
Bachelor’s Thesis Computing Science

From Multi Server Authentication
to Multi Server Authorisation

Exploring architectures for distributed access management in the PEP repository

Mitchell Boesveld
s1045762

May 8, 2024

First supervisor/assessor:
Dr. Bernard van Gastel

Second assessor:
Dr. Ir. Erik Poll

Second supervisor:
Job Doesburg

Abstract

In this thesis, we explore approaches to distributed access management.
We do this based on a case study of the PEP Responsible Data Sharing
Repository (PEP Repo). PEP Repo is a secure storage system that pro-
vides pseudonymisation, encryption and therefore privacy of personal data,
for instance for research purposes of medical professionals. A large part of
the PEP Repo components are implemented in twofold, to prevent a Single
Point Of Failure from compromising that component. For instance, user
authentication is done by two servers. However, a Single Point Of Failure
still remains in the implementation of authorisation in PEP Repo. This
problem prevails also in systems similar to PEP Repo. In this thesis, we
explore two scenarios in which this problem can be mitigated. One is with
a set of access rules that is managed by a single entity (SSoT), the other is
a scenario in which access rules are managed by multiple entities (MVoT).
For both, we describe how verifying of access rules works. For the Single
Source of Truth (SSoT) scenario, we explore existing distributed systems
algorithms to maintain a synchronised state between multiple entities, and
describe how they can be applied to reach consensus between access lists.
For Multiple Versions of Truth (MVoT), we describe how Multi Party Au-
thorisation can be implemented in PEP Repo, and what the consequences
of using this model are. We evaluate all options from both the SSoT and
MVoT scenarios based on reliability, implementability, maintainability, se-
curity, network efficiency and cost efficiency. We conclude with a review of
the found systems, based on this evaluation. Applying the MVoT model and
using the Multi Party Authorisation system is found to be the most fitting
solution.

Contents

Abstract 1

1 Introduction 4

2 Current state of PEP access control 6
2.1 Authentication . 6
2.2 Authorisation . 7

2.2.1 Changing access rules 7
2.2.2 Verification of access rules 8

3 Problem description 9
3.1 An attack on the Access Manager 9
3.2 Towards a solution . 10

4 Updating access rules with SSoT 11
4.1 Consensus algorithms like PAXOS and RAFT 11
4.2 Two or Three phase commit 13
4.3 Time stamped commit (TSC) 15

5 Updating access rules with MVoT 17
5.1 Split responsibilities . 17

6 Verifying access rules 20
6.1 Verification in the case of PAXOS or RAFT 20

6.1.1 Partial verification . 20
6.1.2 Complete verification 21

6.2 Verifying in other cases . 22

7 Results 23
7.1 PAXOS and RAFT . 24
7.2 Two phase commit (2PC) . 25
7.3 Three phase commit (3PC) 25
7.4 Time stamped commit (TSC) 25

2

7.5 Multiple Versions of Truth . 26

8 Reflection 27

9 Conclusions 28

Glossary 30

Bibliography 33

A Byzantine fault tolerance in PAXOS & RAFT 34

3

Chapter 1

Introduction

Since the General Data Protection Regulation (GDPR) was introduced in
the European Union, there has been an ever-increasing need for solutions
to the privacy requirements this regulation stated. One of these require-
ments is that data may only be processed for a specific and valid purpose.
This principle is called “Data minimisation” in the GDPR [1]. The PEP
Responsible Data Sharing Repository (PEP Repo) is a secure data storage
solution that aims to facilitate in solving this problem, by providing access
to only relevant subsets of data instead of all data. PEP Repo also provides
pseudonymisation of the data subject’s identity, minimising data even more
by removing linkability between the data and the data subject [2].

Even though the fundamental cryptography behind PEP is rigid and well-
proven [3], weaknesses arise at the implementation in PEP Repo. For in-
stance, if the main private key leaks, the whole system is compromised, no
matter the rigidity of the cryptography. That is why most parts of the PEP
Repo system are implemented redundantly: more than one part can fail
before the system becomes insecure. For instance in authentication, two
servers have to independently authenticate a user for the system to accept
their established identity. We call this Multi Server Authentication. This
means that if one server is compromised, authentication as a whole is not.

However, because there is currently no redundancy in the authorisation of
PEP Repo, security concerns prevail at the point of granting certain people
(or groups) access rights to parts of user data. This problem also exists in
similar systems to PEP Repo. If a malicious actor would be able to modify
the table of access rights, confidentiality, integrity and availability of the
user data can no longer be guaranteed, no matter the cryptographic rigidity
of the system. This means that the way authorisation is often implemented
poses a Single Point Of Failure (SPOF) when updating or modifying access
rules.

4

The goal of this thesis is to explore the solutions to this problem and anal-
yse them based on reliability, implementability, maintainability, security,
network efficiency and cost efficiency. We utilise PEP Repo as a specific use
case to represent systems these solution apply to. Ultimately, the result of
this thesis is a reflection on the solutions that are available, with regards to
these aspects. We distinguish two cases (see also chapter 4 and chapter 5):
one with multiple servers performing authorisation based on a Single Source
of Truth (SSoT) leading to Multi Server Authorisation, and one with multi-
ple servers administered by different parties and thus with Multiple Versions
of Truth (MVoT), leading to Multi Party Authorisation.

The scope of this thesis is limited to the theoretical exploration of possible
ways the SPOF in authorisation can be reduced to two or more points of fail-
ure, and how we can thus achieve Multi Server Authorisation (MSA) or, as
an extension of this, Multi Party Authorisation (MPA). The cryptographic
details of PEP and implementation details of the solution are out of scope,
as we aim to find a general approach to solve this problem.

