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Abstract

This thesis explores the application of Reinforcement Learning (RL) tech-
niques, specifically Deep Q-Networks (DQN), Constrained DQN (CDQN),
and Reward Shaping in DQN (DQN-rs), in the game of Gin Rummy. It in-
vestigates the development of efficient strategies using these methods, with a
particular focus on constrained reinforcement learning. This offers a frame-
work that integrates additional constraints into the learning process to guide
agents towards not only maximizing rewards but also adhering to specific
game-related constraints. In a strategy-based game like Gin Rummy, this
can significantly influence success. The findings reveal that while the stan-
dard DQN agent gradually improved, especially when the epsilon-greedy
strategy was omitted, the CDQN agent underperformed in effectively con-
cluding games. In contrast, DQN-rs agents displayed superior performance,
achieving high proficiency within a short training span of 500 episodes.
A comparative tournament among different agents, including a rule-based
agent, further validated these insights, with DQN-rs emerging as the most
proficient.



Contents

1 Introduction 2

2 Preliminaries 4
2.1 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Constrained reinforcement learning . . . . . . . . . . . . . . . 5
2.3 Reinforcement Learning Methods . . . . . . . . . . . . . . . . 6

2.3.1 Q-learning . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Deep Q-Network . . . . . . . . . . . . . . . . . . . . . 7

3 Environment and Training Methods 8
3.1 Game rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 CMDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Constrained Deep Q-network (CDQN) . . . . . . . . . . . . . 13
3.4 Reward shaping . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Results 15
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 DQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Constrained DQN . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Reward shaping . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Decision making example . . . . . . . . . . . . . . . . . . . . 20
4.6 Tournament . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Related Work 23

6 Conclusions 25

A Appendix 30
A.1 CMDP Realistic Version . . . . . . . . . . . . . . . . . . . . . 30
A.2 Computer Specifications . . . . . . . . . . . . . . . . . . . . . 33

1



Chapter 1

Introduction

Reinforcement Learning (RL) represents a significant area within Artifi-
cial Intelligence (AI), focused on enabling agents to learn decision-making
through interaction with their environment. This field has applications
across a diverse range of areas, including finance [7, 14] and strategy games
such as chess [23] and Go [22]. It also extends to complex video games,
including Dota 2 [20], Starcraft II [24, 13], and classic Atari titles [9, 16],
as well as imperfect information card games like DouDizhu [30] and poker
[6, 18]. These games are often used as they provide challenging environ-
ments that require a mix of strategy, decision-making, and adaptability.

Within RL, we have a subset called Constrained RL (CRL) where the
learning process is bound by predefined constraints. These constraints in-
troduce additional goals or limitations that the agent must consider, often
reflecting real-world complexities. This approach can be useful in fields like
autonomous driving [8, 12] and robotics [27, 4] where safety is a critical
consideration. CRL can then help to, for example, avoid collisions during
the training process.

Within this domain, the focus will be on a card game called Gin Rummy.
The main question guiding this research is: How can effective and efficient
strategies for (constrained) reinforcement learning in Gin Rummy be de-
veloped? In this game, each player aims to meld their hand of ten cards
into sets and runs. A set here is three (or four) of a kind, and a run is a
straight flush with at least three cards. The challenge lies in achieving a
low ’deadwood’ score, which is the value of cards not in any meld. An ace
counts for one point, a face card for ten points, and all others follow their
numeric value. Players must strategically draw and discard cards with the
ultimate goal of knocking or going gin. Knocking can be done once your
hand contains ten or less deadwood, and going gin requires all your cards
to be in a meld.
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Figure 1.1: Hand in Gin Rummy containing a run and set

This thesis aims to train agents on a simplified version of Gin Rummy
using a Deep Q-Network (DQN) [17], a RL algorithm, based on RLCard’s
implementation [29]. This approach can then be enhanced by incorporating
elements from a constrained DQN approach [10], exploring the effectiveness
of different constraint levels and reward-shaping strategies in the game.

The following chapters are structured as follows: first, some preliminary
information will be introduced. This is followed by a more formal definition
of the game and delving into the methods used. After that, the results
of the experiments will be presented, comparing the performance of the
trained agents. Finally, a chapter on related work and a chapter where the
conclusions are discussed as well as some potential topics for future work.
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Chapter 2

Preliminaries

2.1 Reinforcement learning

RL is a field of machine learning where agents learn to make decisions se-
quentially within an environment to learn a policy π, a set of rules that
guide the agent’s actions [25]. This interaction can be seen in Figure 2.1.
The agent observes a state s from the set of possible states S and performs
an action a from the set of possible actions A. The environment then re-
sponds to the action by presenting a new state to the agent and providing a
reward r, which is a scalar value in the set of real numbers R. The agent’s
main objective is to maximize the expected cumulative reward over time,
steadily progressing toward an optimal policy.

