
leave nodes is known. If there exists a functional simulation from the tree to
the DFA then it is an observation tree for the DFA. The L# algorithm uses the
observation tree to construct a hypothesis DFA H. Now the formal definition of
an observation tree is given.

Definition 2.9 (Observation Tree)
A DFA T = (QT , qT0 , F T , δT) is a tree if for each q ∈ QT there is a unique
sequence σ ∈ I∗ s.t. δT (qT0 , σ) = q. This sequence of inputs leading to q is
denoted as access(q). In an observation tree T , there can be states q ∈ QT for
which there is no information whether q is accepting or not (F T (q)↑), we call
these states unknown states. A tree T is an observation tree for a DFA M
if there is a functional simulation f : T →M.

To distinguish states in the observation tree, the learner can analyse the tree to
conclude that certain states cannot be mapped to the same states in the hidden
DFAM by a functional simulation. For this Vaandrager et al. [15] use a concept
called apartness, a constructive form of inequality, to prove that certain states
are not equivalent inM. We use this same concept, where we alter its definition
slightly to accommodate for the unknown states in the observation tree.

Definition 2.10 (Apartness)
For a DFA M, states q, p ∈ QM are said to be apart (written q # p) if there

8

is some σ ∈ I∗ such that F T (δT (q, σ))↓, F T (δT (p, σ))↓, and one of δT (q, σ),
δT (p, σ) is accepting and the other is not accepting (JqKT (σ) ̸= JpKT (σ)). In this
case σ is called a witness/separating sequence of q # p and this is notated
as σ ⊢ q # p.

Note that when an input σ ∈ I∗ leads to an unknown state from a state q ∈ QT

in the observation tree, σ can not be a witness proving apartness between state
q and any other state in the tree (if F T (δT (q, σ))↑ then σ ̸⊢ q # r ∀r ∈ QT).

Some properties of the apartness relation # ⊆ Q×Q are:

• irreflexive:

¬(q # q)

• symmetric:

q # p =⇒ p # q

• weak co-transitive:

σ ⊢ r # r′ ∧ F (δ(q, σ))↓ =⇒ r # q ∨ r′ # q ∀r, r′, q ∈ QM, σ ∈ I∗.

The weak co-transitivity is a weaker version of co-transitivity, stating that if
σ ⊢ r # r′ and q has the transitions for σ and the accepting property for the
destination state, then q must be apart from at least one of r and r′. The weak
co-transitivity property is used by L# during learning.

Lemma 2.11 (Weak co-transitivity)
In every DFA M,

σ ⊢ r # r′ ∧ F (δ(q, σ))↓ =⇒ r # q ∨ r′ # q for all r, r′, q ∈ QM, σ ∈ I∗.

Proof. The witness σ ⊢ r # r′ implies that F (δ(r, σ))↓, F (δ(r′, σ))↓, and
JqK(σ) ̸= JpK(σ). Since F (δ(q, σ))↓, ¬(r # q) ∧ ¬(r′ # q) leads to the con-
tradiction

JqK(σ)=JrK(σ) ̸= Jr′K(σ)=JqK(σ)

Another thing to notice is that an accepting state and a non-accepting state are
always apart.

Claim 2.12
An accepting state and a non-accepting state are apart. States ti, tj ∈ QT for
which F T (ti) = 1 and F T (tj) = 0 are apart (ti # tj).

Proof. For ϵ ∈ I∗ if F T (δ(ti, ϵ))↓, F T (δ(tj , ϵ))↓ and JtiK(ϵ) = 1 ̸= 0 = JtjK(ϵ)
=⇒ ti # tj

9

The apartness of states q # p expresses that there is a conflict in their semantics,
and consequently, apart states can never be identified by a functional simulation:

Lemma 2.13
For a functional simulation f : T →M,

q # p in T =⇒ f(q) ̸≈ f(p) in M for all q, p ∈ QT .

Proof. Assume σ ⊢ q # p for q, p ∈ T =⇒ F T (δT (q, σ))↓, F T (δT (p, σ))↓ and
JqKT (σ) ̸= JpKT (σ). =⇒ δM(f(q), σ)↓ and JqKT (σ) = Jf(q)KM(σ) and similarly
δM(f(p), σ)↓ and JpKT (σ) = Jf(p)KM(σ).
=⇒ Jf(q)KM(σ) = JqKT (σ) ̸= JpKT (σ) = Jf(p)KM(σ)

=⇒ Jf(q)KM ̸= Jf(p)KM =⇒ f(q) ̸≈ f(p)

Thus, whenever states are apart in the observation tree T , the learner knows
that these are distinct states in the hidden DFAM.

2.1 Example of Apartness in the Observation Tree

t0t0

t1t1

t2t2 t3t3

t5t5

t4t4

t6t6

t7t7

t8t8

t11t11t12t12 t9t9 t10t10

q0q0

q1q1

q2q2

q3q3

f

b

a

b

a

a

b b

a

ba a a

b

a

a

b

a

b

a

b

Figure 2.1: An observation tree (above) for a DFA (below).

Figure 2.1 shows an observation tree for the DFA displayed below. The
functional simulation f is indicated via coloring of the states. Accepting states

10

are indicated by the double circle and unknown states are indicated by the
dashed circle.

An observation tree T for the hidden DFA M of the teacher can be constructed
by the learner by performing membership and equivalence queries. With every
membership query the learner can add new transitions and states to the obser-
vation tree. The functional simulation f from T to M, which maps every state
of the tree to a state in the hidden DFA, indicated by the colors in Figure 2.1,
and every transition in the tree to a transition in the hidden DFA, is unknown
to the learner. However, the observation tree itself is known by the learner, and
the L# algorithm uses apartness to distinguish certain states in the tree.

For the observation tree of Figure 2.1 we may derive i.a. the following apartness
pairs and corresponding witnesses:

ϵ ⊢ t0 # t2 ϵ ⊢ t0 # t3 ϵ ⊢ t0 # t4

a b ⊢ t2 # t3 b ⊢ t2 # t4 b a ⊢ t3 # t4

a ⊢ t5 # t8 a ⊢ t6 # t8

Note that although the accepting property of a state can be unknown, we can
sometimes deduct that this state is apart from other states by using apartness.

The apartness pairs shown in this example show that the states t0, t2, t3 and t4
are pairwise apart. This means that using this observation tree the learner can
already conclude that the hidden DFA has to contain at least four states.

11

Chapter 3

Research

In this Chapter the main contribution of the thesis is presented: the L# algorithm
is adapted to L# for DFAs, a learning algorithm that correctly learns any regular
set from any minimally adequate teacher. All adaptions and the L# algorithm
for DFAs are described in this part of the thesis. This chapter starts with a brief
introduction to active automata learning in the Minimally Adequate Teacher
(MAT) model, this model was established by Dana Angluin [1]. There are some
common assumptions stated and the problem is formally defined. After this the
L# algorithm for DFAs is described.

3.1 Active Automata Learning in the MAT Frame-
work

In this thesis we explore Active Automata Learning in the MAT framework, this
framework was established by Angluin in 1987 [1]. In active automata learning
there is a learning algorithm (the learner) who has the goal to determine a
hidden DFA M (an unknown regular language L) over a known alphabet I. To
accomplish this it is assumed that the unknown regular language is presented
to the learner by a minimally adequate teacher (MAT), which can answer two
types of queries about the language. The first type of query the learner can
pose is a membership query : The learner can select a word w ∈ I∗ and pose the
query "Is word w in L(M)?", this is answered by the teacher with a simple yes
or no, indicating the presence of the word w in the set L(M). As described by
both Angluin [1] and Isberner [7], when the teacher can only answer membership
queries, it is generally not possible for the learner to determine the correct DFA
in a polynomial number of membership queries. Furthermore, when using only
membership queries the learner can never be certain that the correct DFA is
learned. This is due to the fact that the number of posed membership queries is
finite, therefore there are at any point infinitely many DFAs whose answers to
these membership queries are consistent with the observations. Consequently,
Angluin proposed that a minimally adequate teacher must also respond to a

12

second type of query. The second type of query a learner can pose to the teacher
is an equivalence query : The learner conjectures a hypothesis DFA H to an
Equivalence Query and the teacher responds with either yes, when the hypothesis
is correct (the language accepted by DFA H is equal to the language accepted by
M, L(H) ≈ L(M)), or it gives a counterexample. A counterexample is a word
σ ∈ I for which the accepting property of the hypothesis H and the DFAM differ
(JqM0 KM(σ) ̸= JqH0 KH(σ)). A counterexample is thus presented by the teacher
and the learner is not in control over the counterexamples it receives. Note that
in the case of an incorrect conjecture, any of the possible counterexamples may
be given by a minimally adequate Teacher, and that different counterexamples
may influence the performance of the learner.

