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Abstract

Speaker diarization, the process of determining ‘who spoke when’ in audio
streams, is crucial for various speech processing applications but remains
challenged by overlapping speech. This thesis investigates the impact of
speaker overlap on the performance of Pyannote’s speaker-diarization-3.1
pipeline using an oracle component analysis approach.

This approach makes use of ideal (oracle) components to isolate the ef-
fects of different stages in the pipeline. Results indicate that the pipeline
still faces considerable difficulty in dealing with speaker overlap as it con-
tributes to roughly half of all the errors while making up only a tenth of the
speech time. By labeling segments conservatively, the segmentation module
is prone to missing (parts of) overlapping speech, but does not ‘hallucinate’
any speech consequently. The clustering module faced more difficulty with
speaker overlap as two-thirds of the recorded confusion was caused by those
areas of overlap. The study concludes that while the Pyannote pipeline
effectively handles speaker diarization, further improvements in handling
overlapping speech are necessary, particularly in the clustering component.
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Chapter 1

Introduction

1.1 Motivation

Speaker diarization (SD), the task of determining ‘who spoke when’ given
a stream of audio, plays a crucial role in various speech processing appli-
cations ranging from transcription of meetings and interviews to speaker
identification in multimedia archives. More precisely, an SD system that re-
ceives a stream of audio is expected to return the time stamps corresponding
to each speaker’s utterances. Despite significant advancements in speaker
diarization techniques, challenges remain persistent. As technology evolves,
there is a growing need for more efficient and accurate speaker diarization
methods.

Traditionally, SD systems have followed a pipeline structure comprising
four main modules or steps: speech activity detection, speaker change de-
tection, speech turn clustering, and supervised speaker recognition. These
cluster-based systems have demonstrated considerable success in various SD
challenges. However, inherent limitations exist within this framework. No-
tably, these systems are inherently ill-equipped to handle speaker overlap [4],
and errors introduced in one stage can propagate through subsequent steps.

In response to the shortcomings of traditional methods, the End-to-End
Neural Diarization (EEND) paradigm has emerged as a promising alter-
native. Unlike the modular approach, EEND comprises a unified neural
network responsible for all stages, from data intake to SD output. This con-
ceptualization transforms the speaker diarization problem into a multi-label
classification task within the EEND framework [8].

Despite its advancements, EEND encounters an array of challenges.
Large amounts of data are required to train an EEND system, and run-
ning the system tends to be quite computationally expensive. Furthermore,
EEND seems to be prone to underestimating the number of speakers (es-
pecially when the test set has more speakers than the train set), and it
is prone to performing less well on long conversations (due to the inter-
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nal self-attention mechanism) [21]. This led to the introduction of best-of-
both-worlds (BoBW) implementations [16] that have been shown to perform
better than either system alone.

1.2 Contributions

This thesis provides a setup for performing an oracle components analysis
on a BoBW SD system along with some experiments and their results. Sim-
ilar work, dating 2010 [13], has been done on SD systems, but mostly on
traditional systems that existed before the introduction of EEND or BoBW
approaches. The aim of this work is to understand the extent that speaker
overlap plays in an SD system that has already been developed with overlap
as a challenge in mind. The oracle experiments help achieve this by dis-
covering how certain parts of the system perform under perfect conditions,
while also extracting further insight from their behavior.

1.3 Outline

In chapter 2, the diarization error rate is broken down with a brief explana-
tion to give the reader a sense of what the errors depicted in this work are
referring to. An overview of the AMI dataset is also given since any work
done in this thesis is relevant, especially to this dataset. After that, chap-
ter 3 covers some of the related works showcasing how other oracle analysis
work is done and what can be extracted from them. Chapter 4 explains
the architecture of traditional SD systems while later showing the need for
a different approach by way of discussing the shortcomings. This leads to
the fifth chapter which introduces End-to-End Neural Diarization which was
proposed in 2019 as well as the improvements made to the approach since
then, including the development of a BoBW framework. Before beginning
with the analysis that this work revolves around, the Pyannote pipeline is
discussed and deconstructed in chapter 6. This not only informs the reader
of the inner workings of the pipeline used but also provides researchers
replicating this work a reference of the sort of system compatible with this
analysis. Next, chapter 7 details the setup for the analysis where the reader
can learn how every oracle component was built. A baseline for the experi-
ments performed is then given to function as a reference point. Finally, the
results of each experiment are discussed in order of the components.
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Chapter 2