Agent

Environment

Action a ∈ AState s ∈ S Reward r ∈ R

Figure 2.1: The agent-environment interaction in RL.

Let us define some RL concepts more formally:

• The policy π followed by the agent is a mapping from states to a
probability distribution over the possible actions in that state: π ∶
S → Dist(A). The notation Dist(A) represents the set of all possible
probability distributions over the action space A.

• The value function V
π(s) quantifies the expected return of being in

a state s and following policy π thereafter. It is defined as V
π(s) =
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E[∑∞
t=0 γ

t
Rt+1∣St = s] where:

– Rt+1 denotes the immediate reward received after transitioning
to a new state from state s at time t by following policy π.

– γ is the discount factor, a scalar within the interval [0, 1]. A
higher γ values future rewards more compared to immediate re-
wards. A value of 0 would mean that we only care about imme-
diate rewards, while a value of 1 means that future rewards are
as important as immediate ones.

• The action-value function Q
π(s, a) extends the concept of the value

function by evaluating the expected return of taking an action a in
state s and following policy π thereafter. It is defined as Q

π(s, a) =

E[∑∞
t=0 γ

t
Rt+1∣St = s,At = a]. The action-value function thus assesses

the value of performing a specific action in a given state, taking into
account the policy’s future actions.

An RL environment is modelled as a Markov Decision Process (MDP)
[21], a mathematical framework encapsulating the dynamics of decision-
making scenarios. MDPs are formally defined by a 5-tuple (S,A, T,R, γ)
where:

• State Space (S): A set, either finite or infinite, representing the
various states in which the decision-maker might find themselves.

• Action Space (A): A set, also finite or infinite, of actions available to
the decision-maker. For each state s ∈ S, there exists a subset As ⊆ A
indicating the actions available in the state s.

• Transition Function (T ): A function T ∶ S × A → Dist(S) that
defines the probability distribution over states resulting from taking
an action a ∈ As in state s.

• Reward Function (R): A function R ∶ S×A → R that assigns a real
number as the immediate reward received for taking an action a ∈ As

in state s. This function quantifies the benefit associated with each
action in each state.

• Discount Factor (γ): As previously defined, this scalar within the
interval [0, 1] indicates the agent’s preference for immediate versus
future rewards.

2.2 Constrained reinforcement learning

A challenge in RL is the exploration-exploitation dilemma. In the pursuit
of optimal decision-making, an RL agent must find a balance between ex-
ploring new actions, including those that may be suboptimal and exploiting

5



known high-reward actions. This balance is essential for efficient learning.

However, certain practical scenarios demand even more control over the
agent’s behaviour. In some cases, there are actions in specific states that
should never be taken because they could lead to unsafe or undesirable out-
comes. This is where Constrained RL (CRL) becomes useful. For instance,
consider a robot that has to navigate a grid world. You could then constrain
the robot to never fall off this grid. CRL enables us to enforce these kinds
of restrictions on the agent’s actions, ensuring safety and desired behaviour.

To implement constraints within the RL framework, the standard MDP
can be augmented with a cost function, transforming it into a Constrained
MDP (CMDP) [2]. This cost function, denoted as C, is defined as follows:
C ∶ S × A → R. It associates a cost with each state-action pair, allowing
us to encode and enforce constraints by penalizing undesirable actions in
specific states. This penalization encourages the agent to make decisions
that align with the defined safety criteria, thus ensuring the desired level of
control and constraint in the RL process.

The objective then becomes to find a policy π that maximizes the ex-
pected cumulative reward while ensuring that the cumulative cost does not
exceed predefined limits. Specifically, the agent seeks to solve the following
optimization problem:

maxEπ [
∞

∑
t=0

γ
t
R(st, at)]

subject to

E [
∞

∑
t=0

γ
t
C(st, at)] ≤ d

where:

• C(st, at) is the cost received for taking action a in state s at time t.

• Eπ represents the expected value under policy π and in this case, the
expected cumulative reward or cost.

• d is the predefined threshold that the cumulative cost must not exceed.

2.3 Reinforcement Learning Methods

2.3.1 Q-learning

At the core of Q-learning [28] is the concept of the Q-value function (also
known as the action-value function defined earlier), denoted as Q(s, a).
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The ultimate goal of Q-learning is to learn the optimal Q-value function,
Q

∗(s, a), which guides the agent to the best action in each state. Q-learning
updates its estimates of Q-values towards the optimal Q-values using the
Bellman optimality equation. The update rule applied after each action
taken in the environment is as follows:

Qnew(st, at) ← Q(st, at) + α [Rt+1 + γmax
a

Q(st+1, a) −Q(st, at)]

Here, α is the learning rate (0 < α ≤ 1), which determines the ex-
tent to which new information overrides old information. The term Rt+1 +
γmaxaQ(st+1, a) represents the reward for the current action plus the dis-
counted value of the future reward, obtained by taking the best possible next
action. The difference between this term and the current estimate, Q(st, at),
is the temporal difference error, which is used to update the Q-value.