After a counterexample, the learner knows the hypothesis is not correct
and can alter the hypothesis such that it is never a hypothesis again. For the
remainder of this thesis input alphabet I and the hidden DFAM are fixed.

The MAT model, with the availability of both the membership queries and
the equivalence queries forms the foundation of an algorithmic framework, where
almost all active automata learning algorithms are based on. This framework
is referred to as the "learning loop" by Malte Isberner [7]. This learning loop
is shown in Algorithm 1 (also from Isberner [7]). Firstly the learner constructs
the initial hypothesis using only membership queries. This initial hypothesis is
then posed as an equivalence query to the teacher. If the teacher responds with
success, the learner is done and returns the hypothesis H. If a counterexample is
provided to the learner, the algorithm ends up in a loop, where it can alter the
hypothesis H using the provided counterexample and additional membership
queries, to again pose an equivalence query with a hypothesis H′, until an
equivalence query indicates success.

This shows that an algorithm with a "learning loop" only terminates when
the learner has found the correct DFA. The definition of the equivalence queries
guarantees the correctness of the result of the algorithm upon termination. This
means that correctness of the algorithm is proven by showing that the algorithm
terminates.

Algorithm 1 The "learning loop"
Require: Access to a MAT with a target DFAM
Ensure: Hypothesis H satisfying H ≈M

Build initial hypothesis H using membership queries
while EquivQuery (H) does not indicate success

Let w ∈ I∗ be the provided counterexample
Refine H using membership queries, taking w into account

end while
return Final Hypothesis H

The L# for DFAs algorithm is build on this framework and is a strategy to
formulate a hypothesis that indicates success. The queries that the learner can
pose to the teacher are more formally defined below.

13

MemberQuery(σ): For σ ∈ I∗, the teacher replies with yes if σ ∈ L(M) and
no otherwise. The output of the teacher is of the form o ∈ B = {0, 1}:

FM(δM(qM0 , σ)) ∈ B

Note that we assume the hidden DFA M to be complete, thus the answer
of the teacher is always yes or no and never not defined.

EquivQuery(H): For a complete DFA H, the teacher replies yes if H ≈M
(the language accepted by H and M are the same) or no, providing a
counterexample, some σ ∈ I∗ that is in the language of H and not in the
language of M or the other way around (JqM0 KM(σ) ̸= JqH0 KH(σ)).

3.2 Structuring the Observation Tree
The datastructure of the L# algorithm is an observation tree, for the L# for
DFAs algorithm we use the same datastructure with a few adaptions to make
it work for DFAs. Here we shortly explain the observation tree datastructure
of the L# algorithm and explain the adaptions to make it work for DFAs. An
observation tree for the hidden DFA M is of the form: T = (QT , qT0 , F T , δT).
The observation tree T contains all information gained from queries so far,
the learner possesses no additional information about the hidden DFA and it’s
separate states. So the apartness relation between states is solely based on
the information in the observation tree. The observation tree T of L# initially
consists of an initial state, this is the root of the tree. For L# for DFAs the
acceptance property of this root state is initially unknown. During execution the
algorithm builds T , extending the tree with every membership and equivalence
query. The input σ for a membership query is added as a path or extension of
a path in the observation tree, with the query response indicating whether the
last state in this path is accepting or not. The input word σ of the membership
query can be of arbitrary length and thus could potentially exceed the length of
the path it extends in the tree with a difference greater than one.

The output provided by the teacher for a membership query consists only
of the accepting property of the last state of the input word, this implies that
there may be multiple states between the states in the observation tree and this
last state for which the answer to the query does not provide any information.

This means that we will add states to the observation tree for which the
accepting property is not known, the unknown states (q ∈ QT unknown ⇐⇒
F T (q)↑).

Similarly, every negative response to a EquivQuery provides a counterex-
ample that is introduced as a path in the observation tree. The acceptance status
of the last state along this path is determined by whether the last hypothesis H
posed in the equivalence query accepts the counterexample or not; specifically,

14

the counterexample is accepted by the hypothesis if and only if it is not accepted
by the hidden DFAM. For all other states along the counterexample’s path, the
teacher’s response does not yield any information. Consequently, counterexam-
ples can add unknown states to the observation tree in the same way membership
queries can. When a state is unknown in the observation tree and the response
to a query gives information about the accepting property of this state, this new
information is also added to the tree. This is done by updating the acceptance
property of the state from unknown to the provided acceptance property. From
the observation tree, the algorithm can construct a DFA H to conjecture to an
equivalence query. By constantly adding information to the observation tree
L# works towards an observation tree, that when converted with a functional
simulation to a DFA, is equivalent to the hidden DFA M.

The L# for DFAs algorithm structures the observation tree in the same
three sets as the original algorithm, with only one additional constraint. The
additional constraint is in the fact that the set of basis states can not contain
any unknown states. The sets are defined below.

1. The set of states S ⊆ QT , which already have been fully identified, states
for which the tree contains information that proofs they have to represent
distinct states in the hidden DFA. This implies that all states in S are
pairwise apart: ∀p, q ∈ S, p ̸= q : p # q. The set S is called the basis.
Initially, S := {qT0 }, and throughout the execution S can be extended, and
forms a sub tree of T . The L# for DFAs algorithm ensures that at any
point in execution the acceptance property is defined for all states in the
basis (∀q ∈ S F T (q)↓).

2. The states F ⊆ QT , the frontier, the set of immediate non-basis successors
(neighbors) of the basis states. The frontier is the set from which the next
node to be added to S is chosen.
F := {q′ ∈ Q \ S | ∃q ∈ S, i ∈ I : q′ = δ(q, i)}.

3. The remaining states Q \ (S ∪ F).

Lemma 3.1
With every extension T ′ of the observation tree T , the apartness relation can
only grow: whenever p # q in T , then still p # q in T ′.

Proof. p # q in T =⇒ ∃σ ∈ I∗ s.t. F T (δT (q, σ))↓, F T (δT (p, σ))↓ and
JqKT (σ) ̸= JpKT (σ)
And T ⊆ T ′ =⇒ F T ′

(δT
′
(q, σ))↓, F T ′

(δT
′
(p, σ))↓ and JqKT

′
(σ) ̸= JpKT

′
(σ)

=⇒ p # q in T ′

So during the execution of L# the observation tree and the apartness relation
grow.

15

3.3 Hypothesis Construction
The learner builds a hypothesis DFA to check if the hidden DFA is correctly
learned. This is done by posing an equivalence query to the teacher containing
this hypothesis. The learner constructs this hypothesis solely on the information
in the observation tree T , this can be done at almost any point. The L# for
DFAs algorithm constructs the hypothesis in the same way as the L# algorithm
for Mealy Machines, the only difference is in the fact that the states in the basis
can be accepting and not accepting, and this property has to be represented
in the hypothesis as well. As in the original algorithm, the set of states of a
Hypothesis H is the the set of states for which the learner knows that it must
be distinct states in the hidden DFA, this is the basis S ⊆ T (QH := S). Where
the property of being accepting or not is transferred to H for every base state,
i.e. a state in the hypothesis is accepting if and only if the corresponding state
in the observation tree is accepting (∀f(q) ∈ QH F T (q) = FH(f(q))). Note that
L# for DFAs ensures that for all states in the basis the acceptance property is
known. The hypothesis should also contain transitions between the states. This
is done analogous to L#. So the hypothesis contains the transitions between
basis states in the observation tree T and the transitions in T from basis to
frontier states in T are set by finding a base state for each frontier state, such
that they are not apart in the tree. These ideas are formally defined as follows,
and equal to L#, where only the constraint that the states in the hypothesis
and the basis have the same accepting property is added. For a more elaborate
explanation of this definition we refer to Vaandrager et al. [15].

Definition 3.2
Let T be an observation tree with basis S and frontier F .

1. A DFA H contains the basis if QH = S where FH(qH) = F T (qT) and
δH(qH0 , access(qT)) = qH for all qT ∈ S.

2. A hypothesis is a complete DFA H containing the basis such that p′ =
δH(q, i) in H (q ∈ S) and p = δT (q, i) in T imply ¬(p # p′) (in T).

3. A hypothesis H is consistent if there is a functional simulation f : T → H.

4. For a DFA H containing the basis, an input sequence σ ∈ I∗ is said to
lead to a conflict if δT (qT0 , σ) # δH(qH0 , σ) (in T).

For a hypothesis to exist there can not be any frontier state that is apart
from all basis states, because if such a frontier state would exists it could not be
mapped to a basis state with a functional simulation. For a hypothesis to be
unique the observation tree has to contain all transitions leaving the basis states
and all frontier states can only have one basis state that it is not apart from,
because then there is only one functional simulation possible. The criteria are
formally defined below.