Preliminaries

This chapter describes some preliminaries that the reader must be aware of
to understand the work done in this thesis. First, the diarization error rate
(DER), and the Augmented Multiparty Interaction (AMI) corpus. Results
in this work are framed using the DER, and the components that make it up.
Without knowing these concepts, the results do not mean much more than
some list of percentages. The AMI corpus is the sole dataset used in this
work, which means that the corpus must be kept in mind when also thinking
about the results. This chapter helps the reader become more aware of what
the results that follow signify and where they come from.

2.1 DER

Evaluating the performance of diarization systems is essential to quantify
and understand their effectiveness as well as to improve their accuracy. Cur-
rently, one of the most widely used metrics is the Diarization Error Rate
(DER). DER is a comprehensive metric that measures the mismatch between
the system’s output and the reference transcription in terms of speaker la-
bels and temporal boundaries. DER is defined as the sum of three types of
errors:

1. Missed Speech1 (MS) represents segments of speech that were present
in the reference transcription but were not detected by the system. It
is calculated as the duration of speech in the reference that is not cov-
ered by any speech segment in the system output. This also includes
segments where a single speaker is hypothesized and mapped to the
reference, but another speaker in the same segment was not detected.
The latter speaker segment is then considered missed speech

2. False Alarm (FA) refers to segments that the system incorrectly marked
as speech when there was none in the reference. It is calculated as the

1Missed Speech is sometimes also referred to as Missed Detection
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duration of speech in the system output that does not overlap with
any speech segment in the reference.

3. Speaker Confusion accounts for segments where the speaker label as-
signed by the system does not match the speaker in the reference. It is
calculated as the duration of speech segments where the speaker label
in the system output does not match the reference, excluding segments
already accounted for by MS and FA

Mathematically, DER can be expressed as:

DER =
Missed Speech + False Alarm + Confusion

Total Speech Duration

where each component is measured in terms of duration, typically in seconds,
and the total speech duration is the duration of speech from each speaker.

2.2 AMI

The Augmented Multiparty Interaction (AMI) corpus - used in this research
- is a multimodal data set with over 100 hours of meeting recordings. The
corpus was created as part of a project that aimed to develop meeting brows-
ing technology but was publicly released later on. The meetings took place
in four different locations (Idiap, Edinburgh, TNO, and Brno) and were di-
vided into scenario-based and naturally occurring meetings. Four distinct
speakers participate in each meeting.2.

An official fork of the AMI diarization setup, proposed in [18], is provided
with the pyannote toolkit. This fork is split into the two sets AMI and AMI-
SDM. The former includes multiple microphones in each recording while the
latter is made up of only single distant microphone (SDM) audio setups.
This work makes use of the AMI dataset, in which Beamforming [1] was
used to obtain a single signal from multiple microphones.

The AMI set contains manual annotations in which all words are consid-
ered to be speech but is separated into two versions named ‘only words’, and
‘word and vocalsounds’3. The dataset is further divided into three disjoint
sets: train, test, and dev. The train set was used by models in pyannote-
audio as part of their training data and it includes over 80 annotated hours,
of which around 66 are speech. The test set was used to obtain metrics in
this research, and it is made up of 9 annotated hours, of which around 7 are
speech. The dev set is of a similar composition to the test set, and it can
be used for fine-tuning or validating models.

2This information is all encoded into the titles of the meetings as explained on
https://groups.inf.ed.ac.uk/ami/corpus/meetingids.shtml.