The objective of Q-learning is to iteratively update the Q-values for each
state-action pair in such a way that they converge to the optimal Q-values,
Q

∗(s, a). This would then give the optimal policy by always taking the
action that maximizes the Q-value in each state.

Epsilon-greedy policy

When picking actions in Q-learning, an epsilon greedy approach can be used
to balance exploration and exploitation. With this, a value ϵ ∈ [0, 1] can
be chosen and used to pick the action with the highest value (exploitation)
with probability 1− ϵ and a random action with probability ϵ (exploration).

2.3.2 Deep Q-Network

In large or continuous state spaces, traditional Q-learning faces scalability
challenges due to the impracticality of maintaining a comprehensive state-
action value table. To address this, the Deep Q-Network (DQN) [17] al-
gorithm employs a neural network to approximate the Q-function. The
approximated Q-value for a state-action pair when using neural network
parameters is denoted as Q(s, a; θ), where θ represents the weights of the
neural network. To improve stability, DQN utilizes a separate target net-
work, yielding Q-values Q

′(s, a; θ−) with weights θ
−
that are updated less

frequently than the weights of the primary network. This separation of pa-
rameters between the primary network (θ) and the target network (θ

−
) helps

to mitigate the issues of correlations between the Q-values and the target
values.
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Chapter 3

Environment and Training
Methods

3.1 Game rules

Before defining the CMDP, the game’s rules are discussed more in-depth,
starting with a reiteration of some key game concepts. A card is in a meld if
it is in a set, three (or four) of a kind, or in a run, a straight flush with at least
three cards. Each card not in a meld is called deadwood and contributes
to your deadwood score, which is to be minimized. An ace contributes one
point, a face card ten points, and all other cards contribute their numerical
value.
At the start of the game, two players are each dealt ten cards. One card is
put face up on the discard pile and all other remaining cards are put face
down on the stockpile. After all cards have been dealt, the game proceeds
through a series of turns. On each turn, a player must:

• Draw: the player begins their turn by taking a card. They can choose
to draw the top card from either the stockpile or the discard pile.
Choosing from the discard pile gives the player a known card that
might fit into their hand for a potential meld, but also reveals some
information about their strategy to the opponent. Taking from the
stockpile gives a random card but keeps the player’s strategy more
concealed.

• Discard: the player ends their turn by discarding a card from their
hand face up onto the discard pile. The discard is an important tactical
decision because it can either be a card that is least useful to the
player’s hand or a card they believe will be least beneficial to the
opponent. You can also choose to play for potential future gain by
keeping a card with higher value, but with good connectivity in your
hand.
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The game can end in one of three ways:

• Knocking: a player may end the game on their turn if, after discard-
ing, the total value of their unmatched cards, those not in a meld, is
10 points or less.

• Gin: a player can end the game by achieving ’Gin’, which occurs when
all ten cards are used in melds without any unmatched cards.

• Dead hand: if a player does not wish to draw the top card of the
discard pile and the stockpile is also empty, the round is declared dead.

As a simplified version of the game with just a single round is being discussed
here, there is no need for keeping score. The focus is on the final action taken,
after which the reward function defined in the subsequent chapter will give
a value that indicates how well the agent did that round.

3.2 CMDP

The CMDP for Gin Rummy according to the RLCard [29] implementation
will be defined here.

In the context of our model, we utilize the notation B52
to represent a

specific vector space. The symbol B denotes a binary domain, where each
element can take on one of two possible values: 0 or 1. Therefore, B52

refers
to a 52-dimensional vector space, where each vector is composed of 52 binary
elements. This is used here to represent a standard deck of playing cards.

• S: A state is represented as a tuple comprising:

– h ∈ B52
: This is the hand of the current player denoted as a 52-

element vector where each element represents a card in the deck.
If a card is present in the hand, the corresponding element is 1;
otherwise, it is 0. The order of the vector follows the sequence:
(A♠, 2♠, . . . ,K♠, Ar, . . . ,Kr, Aq, . . . ,Kq, A♣, . . . ,K♣).

– tc ∈ B52
: The top card of the discard pile.

– p ∈ B52
: The cards in the discard pile excluding the top card.

– o ∈ B52 ∶ The known cards in the opponent’s hand (obtained
from the discard pile).

– u ∈ B52
: The unknown cards. These are either in the stockpile

or in the unknown part of the opponent’s hand.

Thus a state s is a tuple (h, tc, p, o, u) and our state space S = {(h, tc, p,
o, u)∣h, tc, p, o, u ∈ B52}.
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It is hard to compute an exact number for the size of this state space
due to the constraints in the game. The size cannot be simply calcu-
lated as (252)5 because each card’s presence in one part of the state
(e.g., the player’s hand h) inherently means its absence in all others
(tc, p, o, u), enforcing a unique distribution of 1s across the five com-
ponents for any valid game state. There are also constraints on how
many cards can be in each component. For example, tc will always
only contain one card. These constraints significantly reduce the the-
oretical maximum size of the state space.