The result of this thesis is an overview of the options there are to split the
authorisation responsibilities of PEP Repo over multiple entities. These
results are then analysed and compared. In the end, the thesis concludes
in a recommendation as to which system is most fitting in respect to the
requirements that were posed.

Our approach is as follows. We first review existing literature on distributed
systems, and select applicable consensus algorithms. We do this based on,
among other sources, the book “Designing Data Intensive Applications” [4],
as this is a very extensive source of these algorithms. We also consider a
separate SPOF in the current authorisation system, namely the problem of
only one person having full authority over the access rules that are in effect.

Then, we use PEP Repo as a case study and explore the ways these findings
can be applied to it as it is currently implemented, or the ways the PEP
Repo system has to change in order to allow for more secure authorisation.
All options are compared and scored based on reliability, implementability,
maintainability, security, network efficiency and cost efficiency.

5

Chapter 2

Current state of access
control in PEP Repo

To understand how authorisation works in the PEP Responsible Data Shar-
ing Repository (PEP Repo), we first explore the current way authentication
is implemented. This is mostly done separately from the authorisation pro-
cess, making it almost a completely separate system. However, since both
authentication and authorisation are needed for access management, they
are both related to the solutions this thesis will provide.

2.1 Authentication

Authentication currently works via Security Assertion Markup Language
Protocol (SAML) [5]. SAML uses the concept of a Service Provider (SP)
and an Identity Provider (IdP). In the case of PEP Repo, SURFconext is
the IdP, and the PEP Repo authentication server is the SP. To mitigate a
Single Point Of Failure (SPOF), the current implementation uses two PEP
Repo authentication servers.

The authentication flow is as follows1 (see Figure 2.1). A PEP Repo user
logs in to SURFconext, and a request is sent to the first authentication
server. This server signs the first authentication step, and sends it back
to the client. The client then verifies the signature, and sends it and a
second authentication request to the second authentication server. This part
can happen without end-user interaction, as the SURFconext session will
still be active once the response from the first authentication server arrives
at the client. After the client has sent the second request to the second
authentication server along with the signature from the first authentication

1PEP Repo currently has two Authentication Servers, but the system is set-up to allow
n Authentication Servers.

6

server, the second server will sign the authentication attempt along with the
signature from the first server and send it back to the client.

In the end, the PEP Repo user has a certificate that proves his identity. This
certificate is signed by two servers, taking away SPOF a system with one
server would have. With the certificate that was obtained, the user can now
go to the Access Manager (AM) and Transcryptor (T) layer, and perform
the actions they have permissions for. This is where authorisation begins.

U

User

SC

SURFconnext

AS1 ASn

Authentication Servers

request for
authentication

accepted,
signature X

request for
authentication 1,

signature X

signed
authentication ticket 1

request for
authentication 2,

signature X

signed
authentication ticket 2

Figure 2.1: graphical representation of authentication process

2.2 Authorisation

2.2.1 Changing access rules

Currently, PEP Repo stores access rules in a server called the Access Man-
ager (AM). Only an Access Administrator (AA) can change the rules that
the AM enforces. The AM stores a table of usergroup-datagroup relations,
with the options for read access and write access. To update these rules,
the AA can obtain an authentication certificate. With that certificate, a re-
quest to change an access rule can be sent to the AM server. This server then
verifies that the AA is allowed to change the rule and changes it accordingly.

7

2.2.2 Verification of access rules

Verification of the access rules works as follows (see Figure 2.2). A user
that wants to retrieve data from the system sends a request to the AM with
the certificate that was obtained during authentication, which verifies if the
user has the permissions to do so. If correct permissions are present in the
AM, it will pass the request to a server called the Transcryptor (T). This
server logs the action, does the proper pseudonymisation and cryptographic
operations, creates a database request ticket and sends the request to the
AM, which sends it back to the client. The client can then send a request
to the database with the ticket obtained in the previous steps, and retrieve
the pseudonymised data2.

U

User

AM

Access Manager

check
access rules

T

Transcryptor

log
access history

signed
authentication ticket

request
database ticket

ticket to
access database

Figure 2.2: graphical representation of authorisation changes

2The retrieved data also needs to go through the PEP Repo system again for tran-
scription

8

Chapter 3

Problem description

As described in the previous chapters, the main goal that this thesis tries to
accomplish is to eliminate the Single Point Of Failure (SPOF) in authorisa-
tion. We do this by using PEP Responsible Data Sharing Repository (PEP
Repo) as a case study. In PEP Repo, there are two main parts of autho-
risation, namely the updating of access rights, and the verifying of access
rights. In this chapter, we highlight the importance of removing the SPOF
in authorisation, and explore why it is a problem. Specifically, we discuss
an attack model on the authorisation part of PEP Repo that the current
implementation is vulnerable to.

In the current PEP Repo implementation, only the Access Manager (AM)
stores and verifies the access rules to the system. If the AM affirms a users’
access rights, it will relay the request to the Transcryptor (T). T then logs
that certain data was accessed and does the required cryptographic opera-
tions, but does not prevent illegal retrievals. Verifying at T cannot be easily
implemented in the current system, as T does not have the access rules.

3.1 An attack on the Access Manager

To update access rules of the PEP Repo system, there are two adminis-
trators: the Access Administrator (AA) and the Data Administrator (DA).
The DA defines an access context, consisting of a relation between a data-
group and a usergroup. The AA can give rights to this relation, specifically
read- and write capabilities. The DA is out of scope in the rest of this thesis,
because they are not directly involved with access control.

Assume a compromised AM. This means that access rules to usergroup-
datagroup relations can be changed to the liking of the attacker. At first
glance, it seems that this allows only existing users (for instance, researchers)
to gain more privileges than allowed, as it can impersonate the capabilities of
the AA. However, an attacker can also create a new user and access context,
as this is also only handled by the AM. The combination of the ability to add

9

an access context and the ability to assign all rights to it give the attacker
complete access to the data. Note that this data will still be pseudonymised,
as colluding with T is required to decrypt the original identifiers of the data.
Having access to all data does however make it more likely that identities
leak, because some stored data has identifying attributes.