Definition 3.3 (Isolated)
A state p ∈ F ⊂ T is isolated if it is apart from all states in S ⊂ T (∀q ∈ S
q # p).

16

Definition 3.4 (Identified)
A state p ∈ F ⊂ T is identified if it is apart from all states in S ⊂ T except
for one (∃!q ∈ S such that ¬(q # p), ∀q′ ∈ S with q′ ̸= q =⇒ q′ # p).

Definition 3.5 (Complete)
The basis S is complete if each state in S has a transition for each input in I
(∀q ∈ S ∀i ∈ I δT (q, i)↓).
Lemma 3.6
For an observation tree T , if F has no isolated states then there exists a hypothesis
H for T . If S is complete and all states in F are identified then the hypothesis
is unique.

The expanding property of the observation tree T , which is achieved by
adding all received information to it, implies that the hidden DFA is learned
when the basis S is complete, contains the same number of states as the hidden
DFA, and all frontier states are identified. This is formalised in the next theorem
3.7.

Theorem 3.7
Suppose T is an observation tree for a (hidden) DFAM such that S is complete,
all states in F are identified, and |S| is the number of equivalence classes of ≈M.
Then H ≈M for the unique hypothesis H.

3.4 Main Loop of the Algorithm
In this section the main loop of L# is adapted, such that it works for DFAs. The
main loop of L# for DFAs has four rules, similar to the original L# algorithm.
Because the observation tree of the L# for DFAs algorithm can contain unknown
states, which do not exists in the L# algorithm for Mealy Machines, and we
assume that the hidden DFA is complete (among other things this means that for
every state the acceptance property is defined), we have to adapt the rules of L#

to ensure that the hypothesis does not contain unknown states. For the reason
that the states in the hypothesis are the states in the basis of the observation
tree, this adaption comes down to make sure that the basis will not contain
unknown states when the hypothesis is build. In the L# for DFAs algorithm we
establish this by guaranteeing that the basis will never contain unknown states.
States are only added to the basis by the first rule (R1), by modifying (R1) L#

for DFAs assures that when a state is added to the basis the acceptance property
is known. The adapted (R1) comes down to:

(R1) Promotion: If there is an isolated state contained in the frontier F , this
state is apart from all states in the basis S and therefore must represent a
newly discovered state from the hidden DFA not yet present in S, therefor
it is moved from F to S. If the acceptance property of the state is unknown,
a membership query is done to obtain this information. If multiple frontier
states are isolated, one of them is chosen arbitrarily.

17

The rules (R2), (R3) and (R4) can stay the same. Rule two (Extension) extends
the frontier by adding a non-existing transition from the basis to a new frontier
state. Rule three (Identification) extends the apartness relation, it adds at least
one new apartness pair between a frontier state and a base state. The fourth
rule (Equivalence), when applicable, builds a hypothesis and checks whether
this hypothesis is correct, if not a counterexample is provided and the apartness
relation is extended. If the hypothesis is correct, the algorithm has found the
correct DFA and terminates. For a more formal and detailed definition of
rules (R2), (R3) and (R4), we refer to Vaandrager et al. [15]. These rules are
applied non-deterministically until none of them can be applied anymore. The
L# for DFAs algorithm is presented in pseudocode in Algorithm 2, where the
Dijkstra’s guarded command notation is used to show that the rules are applied
non-deterministically.

Algorithm 2 Overall L# for DFAs algorithm
procedure LSharp for DFAs

do q isolated, for some q ∈ F → ▷ Rule (R1)
if F T (q)↑ then

MemberQuery(access(q))
end if
S ← S ∪ {q}
δT (q, i) ↑, for some q ∈ S, i ∈ I → ▷ Rule (R2)
MemberQuery(access(q) i)

¬(q # r), ¬(q # r′), for some q ∈ F , r, r′ ∈ S, r ̸= r′ → ▷ Rule (R3)
σ ← witness of r # r′

MemberQuery(access(q) σ)

F has no isolated states and basis S is complete → ▷ Rule (R4)
H ← BuildHypothesis
(b, σ)← CheckConsistency(H)
if b = yes then

(b, ρ)← EquivQuery(H)
if b = yes then: return H
else: σ ← shortest prefix of ρ such that δH(qH0 , σ) # δT (qT0 , σ) (in

T)
end if
ProcCounterEx(H, σ)

end do
end procedure

The algorithms CheckConsistency(H), ProcCounterEx(H, σ) and
BuildHypothesis introduced by Vaandrager et al. [15] are used by L# for
DFAs, and for now are assumed to be correct and work as described below. Each
of them is explained and proven later in the thesis That is BuildHypothesis
chooses one of the possible hypotheses (3.6), CheckConsistency(H) checks if

18

the hypothesis H is consistent with the observation tree, and if not, provides
σ ∈ I∗ leading to a conflict (3.10), and ProcCounterEx(H, σ), where H
contains the basis and σ leads to a conflict, extends the observation tree T such
that H can never be a hypothesis again (3.11). We prove the correctness of L#

for DFAs later in the thesis by showing that the algorithm terminates.

3.5 Example Run of L# for DFAs
In this example run of the L# algorithm for DFAs, the algorithm learns a 4-state
DFA, that only accepts words over the input alphabet with an even number
of both a’s and b’s (Figure 3.1). Be aware of the fact that this is one of the
potential runs of the algorithm for this DFA, as the rules can be applied in
arbitrary order and the counterexamples are randomly generated by the teacher.

q0q0

q1q1

q2q2

q3q3

b

a

a

b

a

b

a

b

Figure 3.1: The hidden DFA.

The algorithm constructs an observation tree T , which initially consists of a
single state for which the accepting property is not yet known. During execution
of the algorithm the observation tree is gradually extended. The final tree is
shown in figure 3.5.

1. Initially, the root of the tree is the only state in the tree and thus apart
from all other states. Rule 1 (R1) is applied to promote this state to the
basis, because the accepting property of the initial state S0 is unknown,
a membership query for the empty word is posed to the teacher. This is
answered by the teacher with ’yes’, so the initial state is accepting. And
(R1) promotes S0 to the basis.

2. Rule 2 (extension) is applied twice to explore basis state S0, by posing two
membership queries, this leads to two new frontier states in the observation
tree T , S1 with access sequence a, that is not accepting and S2 with access
sequence b, that is also not accepting.

3. Rule 1 (promotion) is applied on S1. State S1 is apart from S0, because
their accepting property differ and thus S1 is apart from all basis states,
so S1 is moved from the frontier F to basis S.

4. Rule 2 (extension) is applied twice to explore new basis state S1. Two
membership queries are posed to the teacher, starting with the access

19

sequence for state S1 (a), followed by an input symbol for which the path
is not yet in the tree. The first membership query is aa, this is answered
with ’yes’ indicating the state reached by this input is accepting, this new
accepting frontier state S3 is again added to observation tree T . The
second one is ab, which is replied with ’no’ and is the next not-accepting
state S4 added to the frontier of T .

5. The basis is complete and the frontier contains no isolated states. In fact,
all frontier states have been identified. Therefore, the learner applies rule
4 (equivalence), it builds the first hypothesis H1 (Figure 3.2) from the
observation tree and poses an equivalence query to the teacher.

S0S0 S1S1

a,b

a b

Figure 3.2: The first hypothesis.

6. In this specific run the teacher responds with the counterexample aabb,
which is accepted by the teacher and rejected by the hypothesis. The
counterexample is added to the observation tree. In T the state reached
by aa was already known to be accepting, the counterexample provided
extends this path with bb, which means that the accepting property of
the state S6 aabb will be accepting, but their is no information about the
accepting property of state S5 aab, this state will be added as an unknown
state to T (unknown states are indicated with a dashed circle).

7. Counterexample processing, which we will not explain in detail here, leads
to another membership query bb. This brings the conflict back to state
S2. State S2 is apart from both S0 and S1, the witness for this, that is
provided by the counterexample, is b.

8. State S2 is an isolated frontier state, hence rule 1 (promotion) is applied
which moves S2 from the frontier to the basis.

9. Rule 2 (extension) is applied to explore basis state S2, because state S7

with access sequence bb is already added to the observation tree by the
counterexample processing algorithm, only a membership query for ba is
posed to the teacher. This is answered with ’no’, so a not-accepting state
S8 is added to the tree.

10. Rule 3 (identification) is applied twice to identify both frontier states S4

and S8, which are both not-accepting states, so by definition already apart
from S0, so the witness b for S1 # S2 is used to identify the frontier states.
The membership query bab is posed to the teacher to identify state S8,
which is answered with ’no’. Not-accepting state S9 is added to the tree

20

and thus S8 # S2. The membership query abb is posed to the teacher to
identify state S4, which is answered with ’no’ as well. So not-accepting
state S10 is added to the tree and thus S4 # S2.