At the start of the game, we know that h contains 10 cards and there
are (52

10
) ways to choose 10 cards out of 52 for a player’s starting hand.

We then have 42 cards left to choose from for our discard pile starting
card. All other components are then also defined since p and o start off
empty and u contains all other unused cards. This would give a number
of (52

10
) ⋅ 42 ≈ 6.64 ⋅ 1011 starting configurations. As cards are moved

from the stockpile to the player’s hands or from the player’s hand to
the discard pile, the number of possible configurations increases. From
this, it is clear that the state space size is vast, making exhaustive
methods impractical to solve this directly.

• A: The set of possible actions consists of the following:

Action ID Action

0 Score player 0: used after knock or gin of player 1,
or dead hand to compute the player’s score. This
action terminates the game.

1 Score player 1: used after knock or gin of player 0,
or dead hand to compute the player’s score. This
action terminates the game.

2 Draw a card: The player draws a card from the deck.

3 Pick top card: The player picks the top card from
the discard pile.

4 Declare dead hand: The player declares the hand
dead.

5 Gin: The player goes gin.

6-57 Discard a card. 6: A♠, 7: 2♠, . . . , 18:K♠, 19: Ar,
. . . , 31: Kr, 32: Aq, . . . , 44: Aq, 45: A♣, . . . , 57:
K♣

58-109 Knock. 58: A♠, 59: 2♠, . . . , 70 :K♠, 71: Ar,
. . . ,83: Kr, 84: Aq, . . . , 96: Aq, 97: A♣, . . . , 109:
K♣
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So our action space A = {0, 1, . . . 109}

• P: The transition function. Indicator functions are used to see if a card
index is in a certain part of the state. For instance, it can be used to

see if a card is in the deck of some state s: 1u(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if x ∈ u

0, if x ∉ u

This gives the following transitions:

P (s, 2, s′) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
∥u∥ , if ∃!x ∈ {0, 1, . . . , 51}1u(x) = 1 ∧ 1u′(x) = 0

∧1h′(x) = 1

0, otherwise.

P (s, a, s′) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if a ∈ As \ {2}, and performing a in s leads to s’.

0, otherwise.

Note that the probabilities for drawing a card do not match reality,
as there is no access to the opponent’s cards here. A similar CMDP
version that mimics real life can be found in the appendix.

• R: The reward function. The ultimate goal in Gin Rummy is to go
gin with knocking as a good alternative. Otherwise, the reward is
determined by the amount of deadwood left in a player’s hand. This
gives us the following reward function:

R(s, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−#deadwood

100
if a ∈ {0, 4}

0.5, if a ∈ {58, 59, . . . , 109}
1.0, if a = 5

0, otherwise

• C: the cost function. A function d ∶ B52
→ N is defined which com-

putes the deadwood in a player’s hand according to the rules of Gin
Rummy. With this, the cost function can be defined:

C(s, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if a ∈ {6, 7, . . . , 57} ∧ ∣{a′ ∈ As∣a′ ≠ a ∧ d(T (s, a).h) >
d(T (s, a′).h)}∣ ≥ 3

1, if a = 2 ∧ d(s.h OR s.tc) < d(s.h)
0, otherwise

Now, to make these constraints more clear, there is a hand in Figure 3.1
as well as a stockpile with a visible discard pile card in Figure 3.2. There are
ten cards in our hand, so there is a decision between picking up the visible
card and a random card from the stockpile. In this case, the visible card
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is a queen and would give us a set of queens. This means that the second
constraint comes into play as the deadwood of our hand with this card (28)
is lower than our current deadwood (48). Ignoring this and picking up the
card from the stockpile anyway would thus give us a penalty.

Assuming that the queen was picked up, it is now time to discard a card,
and the first constraint matters. It says to avoid discarding a card if at least
three other discard options lead to a lower deadwood value. This aims to
prevent for example discarding a queen that is now in a set or the five, six,
or seven of spades that are in a run. In this case, that would mean that the
best discards are either the ten of clubs, nine of hearts, or the six of hearts.

Figure 3.1: Player’s hand

Figure 3.2: Stockpile and discard pile
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3.3 Constrained Deep Q-network (CDQN)

In this section, the implementation of the Constrained Deep Q-network
(CDQN) is discussed, adapted from the Deep Constrained Q-learning paper
by Kalweit et al. [10]. The standard ’DQNAgent’ from RLCard [29] can be
extended to develop our ’CDQNAgent’, incorporating specific constraints in
the learning process.