3As the ‘word and vocalsounds’ references contain some inconsistencies in what anno-
tators marked as vocal sounds and not, this work is focused on the ‘only words’ version.
Therefore, all mentions of AMI references in this thesis refer to the ‘only words’ version.
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Chapter 3

Related Work

The aim of an oracle analysis is generally to evaluate the potential per-
formance of individual components within a system under ideal conditions.
Several studies have applied this approach to speaker diarization systems to
understand performance limits and identify bottlenecks.

In their paper ‘The Blame Game: Performance Analysis of Speaker Di-
arization System Components’, Marijn Huijbregts and Chuck Wooters an-
alyze the performance of a speaker diarization system through a series of
oracle experiments, which isolate the impact of individual components [14].
The aim was to understand the performance of each component in a system
tested on a dataset of twelve conference meetings used in previous NIST
benchmarks. Their findings highlighted that errors in speech activity detec-
tion (SAD) component had the most substantial impact on overall system
performance. The authors also emphasize that one cannot assume every
component in an SD system to be completely independent of the others. It
is likely the case that a change from one component will lead to influence
on others. Furthermore, the results of their analysis will be partially biased
with respect to the evaluation data used. Regardless, the results will give a
better understanding of the system at hand as well as an overview of what
could be improved.

Another paper by Marijn Huijbregts and David van Leeuwen has con-
ducted an in-depth error analysis of speaker diarization systems using oracle
components [13]. Titled ‘Speaker Diarization Error Analysis Using Oracle
Components’, the paper found that errors in (the tested) speaker diarization
systems are predominantly due to weaknesses in the SAD component, the
presence of overlapping speech, and the clustering component of the sys-
tem1. The authors also highlight that in an oracle component analysis, the
task of developing the oracle’s to be used is a quite elaborate one.

Since then, many researchers have been making use of oracle components

1More specifically, it is the ‘robustness of the merging component to cluster impurity’
that leads to error.
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in development to create better SD systems [20, 23, 11]. Most of the work
on oracle component analysis done so far has been focused on cluster-based
systems, which can be regarded as the previous SOTA. Thus, this work aims
to perform this analysis on the current SOTA system which implements a
BoBW approach.
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Chapter 4

Clustering-Based Speaker
Diarization

Before the introduction of end-to-end neural diarization systems, clustering-
based approaches had dominated the field. These methods involve several
stages, including speech activity detection (SAD), speaker change detection
(SCD), feature extraction, and clustering. This chapter provides an overview
of each of the individual components of these systems as well as discusses
some shortcomings of the approach.

4.1 Speech Activity Detection (SAD)

SAD is the initial step in the diarization pipeline, distinguishing between
speech and non-speech segments. Early SAD methods were based on sim-
ple thresholding techniques, but these have been largely replaced by more
advanced machine learning approaches, such as Gaussian Mixture Models
(GMMs) or deep neural networks (DNNs) [10]. These models are trained to
recognize speech patterns more accurately, even in relatively noisy environ-
ments.

4.2 Speaker Change Detection (SCD)

SCD is crucial for identifying the exact points where speaker changes (or
turns) occur. Traditional approaches, like the Bayesian Information Crite-
rion (BIC) method [5], involve statistical modeling of the audio signal to
detect changes in the speaker. More recent methods leverage supervised
learning algorithms, including support vector machines (SVMs) [7] and neu-
ral networks, which have shown significant improvements in accurately de-
tecting speaker changes.
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4.3 Feature Extraction

Feature extraction converts speech segments into numerical representations
that encapsulate speaker-specific information. MFCCs were among the first
features used in speaker diarization due to their ability to model the human
auditory system. However, the emergence of more sophisticated techniques,
such as i-vectors and x-vectors, has significantly enhanced the performance
of these features. While MFCCs are applied per frame, i- and x-vector are
applied per segment. I-vectors provide a compact representation of speaker
characteristics, while x-vectors, derived from deep neural networks, offer
even higher accuracy and robustness.