3.2 Towards a solution

As seen in the section 3.1, the current way that authorisation is handled
poses a SPOF. The solution that we propose should thus aim to split au-
thorisation responsibilities over multiple servers. This however poses a con-
sensus problem in the Single Source of Truth (SSoT) model (depicted in
Figure 3.2). Namely, since entries in the list of access rights should be
checked by multiple entities, they must be present on all these entities. This
means that, to prevent unexpected effects when checking which user has
which access rights, the list must always stay synchronised. However, they
can not just verify if the access managing entities have the same lists and
update them if they differ, because this would indirectly still pose the same
SPOF. Next to that, the synchronisation between the two or more access
lists can go wrong in many malicious and non-malicious ways, with for in-
stance network instability or attacks on access rule updates, making it a
non-trivial problem solve. In the Multiple Versions of Truth (MVoT) model
(depicted in Figure 3.3), this consensus problem does not occur.

AM

Access Manager

AA

Access
Administrator

DA

Data
Administrator

Figure 3.1: Current authorisation

AM1

Access Manager 1

AM2

Access Manager 2

AA

Access
Administrator

DA

Data
Administrator

Figure 3.2: SSoT authorisation

AM1

Access Manager 1

AA1

Access
Administrator 1

DA1

Data
Administrator 1

AM2

Access Manager 2

AA2

Access
Administrator 2

DA2

Data
Administrator 2

Figure 3.3: MVoT authorisation

10

Chapter 4

Updating access rules with
SSoT

In this chapter, we assume a model with a Single Source of Truth (SSoT).
In the case of PEP Responsible Data Sharing Repository (PEP Repo), this
would be the Access Administrator (AA). However, this role is generalisable
to any system, and is not specific to PEP Repo alone.

The SSoT model is explored first, because the current way PEP Repo (and
most other similar systems) works only involves one person that is respon-
sible for updating the access rules that allow certain users to access certain
data. The model that assumes Multiple Versions of Truth (MVoT) will be
explored in chapter 5.

The solutions proposed in this chapter fit the most common workflow best,
and do not require significant changes in terms of human interaction with
the system. However, this does mean that the human will still be a Single
Point Of Failure (SPOF) in the authorisation process; If the human gets
compromised, arbitrary access to the system can be granted. Since our goal
is to mitigate a SPOF in all parts of authorisation, we will discuss this
version of the problem in more detail in the next chapter. However, since
the SPOF reduction is not the only part of the solution that has to be taken
into account, we will also explore the solutions that have one SSoT.

4.1 Consensus algorithms like PAXOS and RAFT

One option for reaching the goal of multiple synchronised access lists is
the use of existing consensus algorithms. At first glance it seems like the
problem has already been solved with systems like PAXOS or RAFT. These
are systems that guarantee consensus between multiple nodes under certain

11

conditions [4]. Nodes in this case are the Access Manager (AM)’s, but could
theoretically be any processing unit, even virtual ones.

AA

Access Administrator

Node 1

Leader

queue update

apply update

Node 2

queue update

apply update

Node n

queue update

apply update

Followers

update

inform
of update

queue updated

update applied

update successful

Figure 4.1: graphical representation of a general successful RAFT update

Although many versions exist (see Appendix A), they generally work as
shown in Figure 4.1. One node acts as a leader and all the other nodes act
as followers1. All state changes are sent to the leader. In this case, the state
changes are changes to the access rules, sent by the AA. The leader then
queues the state change, and informs all other nodes of the state change.
Once more than half of the follower nodes has also queued the state change,
the leader applies the state change on it’s internal state machine. Once a
follower learns the leader applied the new state, the follower will also apply
the same state change to it’s internal state machine. This mechanism ensures
consensus over the access rules, by at least half of the nodes in the system2.
The system applied to the AM’s of PEP Repo is shown in Figure 4.2.

1Electing this leader is a non-trivial problem, see [4] for more details
2It can take some time before the followers also apply the change to their state machine,

so only eventual consistency is guaranteed

12

RAFT/PAXOS Node 1

RAFT/PAXOS Node 2

RAFT/PAXOS Node 3

Update Queue

State Machine

Consensus System

Update Queue

State Machine

Consensus System

Update Queue

State Machine

Consensus System

Access Manager 1

Access Manager 2

Access Manager 3

Figure 4.2: Graphical representation PAXOS or RAFT applied to PEP Repo

For security it is important to note that all changes are sent to the current
leader of the PAXOS or RAFT system. Without extra measures, a com-
promised leader could thus change the state on all machines. Therefore, it
is required that the AA also signs each state change by using public key
cryptography. This ensures that a compromised leader can’t simply insert
their own state changes, which would be applied to the whole network. The
signature has to be checked on each node in the network, so on all AM’s in
the case of PEP Repo.

Lastly, another important factor to take into account is the usability of the
system itself. Even though the RAFT system is easier to understand than
PAXOS, they are both still hard to implement, maintain and debug. This
should be taken into account in relatively small projects that do not have
programmers specialised in distributed systems algorithms, like PEP Repo.

4.2 Two or Three phase commit

One other option would be to directly commit changes of access rules to two
servers, in this case the AM and the Transcryptor (T), directly from the
AM. This would put more trust on the AA, but as that is a SPOF that is
impossible to circumvent in the case of SSoT, this is not a problem.

The steps of this Two Phase Commit (2PC) would be as follows (Also see
Figure 4.3). Firstly, the AA sends an update request to both AM and T.
These servers then verify if the change is allowed according to their rules,
and prepare to commit. Now they both send a message to the AA signifying
that they can both commit. The AA now approves the final commit once
both servers are prepared to commit, and send this signal to both servers.