The CDQN algorithm modifies the standard Deep Q-Network (DQN)
framework by introducing safe action computation and safe set iteration.
Here we have the pseudocode of the algorithm:

Algorithm 1 CDQN Algorithm Pseudocode [10]

1: Initialize Q-network Q, target network Q
′

2: Initialize experience replay buffer R to store transition tuples (s, a, r, s′)
3: for each optimization step do
4: Sample a mini-batch of n transitions (si, ai, si+1, ri)1≤i≤n from R
5: Calculate the set of safe actions SC(si+1)1≤i≤n
6: Set yi = ri + γmaxa∈Sc(si+1)Q

′(si+1, a∣θQ
′

)
7: Minimize MSE of yi and Q(si, ai∣θQ)
8: Periodically update the target network Q

′

9: end for
10: for each execution step do
11: Observe the current state st from the environment
12: Calculate the set of safe actions SC(st) for the current state
13: Apply at = argmaxa∈Sc(st)Q(st, a) to obtain the best safe action
14: end for

Let us go through the steps in a bit more detail:

• We start by initializing the Q-network Q and the target Q-network Q
′
.

These networks are used to estimate the expected rewards for taking
certain actions in particular states. The target network’s weights are
updated less frequently to stabilize training.

• The experience replay buffer R is also initialized, which will store
tuples of the form (s, a, r, s′), where s is the current state, a is the
action taken, r is the reward received, and s

′
is the next state.

• The optimization loop is then entered:

1. A minibatch of n transitions is sampled from the replay buffer.
This allows the agent to learn from previous experiences and re-
duces the correlation between experiences.

13



2. For each next state si+1 in the minibatch, the set of safe actions
SC(si+1) is calculated. These are the actions that are allowed un-
der the constraints specified by the problem; this is what distin-
guishes CDQN from standard DQN. We can define this function
more formally as SC(si+1) = {a∣a ∈ As ∧ C(s, a) = 0}.

3. The target value yi for each sample in the minibatch is then set. It
is the immediate reward ri plus the discounted reward of the best
safe action in the next state as predicted by the target network
Q

′
.

4. The Mean Squared Error (MSE) between the target values yi
and the values predicted by the Q-network for the actual actions
taken ai is minimized. This is the learning step where the weights
of the Q-network are adjusted. The MSE can be defined here as
1
n
∑n

i=1(yi −Q(si, ai ∣ θQ))2.
5. Periodically, the weights of the target network Q

′
are updated to

slowly track the learned Q-network, which helps in stabilizing the
learning process.

• In the execution step, the current state is observed, and the best safe
action is selected.

3.4 Reward shaping

Building upon the constraints defined earlier reward shaping can be explored
to refine the agent’s learning process. Reward shaping involves modifying
the reward function, and integrating domain knowledge to provide more
immediate and informative feedback on the agent’s actions. In our case,
penalties (negative rewards) are introduced for actions that violate our con-
straints. This approach addresses the issue of the original reward function’s
sparsity, which primarily provides feedback at the game’s conclusion. By in-
tegrating penalties for specific undesirable actions, the agent can be guided
through training more effectively, encouraging it to learn strategies that
adhere to both the game’s objectives and our defined constraints.
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Chapter 4

Results

4.1 Preliminaries

In this section, the performance of the agents will be evaluated. The speci-
fications of the computer on which all code was run can be found in the ap-
pendix. All code used can be found on ’https://github.com/Michelwv/ThesisGinRummyRL’.
The following hyperparameters were used during training:

• Replay memory size: 20000.

• Discount factor: 0.99.

• MLP layers: [64, 64]; neural network with two hidden layers, each with
64 neurons.

• Learning rate: 0.00005.

An epsilon-greedy approach with ϵ = 0.1 was also used. All results during
training were obtained from playing a tournament of 10000 games every 100
games against a random agent, a benchmark to gauge the agent’s learning
progress.

4.2 DQN

The first training was done using a standard DQN implementation, without
using any constraints. The outcomes of this initial phase are depicted in Fig-
ure 4.1. To provide context, a random agent typically achieves an average
reward in the range of −0.5 to −0.6. Surprisingly, our agent’s performance
was similar to that of a random agent even after 10,000 episodes. Although
some success was observed, most games concluded with no cards left to draw
and a high deadwood count. Initially, the cause seemed to be suboptimal
hyperparameters, but experimenting with alternative configurations failed
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to show any noticeable improvements.

Interestingly, eliminating the epsilon-greedy strategy resulted in improved
performance, as illustrated in Figure 4.2. The agent showed a similar
starting trajectory but demonstrated significant improvement after 5,000
episodes. Reinforcement learning is often unstable and that can be seen
here with a substantial regression around the 12,500-episode mark, almost
going back to the initial performance. Fortunately, it did go back to its
peak close to 0.4. Extended training beyond 20,000 episodes revealed simi-
lar spikes without achieving further improvement.