4.4 Clustering

The final step in the diarization pipeline is clustering, where feature vectors
are grouped to form clusters, each representing a unique speaker. Agglom-
erative Hierarchical Clustering (AHC) is a widely used approach where the
most similar clusters are iteratively merged. The choice of distance metric,
such as cosine similarity, plays a critical role in determining the effective-
ness of the clustering process. Other clustering methods, such as k-means
or spectral clustering, have also been explored, but AHC remains a popular
choice due to its simplicity and effectiveness.

4.5 Shortcomings

Despite their success, clustering-based speaker diarization systems have no-
table limitations. Traditional clustering-based systems struggle with over-
lapping speech segments, where multiple speakers talk simultaneously. These
systems, by design, typically assume that each segment contains only one
speaker1, which is very often incorrect in multi-speaker scenarios. More-
over, the modular nature of clustering-based diarization means that errors
in one stage can propagate to subsequent stages. For instance, inaccuracies
in SAD or SCD can lead to poor feature extraction and clustering, resulting
in higher DER. Additionally, most clustering techniques are unsupervised,
making it challenging to optimize the system directly for the diarization
task. This often results in suboptimal performance, particularly in diverse
and noisy environments.

1It is worth noting that a possible workaround to this is reserving certain clusters that
would represent multiple speakers instead of a single one
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Chapter 5

End-to-End Neural
Diarization

5.1 Hitachi’s Proposal

In 2019, scientists at Hitachi, Ltd. shared a paper titled End-to-End Neural
Speaker Diarization with Permutation-Free Objectives [8] that introduced a
new approach to speaker diarization. Instead of the usual system consisting
of several separate modules, the team proposed using a single neural net-
work. This novel end-to-end neural network (NN) would be able to ingest
a stream of audio, and then directly output the diarization results. Fur-
thermore, the speaker diarization problem becomes framed as a multi-label
classification problem under this EEND approach. To briefly clarify this for-
mulation, the speaker identities are viewed as labels, and the goal of the SD
system is to assign the correct labels to each speech frame. This new frame-
work is motivated by presenting the two major shortcomings of traditional
cluster-based systems that have been addressed by EEND:

1. By design, cluster-based systems can only match a segment with at
most one speaker, leading to the (false) assumption that two (or more)
speakers cannot be speaking at the same time.

2. Since clustering is typically an unsupervised algorithm, the system
cannot directly be optimized to minimize the DER.

By training on overlapping speech, it is claimed that the model then becomes
better suited to handle overlapping speech in general. Furthermore, since the
problem is multi-label classification, the system is not restricted to selecting
a single label during inference and can point out different active speakers
simultaneously.
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5.2 Permutation Invariant Training

The permutation problem arises when an SD system tries to consistently
assign output nodes to specific speakers across different time frames. The
EEND framework addresses this issue using permutation invariant training
(PIT). PIT is designed to handle the permutation problem by considering
all possible permutations of speaker labels during training, and does so in
the following manner:

• During training, for each time frame, the EEND model generates out-
put probabilities for each potential speaker. Since the speakers’ order
is unknown and can vary, PIT evaluates all possible permutations of
the output nodes (speaker labels).

• The training loss is computed for each permutation of the predicted
speaker probabilities and the ground truth labels. PIT then selects
the permutation that results in the minimum loss.

• The model is optimized based on this minimum loss, ensuring that it
learns to produce consistent outputs regardless of the order in which
speakers appear.

5.3 Self-Attention (SA-EEND)

While the EEND system proposed by Hitachi initially used Bidirectional
Long Short-Term Memory (BLSTM) networks, BLSTM-based EEND could
still benefit from certain enhancements in handling the dynamic and over-
lapping nature of speaker diarization tasks.

In ‘End-to-end neural speaker diarization with self-attention’, EEND is
extended by integrating Self-Attention mechanisms, replacing the traditional
BLSTM layers [9]. This enhancement leverages the ability of self-attention
to directly condition on all frames within an input sequence. This is as op-
posed to BLSTMs, which are limited to their immediate previous and next
hidden states. This characteristic of self-attention allows for a more com-
prehensive analysis of the temporal dependencies and relationships across
the entire audio sequence, which shows to be particularly advantageous for
identifying and distinguishing between speakers in scenarios with frequent
overlaps.