11. The learner now applies rule 4 (equivalence), because the basis is complete
and the frontier contains no isolated states. In fact all frontier states have
been identified. It builds hypothesis H2 (Figure 3.3) from the observation
tree and poses an equivalence query to the teacher.

S0S0

S2S2

S1S1

b

a
a

b

a b

Figure 3.3: The second hypothesis.

12. The teacher responds to this equivalence query with the counterexample
baa, which is not-accepted by the hidden DFA, but is accepted by H2.
Not-accepting state S11 with access sequence baa is added to the tree. And
it is obvious that the conflict occurs in frontier state S8.

13. Rule 1 (promotion) is applied to add frontier state S8 to the basis.

14. Rule 3 (identification) is applied three times to identify frontier states S4,
S9 and S11. For S4 separating sequence a is used, thus membership query
aba is posed and adds a not-accepting state S12 to the tree, and makes S4

only identifiable with state S8. For S9 the same separating sequence a is
used and MemberQuery(baba) adds an accepting state S13 with access
sequence baba to the tree, which makes S9 apart from all basis states
except S0. Membership query baaa is used to identify S11, this adds a
not-accepting state S14 to the tree and S11 is not identified yet as it is not
apart from both basis state S2 and S8. Rule 3 (identification) is applied
again to identify S11, where the witness b for S2 # S8 is used. The teacher
replies ’yes’ to the membership query baab and accepting state S15 is added
to the tree, which makes S11 # S8.

15. Rule 4 (equivalence) is applied once more to make a hypothesis H3 (Fig-
ure 3.4). Which confirms that the hypothesis and the hidden DFA are
equivalent.

21

S0S0

S2S2

S1S1

S8S8

b

a

a

b

a

b

a

b

Figure 3.4: The last hypothesis.

00

11 22

33

55

66

44 88

1212

77

1010 1111 99

1313

1414 1515

a
b

a
b

a
b

b

b

a
b

a
b

a
b

a

Figure 3.5: Final observation tree

3.6 Termination of the Algorithm
This section is dedicated to show that the algorithm will terminate. The learner
will have the correct DFA when L# terminates, because the algorithm only
terminates when the teacher indicates that the hypothesis in the equivalence
query is equivalent to the hidden DFA. So the correctness of the algorithm comes
down to proving that the algorithm terminates. The L# algorithm does this by
showing that the four rules of L# (R1) (introduced in section 3.4), (R2), (R3)
and (R4) (introduced in Vaandrager et al. [15]) extend the basis S, the frontier
F , or the apartness relation # restricted to S × F of the observation tree, while
these three are all bounded by the hidden DFAM. To prove this, Vaandrager
et al. [15] introduce a norm N(T), that is defined as follows.

N(T) = |S| · (|S|+ 1)

2
+ |{(q, i) ∈ S×I | δT (q, i)↓}|+ |{(q, q′) ∈ S×F | q # q′}|

(3.1)
Vaandrager et al. [15] show that every rule application increases the norm

22

N(T), since L# for DFAs uses an adapted version of (R1), while the other rules
stay the same, we only have to show that the new (R1) still increases the norm.

The (R1) used for L# for DFAs moves a state from F to S and possibly
poses a membership query for this state, with this it extends the basis S, and
thus increases the first summand. The application of (R1) reduces the number
of apartness pairs between basis states and frontier states and thus reduces the
third summand, but because the first summand in quadratic in the number of
base states (R1) still increases the norm. The additional membership query that
L# for DFAs potentially poses may give new apartness pairs between this new
base state and frontier states and thus increase the third summand again. In
the end (R1) for DFAs increases the norm. The rules (R2), (R3) and (R4) stay
the same as for the L# algorithm and thus also increase the norm, so L# for
DFAs, like L#, increases the norm with each rule. We refer to Vaandrager et al.
[15] for an explanation on how (R2), (R3) and (R4) increase the norm.

Theorem 3.8
Every rule application in L# increases the norm N(T) in (3.1).

The norm N(T) is bounded by the norm of the hidden DFA (Theorem 3.9).
Since every rule application increases the norm, the number of rule applications
is bounded as well.

Theorem 3.9
If T is an observation tree forM with n equivalence classes of states and |I| = k,
then N(T) ≤ 1

2 · n · (n+ 1) + kn+ (n− 1)(kn+ 1) ∈ O(kn2).

The algorithm only terminates when the hidden DFA is found. The L#

algorithm for DFAs will terminate for the same reasons that L# terminates.
That is L# for DFAs can always apply one of the rules (R1), (R2), or (R4) and
thus never halts, and the number of rule applications is bounded. When the
norm N(T) reaches the bound of the hidden DFA, only rule (R4) is applicable
and the hypothesis queried by (R4) at this point will be accepted by the teacher.
This implies that the learner discovered the hidden DFA within O(k · n2) rule
applications. The complexity in terms of the input parameters is studied in
Section 3.10.

3.7 Consistency Checking
The L# algorithm checks the consistency of a hypothesis H with their
CheckConsistency(H) algorithm. If the hypothesis H is consistent with the
observation tree, i.e. there exists a functional simulation from the observation
tree to the hypothesis, the CheckConsistency(H) algorithm returns yes and
the L# algorithm poses the EquivQuery for H to the teacher. If a functional
simulation f : T → H does not exist, a word σ ∈ I∗ leading to a conflict is
provided by the consistency check algorithm, without the use of a membership
or equivalence query to the teacher. For L# for DFAs we use this algorithm to
check the consistency of the hypothesis, since it can be directly converted to

23

work for the L# for DFAs algorithm we refer to Vaandrager et al. [15] for a
more detailed description. The algorithm is shown in Algorithm 3.

Lemma 3.10
The algorithm that checks if hypothesis H is consistent with observation tree T
terminates and is correct, that is, if H is a hypothesis for T with a complete
basis, then CheckConsistency(H)

1. returns yes, if H is consistent,

2. returns no and ρ ∈ I∗, if ρ leads to a conflict (δT (qT0 , ρ) # δH(qH0 , ρ) in
T).

Algorithm 3 Check if hypothesis H is consistent with observation tree T
procedure CheckConsistency(H)

Q← new queue ⊆ S × S
enqueue(Q, (qT0 , qH0)))
while (q, r)← dequeue(Q)

if q # r then: return no: access(q)
for all δT (q, i)↓ in T do

enqueue(Q, (δT (q, i), δH(r, i)))
end for

end while
return yes

end procedure

3.8 Counterexample Processing
When a counterexample is obtained, the L# algorithm processes this to find
the frontier state in which the conflict occurs. This conflict indicates that the
functional simulation send one of the frontier states to a basis state in H, while
they are distinct states in the hidden DFA, causing a wrong transition in H. To
process σ, a recursive procedure is constructed, where the length of σ is reduced
using binary search. When counterexample processing is finished H will not be a
hypothesis for the observation tree anymore. Counterexample processing in L#

requires O(logm) queries to analyze a counterexample of length m. For a more
precise explanation of the procedure for counterexample processing we refer to
Vaandrager et al. [15], their algorithm is used for L# for DFAs. The algorithm
for counterexample processing is shown in pseudo-code in Algorithm 4.

Lemma 3.11
Suppose basis S is complete, H is a complete DFA containing the basis, and
σ ∈ I∗ leads to a conflict. Then ProcCounterEx(H, σ) terminates and is
correct, that is after terminating the hypothesis H cannot be a hypothesis for
the observation tree T again. To accomplish this the algorithm poses at most
O(log2 |σ|) membership queries.

24

Algorithm 4 Processing σ that leads to a conflict, i.e. δH(q0, σ) # δT (q0, σ)

procedure ProcCounterEx(H, σ ∈ I∗)
q ← δH(qH0 , σ)
r ← δT (qT0 , σ)
if r ∈ S ∪ F then

return
else

ρ← unique prefix of σ with δT (qT0 , ρ) ∈ F

h← ⌊ |ρ|+|σ|
2 ⌋

σ1 ← σ[1..h]
σ2 ← σ[h+ 1..|σ|]
q′ ← δH(qH0 , σ1)
r′ ← δT (qT0 , σ1)
η ← witness for q # r
MemberQuery(access(q′) σ2 η)
if q′ # r′ then

ProcCounterEx (H, σ1)
else

ProcCounterEx (H, access(q′) σ2)
end if

end if
end procedure

T

ba
si
s

fr
on

tie
r

ρρ

σ[|ρ|+1..h]σ[|ρ|+1..h]

σ2σ2

ac
ce
ss
q
′

ac
ce
ss
q
′

σ2σ2

•

• rr

• r′r′

•

•q′q′

•

3.9 Adaptive Distinguishing Sequences
Adaptive Distinguishing Sequences (ADS) are dynamically constructed sequences
of inputs designed to efficiently differentiate between distinct states of the target
automaton. The L# algorithm uses adaptive output queries, which actually are
decision graphs (not a predetermined sequences), where after the initial input
the received outputs decide the path in the graph and thus the next input, to
reduce the number of queries in practice.