The reasons behind the considerable performance difference between Fig-
ure 4.1 and Figure 4.2 remain unclear. Though there is randomness in the
game with drawing cards thus possibly eliminating the need for an epsilon-
greedy strategy, this big of a gap was unexpected.

Figure 4.1: Results DQN training with an epsilon-greedy policy
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Figure 4.2: Results DQN training without an epsilon-greedy policy

4.3 Constrained DQN

This section will go into the outcomes of training with CDQN. Unlike the
previous approach with DQN, the decision against implementing an epsilon-
greedy strategy from the beginning was made here. Different constraint lev-
els were used during training, which is indicated in Figure 4.3 as ’cdqn-n’.
Here, ’n’ represents the number of discard options the constraints allow. In
our most restrictive setting, labelled ’cdqn-1’, the agent could only choose
the optimal discard option, creating a highly constrained environment. In-
terestingly, as depicted in Figure 4.3, this approach was counterproductive,
with the agent’s performance dropping to -0.6—worse than a random agent.
A slight improvement was observed after 15,000 episodes, but it was not
substantial.

In a surprising turn, the ’cdqn-5’ setup, which permitted a wider range
of discard choices, recorded the highest peak in performance. However, it
instantly went back down again, and stabilized at a level similar to ’cdqn-
3’. Notably, none of the CDQN variants could surpass the performance of
the DQN agent shown in Figure 4.2. All CDQN models remained below
the zero-reward threshold, a stark contrast to the 0.4 peak achieved by the
standard DQN.
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Determining the exact reasons for this underwhelming performance is
challenging. The original paper by Kalweit et al. [10] reported significant
success using CDQN in a different application. One possible explanation for
our results is the larger state space in our case, suggesting that the earlier
findings might not be directly applicable to more complex environments.
Further research, applying CDQN in various settings, would be necessary to
confirm this hypothesis. Another potential factor could be the nature of the
constraints themselves; however, this seems less likely since a strategy based
on these constraints should theoretically return better results than what was
observed. Experimenting with varying learning rates and neural network
architectures was attempted as well, as the optimal parameters for CDQN
might differ from those for DQN. Nonetheless, the outcomes presented in
Figure 4.3 were the best from the experiments.

Figure 4.3: Results during training by CDQN agent
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4.4 Reward shaping

In our exploration of reward shaping, several agents with penalties for non-
optimal actions were trained, denoted as ’rs-n’, where ’n’ mirrors the con-
straint setting used in the CDQN approach. Unlike CDQN, which avoids
penalties by adhering to constraints, these DQN-based agents were subjected
to a significant penalty of -2 for each non-constrained move, determined to
be optimal after preliminary trials with values ranging from -0.1 to -5. The
penalty magnitude’s main effect was the speed of reaching a reward above
0.4. As depicted in Figure 4.4, the reward-shaping agents achieved a level
of performance comparable to what the standard DQN attained after ap-
proximately 20,000 episodes, but remarkably, they did so within a mere 500
episodes.

The more restricted agents showed more inconsistencies during training
with ’rs-1’ and ’rs-2’ going below 0.4 a few times, but always maintaining a
solid performance. Despite this, the difference in peak performance between
the agents was minimal, suggesting that even with varying degrees of con-
straint, reward shaping provides a quick and solid convergence to effective
strategies.

Figure 4.4: Results during training by DQN-rs agent
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4.5 Decision making example

Before continuing with the final tournament results, let us analyze two situ-
ations covered by the constraints and see how the agents handle them. For
the first situation, the decision between taking a random card and taking the
visible card is looked at. As shown in Figures 4.5 and 4.6, the player must
decide whether to pick up the visible king of diamonds or draw a random
card. The optimal decision here is to pick up the king of diamonds, as it
gives us a set of kings and directly decreases our deadwood by 20. Fortu-
nately, all agents (DQN, CDQN, and DQN-rs) also come to this conclusion.
Having picked up the king, a card now has to be discarded and put on the
discard pile. For this, the agents all come to different conclusions:

• DQN: it decides to discard the king of clubs undoing our progress
immediately. This is alongside discarding the other kings the worst
decision you can make here. The only slight positive here is that the
action was not a clear winner. The q-value for discarding the 7 of
hearts, which is still not optimal, was within one-tenth.

• CDQN: this agent somehow manages to take an even worse action in
discarding the king of diamonds, which was just picked up. This action
was also clearly favoured by the agent as none of the others came close
to being picked.

• DQN-rs: displaying better judgment, this agent discards the ten of
diamonds. It is still not optimal as getting rid of the queen of clubs
would result in slightly lower deadwood, but a significant improvement
compared to the previous two agents.