13

They both commit and send a successful reply with the final message of the
interaction.

Figure 4.3: Two-phase commit protocol [6]

Adding another phase to this protocol would add certain failure recovery
features, such as non-blocking on client/coordinator failure and the possi-
bility for another node to take over the transaction [4]. The same holds
for a failure of a participant; Three Phase Commit (3PC) would allow the
protocol to continue on the other nodes. This is useful in the case of PEP
Repo, because without these failure recovery features it would require man-
ual intervention of the AA if a temporary failure like a temporary network
outage occurred.

The problem of nodes not responding due to network failure or otherwise
can be solved by using timeouts, recorded on the client/coordinator. Also
a number of retries can be done if a network error causes a non-repeating
failure. This only works if the protocol is executed linearly or uses a counter
system [4].

This system does not automatically recover from all failures, but does notify
the AA that something went wrong, and leaves it to the AA to solve the
occurred problems manually.

14

Figure 4.4: Three-phase commit protocol [6]

4.3 Time stamped commit (TSC)

Another option to synchronise the access rules on both AM and T is Time
Stamped Commit (TSC), for example by using Lamport timestamps [7].
This only requires communication from the client, the AA in this case, to
servers AM and T and back.

The protocol would work as follows: AA sends the request to update an
access rule to both the AM and T servers. Next to that, AA also sends
a time at which the rules have to go into effect. Under normal operation,
both AM and T send an acknowledgement of the change and the protocol
is done. If either AM or T does not send this acknowledgement within a
certain timeout period, the AA is responsible for rolling back the change
on both servers if needed, as it can be the case that a change has followed
through correctly and only the acknowledgement message gets lost due to a
temporary network error.

One point that has to be taken into account is that synchronising time
between servers has been proven to be hard. But maybe solving this problem
automatically is not required, and merely detecting it is enough. The goal
would be to have reasonably similar times on AA, AM and T. This can be
achieved by making AA also send their current time with each transaction,

15

and having AM and T verify whether it is within x seconds of its own time.
If due to network error or time difference it is not, the update is not executed
and a fail message is sent back to AA. This leaves AA with the responsibility
of solve the time difference manually.

AA

Access Administrator

AM1 AMn

Access Managers

update access rules

update access rules

update successful

update successful

Figure 4.5: Successful flow of Time Stamped Commit (TSC)

16

Chapter 5

Updating access rules with
MVoT

In this chapter, we will discuss the way access rules to the PEP Responsible
Data Sharing Repository (PEP Repo) system can be updated in the case of
Multiple Versions of Truth (MVoT), also called Multi Party Authorisation
(MPA). In the previous chapter, systems with only one Access Administrator
(AA) capable of changing the access rules were described. However, while
these system are more fitting to the current PEP Repo workflow, they do not
realise a true reduction of the number of Single Point Of Failure (SPOF)’s.
Namely, the AA is still only one human, and therefore a SPOF. In this
chapter, we will discuss solutions to the SPOF problem that also take into
account this problem. We do this by changing the model of updating access
rules in PEP Repo to a system with multiple AA’s, all having to agree on
the same access rules before the system will allow access to certain data.

5.1 Split responsibilities

This problem looks a lot simpler than most of the systems described in the
previous chapter. It looks like this, because in the MVoT model synchro-
nisation between access lists becomes unnecessary. Where differing access
lists in a Single Source of Truth (SSoT) model would mean a breach of
the system, in the MVoT model differing access lists could be considered
a feature. This is inherently the case, because different AA’s might allow
different accesses, and a user will only be allowed access to certain data if
all of the AA’s agree. A simplified successful data retrieval flow is shown in
the Figure 5.1, as well as an erroneous flow in Figure 5.2, where one of the
AA’s has not given access to the data1.

1In reality, the response from the Data Storage also has to go through the Access
Manager (AM) servers to the Data Requester

17

Access
Administrator 1

Access
Administrator 2

Access
Administrator 3

Access
Manager 1

Access
Manager 2

Access
Manager 3

data requester

Storage Facility

Transcryptor

1

set
permissions

2

set
permissions

3

set
permissions

4

request
data X

5 ✓

6 ✓

7

✓

8
database
ticket

9 data X

Figure 5.1: graphical representation MVoT successful flow1

Access
Administrator 1

Access
Administrator 2

Access
Administrator 3

Access
Manager 1

Access
Manager 2

Access
Manager 3

data requester

Storage Facility

Transcryptor

1

set
permissions

2

✗

3

set
permissions

4

request
data X

5 ✓ ✗
6

Figure 5.2: graphical representation MVoT erroneous flow1

1The Transcryptor can also be removed, because the AM’s each transcript as well.

18

Because the AA’s are now different entities, they will get differing pseudonyms
for the users of which data access is controlled. Without common identifiers,
access control is not possible, because there would be no way to know the
AA’s are giving access to the same user’s data.

This problem can be solved as follows. The AM’s can both function as an
entity applying access control, as well as a Transcryptor (T) that can create
local pseudonyms. By using this, the AMs can function as each others T,
making the same local pseudonyms available on all AMs in the pipeline.
This process is shown in Figure 5.3.

Access Manager 2
(as Access Manager)

Access Manager 1
(as Access Manager)

Access Manager 1
(as Transcryptor)

Access Manager 2
(as Transcryptor)

1

2

3

4

5

6

7

Figure 5.3: Flow of access rules with multiple Access Managers

19

Chapter 6

Verifying access rules

In the previous chapters we have discussed the process of updating a list
of access rules, both in a Single Source of Truth (SSoT) model and in a
Multiple Versions of Truth (MVoT) model. However, these systems deviate
from the standard singular list, by using multiple entities to store the access
control rules, to prevent a Single Point Of Failure (SPOF). This means that
we also have to to adapt the way these rules are verified to make use of these
multiple access lists.