To use these adaptive queries in L# for DFAs we have to extend the MAT
framework. This extension of the framework amounts to the teacher being able
to provide the learner with more information. So should the teacher answer a
membership query with not only a simple ’yes’ or ’no’ indicating the acceptance
of the word, but return the whole string of accepting properties for each state
of the path. This not only applies for answering membership queries, but also
returning the whole string of accepting properties of a counterexample. Note
that when the MAT framework is extended as described above, unknown states
are eliminated from the observation tree all together.

With this the observation tree of L# for DFAs is essentially the same as the
observation tree that is used by L# for Mealy Machines. This means that when
we extend the framework further like Vaandrager et al. do in the L# paper, we
can use ADS to extend rules (R2) and (R3) in the same way as it is done by the

25

L# algorithm to maximize the expected number of apartness pairs per query.
This further extension entails that we assume that the teacher can output the
accepting property of a state, then receive additional input, transition to the
subsequent state, and output the acceptance property of that state, allowing for
arbitrary iterations. For a more detailed description of adaptive distinguishing
sequences and how the L# algorithm constructs an optimal ADS from the
observation tree we refer to Vaandrager et al. [15] and to the example in section
3.9.1.

Proposition 3.12
L#

Ads for DFAs is defined by replacing the membership queries in rule 2 and rule
3 of the L# for DFAs algorithm with:

(R2’) MemberQuery(access(q) i Ads(S)) in (R2)

(R3’) MemberQuery(access(q) Ads({b ∈ S | ¬(b # q)})) in (R3).

In L# for DFAs when (R2) or (R3) is applied the norm increases, this holds for
L#

Ads when (R2’) and (R3’) are applied as well. This means that L#
Ads terminates

and therefor is correct.

When the learning framework cannot be extended such that the teacher can
answer equivalence queries with the whole string of accepting properties for each
state of the path. However the teacher is able to output the accepting property
of a state receive additional inputs, transition to the subsequent states, and
output the acceptance property of each of these destination states. Note that the
observation tree can contain unknown states in this scenario. Then L# for DFAs
can use a combination of both ADS and separating sequences. It can build the
adaptive query as normal, where transitions to unknown states are seen as not
existing transitions in the tree. This means that paths with unknown states are
cut short and thus apartness pairs might be lost. This thus gives the possibility
that there is no possible ADS in the tree that guarantees a new apartness pair
and thus would possibly not increase the norm. When this is the case, the ADS
tree is not used for the membership query and (R2)/(R3) is used instead of
(R2’)/(R3’).

3.9.1 ADS Example
To make the concept of adaptive distinguishing sequences in L# for DFAs more
visual, a practical example is elaborated. Consider the observation tree of
Figure 3.6(left). The basis for this tree consists of |{t0, t1, t2, t3}| = 4 states,
which are pairwise apart (separating sequences are a, aa and ab). This leads
to the frontier F = {t4, t5, t7, t9, t11}. The expected award of the basis of this
tree is E({t0, t1, t2, t3}) = 3 and Ads(U) Figure 3.6(right) is the constructed
decision tree over U . With this single decision tree the frontier states can be
identified. The ADS starts with input a. If the response is ’no’ (0 ∈ B) then
the frontier state is either t0 or t2, and the state is identified with a subsequent
input a. Similarly, if the response to the initial input a is ’yes’ (1 ∈ B) then the

26

t0t0 t1t1 t2t2 t3t3 t4t4

t5t5 t6t6

t7t7 t8t8

t9t9 t10t10

t11t11 t12t12

b

a

b

a

b

a

b

a

a

b

a

b
aa

aa bb

t0
t2 t1

t3

0 1

0

1 0

1

Figure 3.6: An observation tree (left) and an ADS for its basis (right)

frontier state is either t1 or t3, and the state is identified by a subsequent input
b. So frontier state t4 can be identified with a single (extended) membership
query that starts with the access sequence for t4 (bbbb) followed by the ADS of
Figure 3.6(right). If separating sequences where used, at least 2 membership
queries would be needed. This is an adapted version of an example found in the
L# paper [15].

3.10 Complexity
In this section the complexity of the L# for DFAs algorithm is reported. But
first the manner in which the complexity of an active learning algorithm in the
MAT framework can be computed is elaborated. The complexity of L# for DFAs
is given in 3.10.2.

3.10.1 Complexity Measures in the MAT Framework
The complexity of an active automata learning algorithm is generally computed
in terms of the query complexity, that is the asymptotic number of membership
and equivalence queries needed by the learner to construct the correct model.
Whereas the complexity of other algorithms is normally computed in time spent
on computations. This choice is motivated by the fact that, in active automata
learning algorithms, computation time is usually insignificant compared to the
time needed for queries. Isberner et al. [7] showed that looking only at the
query complexity is in some applications insufficient. As in numerous real-world
applications of active automata learning, the cost of a membership query is
linear in the length of the word.

Consequently, the following complexity measures are used to evaluate the
performance of a learning algorithm.

• Membership Query Complexity is the total number of membership queries
posed by the algorithm.

27

• Equivalence Query Complexity is the total number of equivalence queries
posed by the algorithm.

• Symbol Complexity is the total number of symbols contained in all mem-
bership and equivalence queries.

Where these complexity measures can be dependent on the following input
parameters: the number of states of the hidden DFA M (n), the size of the
input alphabet (k) and the length of the longest counterexample returned by
the teacher to an equivalence query (m).

3.10.2 The Complexity of L# for DFAs
As the L# for DFAs algorithm is very close to the original L# algorithm, the
complexity of both algorithms is the same. This holds true even though learners
in the MAT framework for DFAs receive less information per query compared to
those for Mealy machines. Similarly to L# for Mealy Machines, we can define a
strategic L# for DFAs that postpones equivalence queries as long as possible to
minimize the number of posed equivalence queries in practice.

Definition 3.13 (Strategic L# for DFAs)
Strategic L# for DFAs (resp. L#

Ads for DFAs) is the special case of Algorithm 2
where rule (R4) is only applied if none of the other rules is applicable.

This gives the same query complexity for the L# for DFAs algorithm as for
the L# algorithm, which is equal to the query and symbol complexities of the
best known active learning algorithms, such as Rivest & Schapire’s algorithm
[13, 14], the observation pack algorithm [5], the TTT algorithm [8, 7], and the
ADT algorithm [3].

Theorem 3.14 (Query Complexity)
Strategic L# for DFAs (resp. L#

Ads for DFAs) learns the correct DFA within
O(kn2 + n logm) membership queries and at most n− 1 equivalence queries.

Theorem 3.15 (Symbol Complexity)
Let n ∈ O(m). Then the strategic L# for DFAs algorithm learns the correct DFA
with O(kmn2 + nm logm) input symbols.

3.11 Experimental Evaluation
In this chapter we present the results of an evaluation of an implementation of
L# for DFAs 1. The implementation of L# for DFAs was written in rust and is
an adaption of the L# implementation as presented by Vaandrager et al. [15].
Here we run three different versions of the L# for DFAs algorithm, the standard
L# for DFAs algorithm (2), the L# for DFAs algorithm using adaptive queries
(L#

ADS for DFAs) and the L# for DFAs version that uses the combination of
1https://gitlab.science.ru.nl/sanders/thelsharpalgorithmfordfas

28

both adaptive queries and separating sequences.

Target Models
The models that were learned in this thesis are randomly generated DFAs. This
is mainly due to the absence of realistic DFA benchmark models. The random
DFAs are generated by AALpy [10], a fixed model size of 60 is chosen and the
input alphabet size is varied between 2 and 100, (2, 3, 4, 5, 10, 15, 20, 25, 30,
40, 50, 60, 80, 100). For each alphabet size five DFAs were randomly generated.

Equivalence Queries
A random word oracle was used to test the equivalence of the system under
learning with the hypothesis. This generates a word from the input alphabet
of random length and than checks if the hypothesis and the SUL responses are
equal. If the responses are different, the counterexample is given to the learner.
If the responses are the same the process of generating a word of random length
over the input alphabet and checking the responses is repeated for a fixed number
of times. If no counterexample is found within this fixed quantity the DFAs
are said to be equivalent. In our test setup, the length of a word was chosen
arbitrarily between 5 and 300. And the maximum number of checks performed
was 10,000.