Figure 4.5: Player’s hand
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Figure 4.6: Stockpile and discard pile

4.6 Tournament

Having trained and tested the different agent implementations, a tourna-
ment was organized featuring DQN, CDQN (’cdqn-3’), DQN-rs (’rs-3’), a
random agent, and a rule-based agent. The rule-based agent employs a
strategy of knocking or going gin whenever possible and discards the card
leading to the lowest deadwood, resorting to random actions otherwise.
All results were obtained by playing 10000 games against each other. Win-
rates can be found in Table 4.1, unsafe moves made per game in Table 4.2,
the rate of ending a game by knocking or going gin in Table 4.3, and the
average number of moves a game in Table 4.4. Note that a move here is just
a decision taken i.e. discarding a card is a move just like picking up a card
is a move.

The results are mostly as expected with only some slight surprises com-
ing from the CDQN agent. Table 4.3 shows that it rarely ends a game by
knocking or going gin and all of its wins instead come from having the lowest
amount of deadwood when no more cards are left in the deck. This aligns
with its high number of unsafe moves (Table 4.2), indicating a less effective
discarding strategy, as also observed in the previous section’s hand example.
However, CDQN achieved a respectable win rate against DQN, suggesting
that its strategy, while not optimal for ending games, still holds some merit
in a competitive setup.

Apart from this, these results confirm what was previously seen dur-
ing training. From our trained agents, DQN-rs emerged as the strongest
contender even outperforming the rule-based agent in their direct matchup.
Though DQN-rs did make more unsafe moves in their match, coming from
discards, it gains an advantage in drawing the correct cards.
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Table 4.1: Tournament Results: winrates

DQN DQN-rs CDQN Random Rule-based

DQN - 14.2 65.1 98.3 10.8

DQN-rs 85.8 - 89.1 99.3 53.1

CDQN 34.9 10.9 - 63.2 0.9

Random 1.7 0.7 36.8 - 0.8

Rule-based 89.2 46.9 99.1 99.2 -

Table 4.2: Tournament Results: unsafe moves % per game

DQN DQN-rs CDQN Random Rule-based

DQN - 8.6 14 5.7 7.9

DQN-rs 2.7 - 5.7 2.5 3.4

CDQN 16.4 18.6 - 14.9 16.3

Random 19.4 19.3 19.6 - 19.3

Rule-based 0.62 1.2 0.8 1.7 -

Table 4.3: Tournament Results: rate of ending a game by knocking/going
gin

DQN DQN-rs CDQN Random Rule-based

DQN - 2.9 20.5 89 8.5

DQN-rs 33.5 - 45 98.4 52.6

CDQN 0.2 0.3 - 22.7 0.3

Random 0.9 0.8 1.45 - 0.75

Rule-based 90 46.8 98.8 98.5 -

Table 4.4: Tournament Results: average number of moves a game

DQN DQN-rs CDQN Random Rule-based

DQN - 78 172 81 74

DQN-rs 78 - 127 47 48

CDQN 172 127 - 135 70

Random 81 47 135 - 52

Rule-based 74 48 70 52 -
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Chapter 5

Related Work

Though Gin Rummy has been around since the early 20th century, there
is limited literature surrounding it. More has been done in other games,
both involving perfect and imperfect information. Examples of perfect in-
formation games include work done in chess and go with AlphaGo [22] and
AlphaZero [23] where they use Monte Carlo tree search, deep neural net-
works, and reinforcement learning to obtain superhuman performance. As
for imperfect information games, poker is often used in research as the bench-
mark, more specifically the Heads-up no-limit Texas Hold’em (NLHU) vari-
ant. DeepStack [18] and Libratus [3] are two HUNL AIs with DeepStack
being the first to beat human professionals.

Inspired by success in Backgammon [26], one work that focuses on Gin
Rummy by Kotnik and Kalita in 2003 [11] uses temporal-difference (TD)
learning and co-evolution to train agents and explore their performance.
Their results show that the evolved players outperformed the TD players
as well as all players beating a random agent 100% of the time, though it
is all over a very small sample of 10 games. They also struggled with long
training times and finding optimal hyperparameters, a common problem in
reinforcement learning.

Almost two decades later in 2021, an EAAI research challenge by Get-
tysburg College to develop the best Gin Rummy agent was created [19].
A total of 14 papers were submitted of which 13 were accepted after peer
review. They also held a tournament at the end of the challenge between
all agents to determine the best-performing one. The winner [1] came from
an agent using a hand strength estimation model for discarding alongside
counterfactual regret minimization (CFR) [31] to find a knocking strategy.
As for picking up a card from the discard pile or the remaining deck, they
used a simple strategy matching the one defined in our constraints. A few
other entries focus specifically on estimating the opponent’s hand with tech-
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niques ranging from using random forests [5] and using deep neural networks
alongside heuristic strategies [15]. They then use this data to improve their
existing agent.
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Chapter 6

Conclusions

This thesis presented an exploration of different RL strategies applied to the
game of Gin Rummy, focusing on the standard DQN, CDQN, and DQN-
rs. The standard DQN agent showed improvement over time, particularly
when the epsilon-greedy strategy was removed. This finding suggests that
in certain stochastic environments like card games, traditional exploration
techniques may not always be the most effective.