6.1 Verification in the case of PAXOS or RAFT

PAXOS and RAFT are, granted their difficulty and relative inefficiency,
solid systems to reach consensus over the state of a system, in this case the
access control list. However, these systems do not come with a mechanism
to retrieve data. They only come with varying guarantees about the state
of the system, which we will have to take into account while choosing a way
to verify the access rules.

6.1.1 Partial verification
As described in a previous chapter about PAXOS and RAFT, the most basic
implementations allow f nodes to fail in a system of 2f+1 nodes. This means
the majority must succeed, and contain the most up-to-date access rules. So,
given a system of n ∈ {3, 5, 7, . . . } nodes, at least n+1

2 nodes contain correct
and up-to-date data. This means that when verifying access control, we can
at most require n+1

2 nodes to have granted access. This number will change
if there are other requirements, like byzantine fault tolerance.

Note that the nodes that contain certain access rules do not per se have to
be the same subset of nodes for each access rule. A simple example of this is
given in Figure 6.1. However, because PAXOS and RAFT provide “eventual
consistency”, this only has a minor effect on the system in the long term.

A way a system like this can be imagined is similar to an idea used in [8].

20

Node 1 Node 2 Node 3

A has access to X
A has access to X
B has access to Y

B has access to Y

majority A
has access to X

majority B
has access to Y

Figure 6.1: Majority nodes with different access rules

This system works as follows. Take physical nodes N , and virtual nodes K
with ∥K∥ = ∥N∥. On each node ni ∈ N , distribute key material for virtual
nodes {ki, ki+1, . . . , ki+∥N∥−1 mod ∥N∥} ∈ K. Any two nodes are now always
required for decryption.

In the case of a system with three physical nodes {AM1, AM2, AM3} and
virtual nodes {v1, v2, v3}, dividing the virtual nodes like {v1, v2} = AM1,
{v2, v3} = AM2 and {v3, v1} = AM3 always requires two out of three nodes
to verify the access rules, but also allows one node to be unavailable or
temporarily out of sync.

An important realisation is that this drops the security of the system down
to two points of failure, instead of the potentially more nodes that do au-
thorisation (3 points of failure to 2 points of failure in the example above).

6.1.2 Complete verification

Instead of relying only on part of the nodes in verification, it is also an option
to wait until all nodes are up-to-date. This can easily be implemented, as
PAXOS and RAFT nodes use strictly increasing version numbers internally
to keep track of the current state they are in [4]. These can be compared
at the verification stage, and if the version number of previous node AMi−1

is larger than current node AMi, the current node can wait on an update
(possibly with a time out).

This does however come with implications for when the state number of
AMi < AMi−1. This can happen when an update to the access rules is done
while another users’ access is being verified. The initial solution might be
to simply roll back to the same state of AMi, and use the older access rules.
However, doing this without extra security measures would mean that if any
Access Manager (AM) is compromised, they can roll back the access rules to
an arbitrary earlier state, compromising availability or potentially allowing
old rules to become in effect again.

21

One way to solve this problem is to use time stamps on the state numbers,
and requiring that the states can be no more than x minutes apart. Assum-
ing all AM servers have reasonably synchronised clocks, the access rules can
be rolled back at most x minutes in case of a compromise. Historically, a
scenario of synchronised clocks among all servers was not always the case
in PEP Responsible Data Sharing Repository (PEP Repo). This must be
taken into account when evaluating this solution.

6.2 Verifying in other cases

Verifying in the case of manual two or three phase commit updating is
relatively simple. In the current implementation of PEP Repo authorisation,
the only additional requirement to achieve 2 points of failure is that not only
the AM, but also the Transcryptor (T) actively checks the access rules that
are synchronised between both servers.
If a user makes a request that is not allowed by either AM or T, they will
not be allowed access. Even more, if AM and T do not apply the required
cryptography to create the database ticket, the user is not feasibly able to
get data from the system. This works, because the responsibility for creating
a database ticket was already split over both AM and T, so by this system,
the SPOF would be avoided.
This system could easily be adapted to distribute the authorisation respon-
sibilities over more than 2 nodes. We could simply add servers to verify the
access list and do a part of the transcription of the data, making it impos-
sible for a single compromised server to hijack the system. This system is
shown in its simple form in Figure 6.2.

U

User

AM1 AMn SF

Storage FacilityAccess Managers

request data
request data

signature AM1
request data,
signature

{AM1 . . . AMn}

Data@AMn

Data@AM1

Data@User

Figure 6.2: Verifying with n Access Managers

22

Chapter 7

Results

In this chapter, we analyse and compare the solutions that were described in
the previous chapters. The metrics that were chosen are reliability, imple-
mentability, maintainability, security, network efficiency and cost efficiency.
With reliability we mean the automatic recovery capabilities of the system
in case a fault occurs when synchronising the access rules between Access
Manager (AM)’s. With implementability, we aim to quantify how difficult
it is to implement the Multi Server Authorisation (MSA) approach in a
system like PEP Responsible Data Sharing Repository (PEP Repo). Sim-
ilarly, the maintainability metric identifies how hard it is to maintain or
debug an MSA approach relative to the other MSA approaches. The secu-
rity metric shows the security benefit over the current system, in terms of
how well it solves the issue of a Single Point Of Failure (SPOF) in autho-
risation. Network efficiency exposes how efficient the MSA approach is in
terms of relative network traffic. Lastly, cost efficiency depicts the costs for
the servers that are required to use the MSA approach, relative to the other
MSA approaches.