Metrics
The figures labeled 3.7 and 3.8 respectively show the average number of queries
and symbols required by the learner for each alphabet size, based on testing five
DFAs with that particular alphabet size.

Comparison
The implementations of L# for DFAs in rust are compared to algorithms for
DFAs implemented in AALpy [10]: The L∗ algorithm using Rivest and Schapire’s
counterexample processing [13, 14], and Kearns and Vazirani’s algorithm [9].
As well as two algorithms implemented in LearnLib [6]: Kearns and Vazirani’s
algorithm [9] and the TTT algorithm [7, 8].

3.11.1 Results and Discussion
The results of the experiments are displayed in figure 3.7 and figure 3.8. In figure
3.7 the mean number of queries is plotted against the alphabet size, and in figure
3.8 the mean number of symbols is plotted against the alphabet size. In terms of
the membership queries used for learning, the L# for DFAs algorithm using only
separating sequences seems to be comparable with the Kearns and Vazirani’s
algorithm [9] of AALpy and the Kearns and Vazirani’s algorithm [9] of LearnLib
[6], as well as the TTT algorithm [7, 8] implemented in LearnLib [6]. For these
four algorithms there does not seem to be a lot of difference in performance on
these benchmarks. Only the Rivest and Schapire’s Algorithm [13, 14] seems to
perform poorer than the others. Both the L# for DFAs algorithm using the
combination of ADS and Separating sequences and the one using only ADS

29

seem to consistently need less membership queries then all the other algorithms
tested. This seems to imply that most of the information in the tree is close
to the frontiers and that enough information is thus also available for Adaptive
Distinguishing Sequences that can not search down a path with unknown states.
Note that both these algorithms have an advantage over the others, in the sense
that their teacher provides more information per query due to the extended
framework. This also seems to imply that the L# algorithm [15] when converted
to work for DFAs stays competitive with state-of-the-art learning algorithms.

Figure 3.7: Membership queries used during learning

In terms of the number of symbols used for learning, the results in figure 3.8
show something different. All algorithms seem to be pretty competitive with
each other. And both Kearns and Vazirani’s algorithm [9] and L∗ Algorithm
with Rivest and Schapire’s counterexample processing [13, 14] implemented in
AALpy do a lot better than expected.

30

Figure 3.8: Symbols used during learning

31

Chapter 4

Related Work

One active learning algorithm that is comparable with the L# algorithm for DFAs
is the Query-driven State Merging (QSM) algorithm [2]. The datastructure of
the QSM algorithm, the Prefix Tree Acceptor (PTA), is similar to the observation
tree used by L# for DFAs. The PTA is a tree containing all obtained words
that are accepted by the hidden DFA, all states between the root and this
accepting state are assumed to be accepting as well. This means that the tree in
the QSM algorithm only contains accepting states, which is different from the
observation tree in L# for DFAs. The QSM algorithm then tries to generalize the
tree by merging two different states of the tree, the QSM algorithm checks the
compatibility of the merging by looking at the negative examples (words that are
rejected by the hidden DFA) it has observed. As L# for DFAs, QSM maintains
a set of states that is learned with certainty already, the basis, in QSM the
consolidated states (or red states when blue-fringe is used), the states for which
no compatible merging can be found between any of its predecessor states. The
QSM algorithm with the blue-fringe extension also maintains a set of blue-fringe
states (frontiers), the direct successors of the red states, which are first considered
for merging. As in L# for DFAs, when a blue state is found incompatible with
all red states it is promoted to be a red state and the blue-fringe is updated
and the process is iterated. When an intermediate automaton is compatible
with the available scenarios, a membership query is done to obtain additional
information about the new automaton. Although there are similarities between
to two algorithms, there are some substantial differences as well. The QSM
algorithm for instance, uses no equivalence queries at all, the convergence of
the algorithm to the correct automaton is instead guaranteed when the learner
receives a sample as input that includes a ’characteristic sample’, as defined in
both the RPNI [11] and the QSM [2] algorithms. Another major difference is the
fact that the QSM algorithm needs a nonempty initial collection of scenarios from
which it builds the PTA. Whereas L# for DFAs starts without any information
about the model to learn and obtains all information itself with member and
equivalence queries.

Other work that is related to the L# for DFAs algorithm is "Adaptation

32

d’un algorithme d’apprentissage d’automates" by Zielinsky [16], where the L#

algorithm is adapted to work for DFAs as well. However in this work the
adapted version of L# seems to need more queries than the L∗ algorithm, which
is inconsistent with our findings. This could be do to the observation tree
containing only accepting and not-accepting states and no unknown states. It
could also be caused by some other difference in the implementation.

33

Chapter 5

Conclusions

In this thesis we addressed the problem of adapting the L# algorithm that
learns Mealy Machines to an algorithm that can learn Deterministic Finite
Automata. The primary modification was the introduction of unknown states in
the observation tree, due to the fact that the teacher provides less information
per query, than in the usual setting for Mealy machines. The fact that states in
DFAs have an accepting property turned out to cause only a minor change, where
the empty string was introduced as a possible separating sequence. In general
the adaption of the algorithm to DFAs was rather straightforward. In particular,
the subroutines of the algorithm, i.e. counterexample processing, consistency
checking and build hypothesis stayed essentially the same. The algorithm for
DFAs is implemented in rust and compared to other active learning algorithms
for DFAs. The results showed that the L# for DFAs variant with ADS is at
least competitive with the best algorithms at the moment.

5.1 Future Work
A few things that are in line with this thesis and can still be done are:

• The L# algorithm could be generalised to richer modeling frameworks, for
instance Moore machines, Nondeterministic Finite Automata, or register
automata.

• The construction of Adaptive Distinguishing Sequences for observation
trees with unknown states could be defined. For this the most obvious
solution would be to add unknown states to both output branches in the
ADS tree. For this the Expected award function should be adapted, such
that the optimal tree can be found and thus increasing the norm will be
guaranteed.

• The construction of Adaptive Distinguishing Sequences in general obser-
vation trees could be studied to optimize efficiency. Building all possible

34

ADS trees takes a lot of time and when the automata sizes increase the
time to build all ADS trees will only increase more. One could for example
examine the states for which the ADS tree is constructed and verify if
these states are apart in the tree, proceeding with building the ADS tree
only when they are.

• When comparing the time the implementation of L# for DFAs needs for
learning models to the time the algorithms implemented in AALpy and
LearnLib need to learn these same models, there seems to be a big difference.
So can AALpy and LearnLib learn models of sizes around 600 states in
a matter of minutes, whereas the L# implementation for DFAs used in
this thesis takes hours to learn this same model. It could be interesting
to look into possible explanations why the L# for DFAs implementation
needs more time.

• To improve the complexity of L# for Deterministic Finite Automata, in the
case separating sequences are used, an expected reward function could be
constructed to get the maximal number of new apartness pairs per query.
An example of such a function that could sort the separating sequences on
number of expected apartness pairs is:

– E(X,σ) =
2(|Y A

σ |×|Y N
σ |)

|Y |

∗ Y = {y ∈ X|F T (δT (y, σ))↓}
∗ σ is the separating sequence
∗ Y A

σ = {y ∈ Y |F T (δT (y, σ)) = 1}
∗ Y N

σ = {y ∈ Y |F T (δT (y, σ)) = 0}

• The adaption of L# to DFAs in this thesis could be compared to the
adaption of Zielinsky [16], to see where the two implementations differ and
why they seem to perform differently.

• There could be looked at why both algorithms implemented in AALpy
seem to perform better in terms of input symbols on the random automata
generated in AALpy than expected.

35

Bibliography

[1] D. Angluin. Learning regular sets from queries and counterexamples. Inf.
Comput., 75(2):87–106, 1987.

[2] Pierre Dupont, Bernard Lambeau, Christophe Damas, and Axel Lamsweerde.
The QSM algorithm and its application to software behavior model induction.
Applied Artificial Intelligence, 22:77–115, 02 2008.

[3] Markus Theo Frohme. Active automata learning with adaptive distinguish-
ing sequences. CoRR, abs/1902.01139, 2019.

[4] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley Publishing Company, 1979.

[5] F. Howar. Active learning of interface programs. PhD thesis, University of
Dortmund, June 2012.

[6] M. Isberner, F. Howar, and B. Steffen. The open-source learnlib - A
framework for active automata learning. in CAV, LNCS, 9206:487–495,
2015.

[7] Malte Isberner. Foundations of active automata learning: an algorithmic
perspective. PhD thesis, Technical University Dortmund, Germany, 2015.

[8] Malte Isberner, Falk Howar, and Bernhard Steffen. The TTT algorithm: A
redundancy-free approach to active automata learning. In Borzoo Bonakdar-
pour and Scott A. Smolka, editors, Runtime Verification: 5th International
Conference, RV 2014, Toronto, ON, Canada, September 22-25, 2014. Pro-
ceedings, pages 307–322, Cham, 2014. Springer International Publishing.