Our CDQN agent did not achieve the expected and desired results. De-
spite adjustments to the constraints and hyperparameters, it failed to out-
perform standard DQN, struggling to end games by knocking or going gin.
Conversely, the DQN-rs agents achieved a high level of performance and did
so in only 500 episodes. This goes against the findings of the CDQN authors
where CDQN outperformed reward shaping. It is unclear whether this is
due to suboptimal hyperparameters or constraints, or something in the al-
gorithm itself. The tournament between different agents further confirmed
these findings, with DQN-rs emerging as the most proficient, even manag-
ing to beat the rule-based agent, followed by the standard DQN and CDQN.

Directions for future work include exploring different RL techniques such
as PPO and A3C, applying these strategies to other games or domains, refin-
ing reward shaping and constraint methods, and seeing how it all compares.
Seeing how CDQN performs in different environments could be especially
interesting considering the difference between our results and the CDQN
author’s results.
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Appendix A

Appendix

A.1 CMDP Realistic Version

• S: We define a state as a tuple of the following items:

– h1 ∈ B52
: This is the hand of player 1 denoted as a 52-element

vector where each element represents a card in the deck. If a card
is present in the hand, the corresponding element is 1; otherwise,
it is 0. The order of the vector follows the sequence:
(A♠, 2♠, . . . ,K♠, Ar, . . . ,Kr, Aq, . . . ,Kq, A♣, . . . ,K♣).

– h2 ∈ B52
: The hand of player 2.

– tc ∈ B5
2: The top card of the discard pile.

– p ∈ B5
2: The cards in the discard pile excluding the top card.

– d ∈ B52
: This is the remaining deck from which cards can be

drawn.

– t ∈ B3
: a variable indicating the state of the turn. The first

element indicates whose turn it is: 0 for player 0 and 1 for player 1.
The second element gives information about the part of the turn
we are at: 0 for drawing a card, picking up a card from the discard
pile, declaring the hand dead or going gin, and 1 for discarding
a card or knocking. The final element gives information about
whether scoring is available yet: 0 if it is unavailable and 1 if it
is.

Thus a state s is a tuple (h1, h2, tc, p, d, t) and our state space S =

{(h1, h2, tc, p, d, t)∣h1, h2, tc, p, d ∈ B52
, t ∈ B3}

• A: The set of possible actions consists of the following:
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Action ID Action

0 Score player 0: used after knock, gin, or dead hand
to compute the player’s hand.

1 Score player 1: used after knock, gin, or dead hand
to compute the player’s hand.

2 Draw a card: The player draws a card from the deck.

3 Pick top card: The player picks the top card from the
discard pile.

4 Declare dead hand: The player declares the hand
dead.

5 Gin: The player goes gin.

6-57 Discard a card. 6: A♠, 7: 2♠, . . . , 18:K♠, 19: Ar,
. . . , 31: Kr, 32: Aq, . . . , 44: Aq, 45: A♣, . . . , 57:
K♣

58-109 Knock. 58: A♠, 59: 2♠, . . . , 70 :K♠, 71: Ar, . . . ,83:
Kr, 84: Aq, . . . , 96: Aq, 97: A♣, . . . , 109: K♣

So our action space A = {0, 1, . . . 109}

• P: the transition function.

We will use indicator functions to see if a card index is in a certain
part of the state. For instance, we can use it to see if a card is in the

deck of some state s: 1d(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if x ∈ d

0, if x ∉ d

We now have the following transitions:

P (s, 2, s′) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
∥d∥ , if ∃!x ∈ {0, 1, . . . , 51}1d(x) = 1 ∧ 1d′(x) = 0 ∧ 1h′

1
(x) = 1

0, otherwise.

P (s, a, s′) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if a ∈ As \ {2}, and performing a in s leads to s’.

0, otherwise.

• R: the reward function. The ultimate goal is to go gin with knocking
as a good alternative. Otherwise, we determine the reward by the
amount of deadwood left. This gives us the following reward function:
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R(s, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−#deadwood

100
if a ∈ {0, 4}

0.5 if a ∈ {58, 59, . . . , 109}
1.0 if a = 5

0, otherwise

• C: the cost function. We define a function d ∶ B52
→ N which com-

putes the deadwood in a player’s hand according to the rules of Gin
Rummy. With this, we define the following cost function:

C(s, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if a ∈ {6, 7, . . . , 57} ∧ ∣{a′ ∈ As∣a′ ≠ a ∧ d(T (s, a).h) >
d(T (s, a′).h)}∣ ≥ 3

1, if a = 2 ∧ d(s.h OR s.tc) < d(s.h)
0, otherwise
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A.2 Computer Specifications
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