23

System

Currently SSoT MVoT

Metric
PAXOS &

RAFT
2PC 3PC TSC MPA

Reliability ++ + − +/− −− ++

Implementability ++ − + + + −−
Maintainability + −− +/− +/− − +

Security −− + + + + ++

Network efficiency ++ −− +/− − + +

Cost efficiency ++ − + + + +

Table 7.1: System scores by metric of evaluation

7.1 PAXOS and RAFT

In the previous chapters, we have described how you could use consensus
algorithms like PAXOS and RAFT to achieve automated consensus. We
have shown what the consequences of using such systems are. We have
found that automated consensus algorithms are very solid against network
problems or certain types of attacks (byzantine faults, see Appendix A).
This means that systems like this will need little manual intervention when
something goes wrong, or at least don’t require immediate attention. So
they score high in the goal of achieving reliability.

However, we also found that the more tolerances we require, the more in-
efficient PAXOS and RAFT become. This has to be put into perspective
of the number of faults that would occur in authorisation in PEP Repo.
There is unfortunately no data about this, but we assume that the faults
that do occur must be low in number, by the successfulness of the current
implementation which does not use any fault tolerance.

Also important are the effects on verification using a distributed systems
algorithm like these has. They require a specific solution to be found for the
potential problem that at any given moment, not all servers might be up to
date (as PAXOS and RAFT only provide eventual consistency).

Lastly, the implementation details of systems like PAXOS and RAFT are
complex and these systems are hard to maintain. We must take into account
that PEP is a relatively small project, and that debugging distributed algo-
rithms is hard. Therefore, PAXOS and RAFT score low on implementability
and maintainability.

24

7.2 Two phase commit (2PC)

The use of a simple system like two phase commit seems nice at first sight.
It is easy to implement and it is efficient when everything goes right. When
problems like unavailable servers do occur, solving a problem with Two
Phase Commit (2PC) could potentially be difficult. However, as we previ-
ously concluded that such problems do not occur often or at all, 2PC can
be considered very user friendly. When no faults occur 2PC is also very
network efficient, as it requires few communication steps. It is however not
capable of solving problems such as attacks or network issues on its own,
and it is therefore less reliable. The resulting system from using 2PC is of
similar security or higher than PAXOS and RAFT, with the same number
of nodes, as it does not have build in network redundancy. It can therefore
rely on more nodes to verify an access request from a user.

7.3 Three phase commit (3PC)

Similar to using 2PC, Three Phase Commit (3PC) scores high in imple-
mentability and maintainability because of the ease with which it can be
integrated in the current system. Although slightly less network efficient,
3PC does score higher in reliability, as there is no chance of the system
blocking while updating access rules. It also provides a higher chance of
the multiple AM’s to be synchronised, because of the extra preparation that
is done before committing and activating a rule. In terms of security it
achieves similar goals to 2PC.

7.4 Time stamped commit (TSC)

In terms of set up, Time Stamped Commit (TSC) is the easiest protocol
to implement into the PEP Repo system. It does however require more
manual intervention when network problems occur. If for some reason, one
of the AM’s or Transcryptor (T) become unavailable, for instance due to
a connection issue, the only way this problem can be solved is by manual
intervention. Since the frequency of such errors is assumed to be low, this
might not have to be a big downside. Moreover, if connection from the
Access Administrator (AA) to one of these servers is down, there is a high
change a normal user is also unable to connect to the server, in the case of
network based problems. This would mean the system is down and man-
ual intervention would have been required anyway. The maintainability is
therefore considered to be high.

TSC is however less reliable, as one erroneous transmission cannot simply
be retried such as in 2PC or 3PC. The chance of the two or more AM’s to
get out of sync is relatively high, and therefore this system scores lower on

25

reliability. If no problems occur, the system is very efficient as it requires
little network communication. Therefore, this system scores well in network
efficiency. In terms of security, TSC does perform similar to two- and three
phase commit systems.

7.5 Multiple Versions of Truth

For the scenario in which we assume Multiple Versions of Truth (MVoT),
there was no requirement for an algorithm to keep the access lists synchro-
nised. This was the case because one of the features of this system is that
multiple AA’s can apply different access rules, explicitly not having consen-
sus. This makes it a relatively easy option to implement technically, but it
does require signifiant changes to the PEP Repo policies for managing ac-
cess. The main difference would be having multiple AA’s that each update
the access rules individually.

This system is the most secure, as it not only removes the SPOF present in
the technical part of PEP Repo, but also removes it in the policy part. In the
Single Source of Truth (SSoT) scenario, there would always be the chance
that the single AA get compromised (or makes a mistake), still keeping a
SPOF. We found the system with multiple versions of truth would be the
most secure, reliable, maintainable and network efficient. The hit it takes on
user friendliness is worth the trade off, as it is a system that truly removes
all single points of failure in authorisation.

26

Chapter 8

Reflection

As this thesis was a broad exploration, we did not go in depth, and did not
do a cryptographical analysis or implementation of the solutions in terms
of the PEP Responsible Data Sharing Repository (PEP Repo). This means
that the security claims can be elaborated upon. The general conclusions
are however still applicable to systems similar to PEP Repo, which do not
per definition use cryptography.

The results are partly based on the assumption that faults do not occur often
within the Multi Server Authorisation (MSA) system. Although this seems
like a reasonable assumption given the current operation of PEP Repo, for
a general system this has to be taken into account when selecting a solution.

Next, a PEP Repo specific requirement for the verification of access rules
is that the PEP Repo allows for historical queries. This means that even
though someone might not have access to the current version of some data
selection, if they did have access at some point, they should keep access to
the version of the data they retrieved before. This could be looked into in
more depth in future research.