[9] Michael J. Kearns and Umesh V. Vazirani. An introduction to computational
learning theory. MIT Press, 1994.

[10] Edi Muškardin, Bernhard Aichernig, Ingo Pill, Andrea Pferscher, and Martin
Tappler. Aalpy: an active automata learning library. Innovations in Systems
and Software Engineering, 18:1–10, 03 2022.

[11] Jose Oncina and Pedro García. Inferring regular languages in polynomial
update time. World Scientific, 01 1992.

36

[12] D.M.R. Park. Concurrency and automata on infinite sequences. In
P. Deussen, editor, 5th GI Conference, volume 104, pages 167–183, 1981.

[13] R.L. Rivest and R.E. Schapire. Inference of finite automata using homing
sequences (extended abstract). In Proceedings of the Twenty-First An-
nual ACM Symposium on Theory of Computing, 15-17 May 1989, Seattle,
Washington, USA, pages 411–420. ACM, 1989.

[14] R.L. Rivest and R.E. Schapire. Inference of finite automata using homing
sequences. Inf. Comput., 103(2):299–347, 1993.

[15] Frits W. Vaandrager, Bharat Garhewal, Jurriaan Rot, and Thorsten Wiß-
mann. A new approach for active automata learning based on apartness.
In Dana Fisman and Grigore Rosu, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 28th International Conference,
TACAS 2022, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings, Part I, volume 13243 of Lecture Notes in Computer Science,
pages 223–243. Springer, 2022.

[16] Pierre Zielinsky. Adaptation d’un algorithme d’apprentissage d’automates.
MSc Thesis, University of Mons, Belgium. 2022.

37

Appendix A

Appendix

The proofs presented by Vaandrager et al. [15] are used and adapted to accom-
modate for the necessary changes that are needed to transform the algorithm to
work for DFAs.

Proof of 2.11
The witness σ ⊢ r # r′ implies that F (δ(r, σ))↓, F (δ(r′, σ))↓, and JqK(σ) ̸= JpK(σ).
Since F (δ(q, σ))↓, ¬(r # q) ∧ ¬(r′ # q) leads to the contradiction

JqK(σ)=JrK(σ) ̸= Jr′K(σ)=JqK(σ)

Proof of 2.12
For ϵ ∈ I if F T (δ(ti, ϵ))↓, F T (δ(tj , ϵ))↓ and JtiK(ϵ) = 1 ̸= 0 = JtjK(ϵ) =⇒ ti # tj

Proof of 2.13
Assume σ ⊢ q # p for q, p ∈ T =⇒ F T (δT (q, σ))↓, F T (δT (p, σ))↓ and
JqKT (σ) ̸= JpKT (σ). =⇒ δM(f(q), σ)↓ and JqKT (σ) = Jf(q)KM(σ) and similarly
δM(f(p), σ)↓ and JpKT (σ) = Jf(p)KM(σ).
=⇒ Jf(q)KM(σ) = JqKT (σ) ̸= JpKT (σ) = Jf(p)KM(σ)

=⇒ Jf(q)KM ̸= Jf(p)KM =⇒ f(q) ̸≈ f(p)

Proof of 3.1
p # q in T =⇒ ∃σ ∈ I∗ s.t. F T (δT (q, σ))↓, F T (δT (p, σ))↓ and JqKT (σ) ̸=
JpKT (σ)
And T ⊆ T ′ =⇒ F T ′

(δT
′
(q, σ))↓, F T ′

(δT
′
(p, σ))↓ and JqKT

′
(σ) ̸= JpKT

′
(σ)

=⇒ p # q in T ′

38

Proof of 3.6
This proof can stay unchanged from the proof presented in Vaandrager et al.
[15], and thus we refer to the proof presented there.

Proof of 3.7
In the proof of 3.7, we characterize equivalence of DFAs via bisimulations.

Definition A.1
A bisimulation between DFAsM and N is a relation R ⊆ QM×QN satisfying,
for all q ∈ QM, r ∈ QN , i ∈ I,

qM0 R qN0 and q R r ∧ q′ = δM(q, i) ⇒ ∃r′ : r′ = δN (r, i) ∧ FN (r′) = FM(q′) ∧ q′ R r′

We write M≃ N if there exists a bisimulation relation between M and N .

Lemma A.2
Given complete DFAs M and N , the equivalence relation ≈ ⊆ QM ×QN is a
bisimulation.

The next lemma, which is a variation of the classical result of [12], is again
easy to prove.

Lemma A.3
Let M and N be complete DFAs. Then M≃ N iff M≈ N .

We now come to the actual proof of 3.7:

Proof of 3.7. Let f be a functional simulation from T to M. Define relation
R ⊆ S ×QM by

(q, r) ∈ R ⇔ f(q) ≈M r.

We claim that R is a bisimulation between H and M.

1. Since f is a functional simulation from T to M, f(qT0) = qM0 . By con-
struction, qT0 = qH0 . Now the fact that equivalence relation ≈M is reflexive
implies f(qH0) ≈M qM0 , and therefore (qH0 , qM0) ∈ R.

2. Suppose (q, r) ∈ R and i ∈ I. Let q′ = δH(q, i) and r′ = δM(r, i). We need
to show that FH(δH(q, i)) = FM(δM(r, i)) and (q′, r′) ∈ R. We consider
two cases:

(a) δT (q, i) ∈ S. Then, by construction ofH, FH(δH(q, i)) = F T (δT (q, i))
and q′ = δT (q, i). Moreover, as f is a functional simulation from T to
M, f(q′) = δM(f(q), i) and F T (δT (q, i)) = FM(δM(f(q), i)). By def-
inition of R, f(q) ≈M r. Hence, by Lemma A.2, FM(δM(f(q), i)) =

39

FM(δM(r, i)) and δM(f(q), i) ≈M r′. By combining the derived
equalities we obtain:

FH(δH(q, i)) = F T (δT (q, i)) = FM(δM(f(q), i)) = FM(δM(r, i)),

f(q′) = δM(f(q), i) ≈ Mr′.

Hence by definition of R, (q′, r′) ∈ R, as required.
(b) δT (q, i) ∈ F . Let q′′ = δT (q, i) ∈ F . Then, by construction of
H, if F T (δT (q, i))↓ then FH(δH(q, i)) = F T (δT (q, i)) and q′ is the
unique state in S such that q′′ and q′ are not apart. By Lemma A.2,
since all states of S are pairwise apart, all states in the image of
s under f are in different equivalence classes of ≈M. Since ≈M

has as many equivalence classes as the number of states of S, each
state of M belongs to the same equivalence class as f(s), for some
s ∈ S. Since q′′ is apart from all states of S except q′, f(q′′) does
not belong to the same equivalence class as f(s), for s ∈ S \ {q′}, by
Lemma A.2. Hence, by the Sherlock Holmes principle, f(q′′) ≈M

f(q′). Since f is a functional simulation from T to M, f(q′′) =
δM(f(q), i) and F T (δT (q, i)) = FM(δM(f(q), i)). By definition of R,
f(q) ≈M r. Hence, by Lemma A.2, FM(δM(f(q), i)) = FM(δM(r, i))
and δM(f(q), i) ≈M r′. By combining the derived equalities we
obtain:

FH(δH(q, i)) = F T (δT (q, i)) = FM(δM(f(q), i)) = FM(δM(r, i)),

f(q′) ≈M f(q′′) = δM(f(q), i) ≈ Mr′.

As equivalence relation ≈M is transitive, f(q′) ≈M r′, and hence by
definition of R, (q′, r′) ∈ R, as required.
If F T (δT (q, i)))↑, the accepting property of the frontier state q′′ ∈ T
is not known, but the fact that q′′ is identified and the fact that |S| is
the number of equivalence classes of ≈M implies that the accepting
property of q′′ can only be the same as the accepting property of
the unique basis state it is not apart from. (Because if the accepting
properties would differ, the states are apart and 2.13 gives that q′′ is
another equivalence class inM, but this gives a contradiction with |S|
is the number of equivalence classes of ≈M.). Thus F T (q′′) is F T (s)
for the unique state s ∈ S which is not apart from q′′. This implies
that FH(δH(q, i)) = F T (q′′) = F T (s) and F T (s) = FM(δM(q, i)).
And thus the same conclusion as for F T (δT (q, i)))↓ can be drawn.
Note that this is only the case because |S| = #equivalence classes M
and q′′ identified.

The theorem now follows by application of Lemma A.3.

Proof of 3.8
This proof can stay unchanged from the proof presented in Vaandrager et al.
[15], and thus we refer to the proof presented there.