The methodology is also something that should be reflected upon. We de-
cided on a purely theoretical approach. We wanted to explore the breadth
of options available to solve the Single Point Of Failure (SPOF) problem
in authorisation. Therefore, we first defined criteria that a solution should
be scored on. Then, we did a literature review on the applicable methods,
and selected those that seemed fitting. However, although we took care to
review all available methods by using [4] and other peer reviewed papers as
sources, it is possible that other systems were available unbeknown to us.
We judged the systems that were found based on the criteria we selected,
and found the most fitting systems as a result. Future research could go
in on the specifics of the system we found to be most fitting, or look into
different ways consensus can be reached between different entities.

27

Chapter 9

Conclusions

In the current PEP Responsible Data Sharing Repository (PEP Repo),
most parts are implemented in twofold, to prevent a Single Point Of Fail-
ure (SPOF). Authorisation was found not to be implemented in twofold,
meaning the compromise of the single authorisation server would imply the
compromise of the whole authorisation system. This is a problem found in
many systems with a single Access Administrator (AA), and thus a Single
Source of Truth (SSoT) for the access rules.

In this thesis, we explored solutions to the problem of a SPOF in authorisa-
tion in the implementation of systems like PEP Repo, to effectively improve
the security and resilience of these systems. We evaluated all solutions based
on reliability, implementability, maintainability, security, network efficiency
and cost efficiency. We described two scenarios, namely one with a SSoT,
and one with Multiple Versions of Truth (MVoT). In the SSoT scenario,
there is one person that manages the access rules, namely the AA. In the
MVoT model, there are multiple AA’s that manage the access rules, and
they all have to agree on an access rule for it to be in effect. This system is
called Multi Party Authorisation (MPA).

Currently, authorisation in PEP Repo operates in a SSoT scenario. How-
ever, this puts all the responsibility on a single AA. To fully remove the
SPOF, we have considered the MVoT scenario because it does not only
move, but actually eliminates the problem of a SPOF. In terms of security
and reliability, the MPA solution in a MVoT scenario would be preferable,
as it is the most complete solution to the SPOF in authorisation, also taking
into account the SPOF in the AA.

However, having multiple AA’s is a potential management issue of small
projects like PEP Repo, and it is not a given that the MVoT scenario is
feasible in practice. Therefore, we have also explored the solutions in the

28

SSoT model, to maximise the potential of this scenario. As this is mainly
a consensus issue among access rules on multiple Access Manager (AM)’s,
we explored existing distributed systems algorithms and evaluated them
based on aforementioned criteria. Of the systems we explored, Paxos &
Raft were found to be too impractical for a project like PEP Repo, as
they require too much specialist expertise to implement and maintain. Two
Phase Commit (2PC) and Time Stamped Commit (TSC) on the other hand,
are too simplistic to provide a reliable solution. We found that Three Phase
Commit (3PC) is the best fitting system in the SSoT model, as it is relatively
simple to implement, provides good security, and is efficient and sufficiently
reliable.

In the end, for a security improvement to be effective, not only the tech-
nical solution is important, but also the practical implications have to be
taken into account. We have shown that the current way authorisation is
implemented in PEP Repo is not sufficient to protect against an attack on
an AM, and that mitigating the SPOF is important to improve security in
similar systems. Our provided solutions prevent attacks on an AM from
causing a major security risk for the system, while also considering practical
limitations. With these results, the security of PEP Repo and systems like
it can be improved, offering a more secure data storage solution.

29

Glossary

Access Administrator (AA)

In PEP Repo, the Access Administrator is the role reserved for the
person that can update the access rights a user of PEP Repo has. The
Access Administrator is responsible for allowing the right usergroups
access to the right data stored in the PEP Repo database.

Access Manager (AM)

In PEP Repo, the Access Manager is a Transcryptor that also stores
and verifies the access rules a usergroup has to certain data stored in
the PEP Repo database.

Data Administrator (DA)

In PEP Repo, the Data Administrator is the role reserved for the
person that can define an access context. An access context consists
of a relation between a usergroup and a part of the data stored in the
PEP Repo database.

General Data Protection Regulation (GDPR)

“This Regulation lays down rules relating to the protection of natu-
ral persons with regard to the processing of personal data and rules
relating to the free movement of personal data.” [1].

Identity Provider (IdP)

in SAML, the Identity Provider is “A kind of service provider that
creates, maintains, and manages identity information for principals
and provides principal authentication to other service providers within
a federation” [5].

Multi Party Authorisation (MPA)

Multi Party Authorisation is the process of managing authorisation
within a system with more than one Access Administrator, such as in
a Multiple Versions of Truth model.

30

Multi Server Authorisation (MSA)

Multi Server Authorisation is a system to split the responsibility of
authorisation over multiple servers, as to prevent a Single Point Of
Failure (SPOF).

Multiple Versions of Truth (MVoT)

In the context of authorisation, Multiple Versions of Truth means that
there is more than one definition of the access rules to a system. These
rules may differ among versions.

PEP Responsible Data Sharing Repository (PEP Repo)

PEP Responsible Data Sharing Repository is a secure data manage-
ment system, which relies on polymorphic encryption to allow pseudonymised
access to sensitive user data [2].

Security Assertion Markup Language Protocol (SAML)

SAML is a language system used to share data about authentication
and authorisation between servers.

Service Provider (SP)

In SAML, a Service Provider is “A role donned by a system entity
where the system entity provides services to principals or other system
entities” [5].

Single Point Of Failure (SPOF)

A Single Point Of Failure refers to a part of a system that, if the part
fails, the whole system will fail.

Single Source of Truth (SSoT)

In the context of authorisation, a Single Source of Truth means that
at any point in time, there is a single collection of access rules in effect.

Three Phase Commit (3PC)

In distributed systems, the Three Phase Commit protocol is a system
by which multiple nodes can be updated at the same time, by going
through a process of three phases.

Time Stamped Commit (TSC)

Time Stamped Commit describes a distributed systems algorithm that
synchronises transactions among nodes based on timestamps, for in-
stance by using Lamport timestamps [7].

31

Transcryptor (T)

In PEP Repo, the Transcryptor is a server that creates a unique
pseudonym per usergroup, for each identity stored in the PEP Repo
databse. This is similar to the AM, but T does not do access control.

Two Phase Commit (2PC)

In distributed systems, the Two Phase Commit protocol is a system
by which multiple nodes can be updated at the same time, by going
through a process of two phases.

32

Bibliography

[1] Regulation (EU) 2016/679 of the European Parliament and of the
Council (General Data Protection Regulation), April 2016.

[2] Eric Verheul, Bart Jacobs, Carlo Meijer, Mireille Hildebrandt, and Joeri
de Ruiter. Polymorphic encryption and pseudonymisation for person-
alised healthcare. Cryptology ePrint Archive, 2016.

[3] ER Verheul and Bart Jacobs. Polymorphic encryption and pseudonymi-
sation in identity management and medical research. Institute for Com-
puting and Information Sciences Radboud University Nijmegen, 2017.

[4] M Kleppmann. Designing data-intensive applications. O’Reilly Media,
2017.

[5] Eve Maler Jeff Hodges, Rob Philpott. Glossary for the oasis security
assertion markup language (saml) v2.0, 3 2005.

[6] Brahim Ayari. Perturbation-resilient atomic commit protocols for mo-
bile environments. PhD thesis, Technische Universität, 2010.

[7] Leslie Lamport. Time, clocks, and the ordering of events in a dis-
tributed system, page 179–196. Association for Computing Machinery,
New York, NY, USA, 2019.

[8] Erik Poll Job Doesburg, Bernard van Gastel. n-pep: Secure data shar-
ing with verifiable distributed pseudonymization. Unpublished, 2024.

[9] Leslie Lamport. Byzantizing paxos by refinement. In David Peleg,
editor, Distributed Computing, pages 211–224, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[10] Matthias Fitzi. Generalized communication and security models in
Byzantine agreement. PhD thesis, ETH Zurich, 2002.

[11] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault toler-
ance. In OsDI, volume 99, pages 173–186, 1999.

[12] J.-P. Martin and L. Alvisi. Fast byzantine consensus. In 2005 Inter-
national Conference on Dependable Systems and Networks (DSN’05),
pages 402–411, 2005.

33

Appendix A

Byzantine fault tolerance in
PAXOS & RAFT

One of the caveats is that the basic versions of PAXOS and RAFT do not
prevent any form of malicious use, they only guarantee correctness under
non-malicious failure (still, other conditions apply) [9]. This means the pure
synchronisation of access rules is not the only caveat to be solved. They
must also synchronise correctly while dealing with malicious faults. In the
context of consensus algorithms these are called “Byzantine faults”. These
are faults that are caused by loss of connection or maliciously misbehaving
servers. Formally, byzantine fault tolerance means the following. If there is
a system with a set of nodes N , with honest nodes H ⊂ N , and F ⊂ N
nodes are dishonest or unavailable (with H ∩ F = ∅ and H ∪ F = N), then
the system is byzantine fault tolerant if h ∈ H can broadcast a message x,
all nodes agree on x, and if h ∈ F broadcasts a message, all nodes agree to
discard x [10].

Ultimately, the goal is thus to reach consensus between possibly dishonest
servers about the access rules that are in effect.

Secondly, to reach consensus with normal (non-byzantine) fault tolerance
and majority voting, one trivially has to set a lower bound of at least 2f +1
nodes that are required for tolerance to f failing nodes. This is the case,
because for a majority consensus, at least one more than halve of the nodes
need to agree on a change of state. A majority is needed, because otherwise
for instance a network partition in the system could cause the states of
nodes in each partition to diverge from each other, dismissing the promises
that PAXOS and RAFT make. This is called split-brain, and is depicted in
Figure A.1.

The number of nodes required for a certain amount of fault tolerance only

34

✗

network
error

Node 1

Node 2 Node 3

Node 4

Node 5

Figure A.1: graphical representation of a split-brain state

increases when we also want to mitigate malicious faults. There are versions
of RAFT and PAXOS that do prevent compromised nodes from interfering
with the overall system [11]. These are called Byzantine resistant. However,
these versions require more overhead to reach consensus. This can be split
into two categories, namely network overhead and computing overhead. To
tolerate Byzantine faults, it is shown that one of those overheads take a
hit [12].

If the network is the main bottleneck, a system would require 5f + 1 nodes
to allow for f compromised nodes [12]. There are versions that allow fewer
nodes under normal operation with the same network limitations, but these
will be significantly more network intensive upon failure, and cannot revert
to the more efficient version once a fault has occurred, even if that fault was
not malicious [12].

If the number of nodes is the main bottleneck, the least number of nodes that
tolerates Byzantine faults is 4. In this case, only one node can fail without
causing a problem in synchronisation between nodes. In the general case,
the minimum number of nodes needed for f byzantine faults is 3f +1 [11].

35

	Abstract
	Introduction
	Current state of PEP access control
	Authentication
	Authorisation
	Changing access rules
	Verification of access rules

	Problem description
	An attack on the Access Manager
	Towards a solution

	Updating access rules with SSoT
	Consensus algorithms like PAXOS and RAFT
	Two or Three phase commit
	Time stamped commit (TSC)

	Updating access rules with MVoT
	Split responsibilities

	Verifying access rules
	Verification in the case of PAXOS or RAFT
	Partial verification
	Complete verification

	Verifying in other cases

	Results
	PAXOS and RAFT
	Two phase commit (2PC)
	Three phase commit (3PC)
	Time stamped commit (TSC)
	Multiple Versions of Truth

	Reflection
	Conclusions
	Glossary
	Bibliography
	Byzantine fault tolerance in PAXOS & RAFT