40

Proof of 3.9
This proof can stay unchanged from the proof presented in Vaandrager et al.
[15], and thus we refer to the proof presented there.

Proof of 3.10
The breadth-first search in Algorithm 3 verifies whether there is a functional
simulation f : T → H. Since H is deterministic (like all DFAs considered here)
and since every state of T is reachable from the root, there is at most one
functional simulation T → H. Thus, consistency checking amounts to verifying
whether the map

f : QT → QH f(q) := δH(qH0 , access(q))

is a functional simulation (2.8).

• If the procedure returns no, then q # f(q) for some q ∈ T . Note that f is
idempotent, because H contains S: f(q) = f(f(q)) (using QH ⊆ QT). If
f was a functional simulation T → H, this would lead to a contradiction:
applying 2.13 to q # f(q) (in T) implies that f(q) ̸≈ f(f(q)) = f(q) (in
M), a contradiction to the reflexivity of ≈.

• If the procedure returns yes, then ¬(q # f(q)) for all q ∈ QT . For the
verification that f is a functional simulation, first note that we trivially
have f(qT0) = qH0 . For the preservation of transitions, consider p = δT (q, i)
in T and p′ = δH(f(q), i) in H. Since the basis S is complete in T , we
have δT (f(q), i)↓ and we have either F T (δT (f(q), i))↓ which guarantees
F T (δT (f(q), i)) = F T (δT (q, i)), or we have F T (δT (f(q), i))↑ which implies
that i can not be a witness for f(q), so in both cases we have i ̸⊢ q # f(q).
Note that access(p) = access(q) i and so

f(p) = δH(qH0 , access(p)) = δH(qH0 , access(q) i) = δH(f(q), i) = p′

and thus f is a functional simulation.

Proof of 3.11
Termination of the counterexample processing algorithm is proven by providing
a bound on the number of recursive calls. For an input word σ ∈ I∗ with
δT (qT0 , σ)↓, we define the distance from the frontier d(σ) ∈ N by:

d(σ) = |σ| −max{|ρ| | ρ prefix of σ, δT (qT0 , ρ) ∈ S ∪ F}

Observe that:

• d(σ) = 0 iff r := δT (qT0 , σ) ∈ S ∪ F .

41

• If d(σ) > 0 then d(σ) = |σ| − |ρ| ≥ 1 with ρ = unique prefix of σ

with δT (qT0 , ρ) ∈ F and h = |ρ|+|σ|
2 defined as in Algorithm 4. The

decomposition of σ = σ1 · σ2, gives

d(σ1) = h−|ρ| =
⌊
|ρ|+ |σ|

2

⌋
−|ρ| =

⌊
|ρ|+ |σ| − |ρ|

2

⌋
−|ρ| =

⌊
|σ| − |ρ|

2

⌋
=

⌊
d(σ)

2

⌋
.

By definition of the hypothesis it holds that q′ := δH(qH0 , σ1) ∈ S, this
gives that δT (q′, i) ∈ S ∪ F if i is the first character of σ2. Note that if σ2

is empty, then d(access(q′)σ2) = 0 ≤ d(σ)

2
, trivially. So if σ2 is not empty,

the following holds:

d(access(q′)σ2) ≤ |σ2| − 1 = |σ| − h− 1 = |σ| −
⌊
|ρ|+ |σ|

2

⌋
− 1

=

⌈
|σ| − |ρ|+ |σ|

2

⌉
− 1 ≤

⌊
|σ| − |ρ|+ |σ|

2

⌋
=

⌊
|σ| − |ρ|

2

⌋
≤

⌊
d(σ)

2

⌋
.

So in any of the two recursive calls, if σ′ ∈ I∗ denotes the parameter passed
to the recursive call, then 2 · d(σ′) ≤ d(σ). This implies termination.

Let MQ(n) denote the maximal number of membership queries performed during
a run of Algorithm 4 with n = d(σ). Then, using the above observations, we
may show by induction on d(σ) that

MQ(n) ≤

0 if n = 0

log2(2n) if n > 0

Since d(σ) < |σ|, this implies that the number of membership queries is bounded
by O(log(|σ|)).

For correctness, let q and r as in Algorithm 4:
q := δH(qH0 , σ)
r := δT (qT0 , σ)
such that η ⊢ q # r for some η ∈ I∗, i.e. one of δT (q, η), δT (r, η) is accepting
and one is not accepting (F T (δT (q, η)) ̸= F T (δT (r, η))).

• In the case of r ∈ S ∪ F , note that since qH0 = qT0 and q # r, we have
qn ̸= rn and |σ| ≥ 1. Hence, σ decomposes into σ = α i with α ∈ I∗ and
i ∈ I.
Let:
q′ = δH(qH0 , α)
r′ = δH(qT0 , α).
Since T is a tree, it necessarily holds that α = access(r′). (r ∈ S ∪ F →
r′ ∈ S)
Hence,

q′ = δH(q0, α) = δH(q0, access(r
′)) = r′.

42

It holds that q = δH(q′, i) in H and r = δT (r′, i) in T with q′ = r′ but
q # r, hence H is not a hypothesis for T .

• Let σ = σ1 σ2 be the decomposition into σ1, σ2 ∈ I∗, and let q′, r′ as in
Algorithm 4.
q′ := δH(qH0 , σ1) ∈ S
r′ := δT (qT0 , σ1)
After MemberQuery(access(q′)σ2 η), we have F T (δT (q′, σ2 η))↓ and thus:

1. If q′ # r′, then δH(qH0 , σ1) # δT (qT0 , σ1), so σ1 is a valid parameter
to ProcCounterEx and shorter than σ, so by induction, H is not
a hypothesis anymore after the recursive call.

2. If ¬(q′ # r′), then it necessarily holds that

Jq′KT (σ2 η) = Jr′KT (σ2 η)

and thus also

JδT (q′, σ2)K
T
(η) = JδT (r′, σ2)K

T
(η). (*)

It is verified that access(q′)σ2 can be passed to ProcCounterEx:

JδH(qH0 , access(q′)σ2)K
T
(η) = JδH(q′, σ2)K

T
(η) = JqKT (η)

But on the other hand:

JδT (qT0 , access(q′)σ2)K
T
(η) = JδT (q′, σ2)K

T
(η)

(∗)
= JδT (r′, σ2)K

T
(η)

= JrKT (η) ̸= JqKT (η)

Hence, η is a witness for δH(qH0 , access(q′)σ2) # δT (qT0 , access(q′)σ2)
and invoking ProcCounterEx(access(q′)σ2) makes that H is not
a hypothesis for T afterwards.

Proof of 3.12
This proof can stay unchanged from the proof presented in Vaandrager et al.
[15], and thus we refer to the proof presented there.

Proof of 3.14
Strategic L#

Ads for DFAs makes the same amount of membership queries and
equivalence queries as strategic L# for DFAs, so it is sufficient to discuss strategic
L# for DFAs.

In the strategic L# for DFAs, every (non-terminating) application of rule
(R4) leads to an isolated state in the frontier, i.e. increases the basis by one state
before another equivalence query can be asked. Since the basis may contain at
most n elements, this means that there are at most n−1 applications of rule (R4).

43

Processing the counterexamples generated by the resulting consistency checks
and equivalence queries of rule (R4) will require O(n logm) membership queries.
By Theorem 3.8 and Theorem 3.9 there are at most O(kn2) rule applications
during a run of L# for DFAs. Since applications of rule (R1) require at most one
membership query, and each application of rule (R2) and (R3) requires exactly
one membership query, this means that applications of rules (R1), (R2) and (R3)
will require O(kn2) membership queries. Altogether, L# for DFAs will require
O(kn2 + n logm) membership queries.

Proof of 3.15
This proof can stay unchanged from the proof presented in Vaandrager et al.
[15], and thus we refer to the proof presented there.

44

	Introduction
	Preliminaries
	Example of Apartness in the Observation Tree

	Research
	Active Automata Learning in the MAT Framework
	Structuring the Observation Tree
	Hypothesis Construction
	Main Loop of the Algorithm
	Example Run of L# for DFAs
	Termination of the Algorithm
	Consistency Checking
	Counterexample Processing
	Adaptive Distinguishing Sequences
	ADS Example

	Complexity
	Complexity Measures in the MAT Framework
	The Complexity of L# for DFAs

	Experimental Evaluation
	Results and Discussion

	Related Work
	Conclusions
	Future Work

	Appendix
	Proof of 2.11
	Proof of 2.12
	Proof of 2.13
	Proof of 3.1
	Proof of 3.6
	Proof of 3.7
	Proof of 3.8
	Proof of 3.9
	Proof of 3.10
	Proof of 3.11
	Proof of 3.12
	Proof of 3.14
	Proof of 3.15