5.4 Encoder-Decoder based Attractor Calculation

In addressing the limitations of the SA-EEND method, particularly its in-
ability to dynamically adapt to varying numbers of speakers, another ap-
proach called Encoder-Decoder based Attractor Calculation (EDA) has been
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proposed [12]. This extension builds on the original SA-EEND by allowing it
to manage diarizations for an unknown and theoretically unlimited number
of speakers.

The EDA approach introduces a mechanism to generate a flexible num-
ber of attractors from a speech embedding sequence, which is then used to
estimate speaker activities dynamically. The attractors are specific points
in a high-dimensional space used to represent individual speakers. Like the
embeddings, attractors serve as references that help the system distinguish
between different speakers within an audio recording. This method leverages
the ability of the existing SA-EEND system to extract speech embeddings
but extends it through an encoder-decoder structure that predicts the pres-
ence and characteristics of each speaker in the audio without prior knowledge
of speaker count. The EDA approach is as follows:

1. An LSTM-based encoder-decoder architecture calculates a series of
attractors from the input speech embeddings. These attractors rep-
resent distinct speaker characteristics extracted throughout the audio
sequence.

2. The number of attractors (and thus the number of detected speakers) is
determined on the fly using a sigmoid activation function that assesses
the probability of each attractor’s presence. This process allows the
model to adapt to the actual number of speakers in the recording1.

3. The final diarization output is computed by assessing the relationship
between the attractors and the full set of embeddings using dot product
operations. This facilitates an accurate allocation of speech segments
to individual speakers.

5.5 BoBW

As described in 4.5, clustering-based SD systems face several shortcomings,
but this is also true for EEND. The challenges faced by EEND systems
include:

1. EEND systems struggle to predict the true number of speakers [6]

2. Training EEND systems requires very large amounts of data. This
often leads to training on synthetic unrealistic data which further hin-
ders performance [17].

3. As audio lengths grow, performance in EEND systems is progressively
throttled (partially due to the self-attention mechanism).

1In the traditional (SA-EEND) framework, the number of sigmoid nodes limits the
number of speakers. This is because the linear transformation applied to the embeddings
outputs a fixed number of sigmoid activations, each corresponding to a potential speaker.
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Thus, several publications have been made after the introduction of
EEND suggesting an approach in which elements of clustering-based sys-
tems are adopted alongside EEND models [16][15]. These two methods
have been shown to possibly be complementary to one another following di-
arization challenges such as in the third DIHARD diarization challenge [22].
This combination has been dubbed a best-of-both-worlds (BoBW) frame-
work as it draws advantages from each approach [6]. Most importantly, a
BoBW framework is more successful in handling overlapping speech due to
its EEND component but does not struggle with long streams of audio due
to the clustering component2.

Although EEND was extended to handle a variable amount of speakers
(see section 5.4), it was later experimentally shown to nonetheless struggle
in dealing with meetings containing a realistically large amount of speak-
ers (over 3). Improvements to the BoBW approach have been made more
recently [6] (see section 6.1).

2The latter claim might not seem as clear at first as one would assume that the EEND
model would still have to ingest the long streams of audio as well. However, the clustering
component allows the EEND model to ingest smaller chunks of the long stream without
suffering the inter-block label permutation problem. Furthermore, the clustering property
is better able to predict the true number of (global) speakers. This is elaborated on further
in 6.1
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Chapter 6

Pyannote

Pyannote, pronounced like the French verb ‘pianoter’ [2], is an open-source
toolkit for speaker diarization created by Hervé Bredin. This toolkit in-
cludes pre-trained pipelines, models, data structures, and metrics written in
Python, allowing ease of use and portability. This chapter will break down
the SOTA pyannote pipeline detailing the individual modules and their in-
tegration.

6.1 Pipeline

Pyannote provides some open-source pre-trained pipelines and models that
can be found on https://huggingface.co/pyannote. At the time of writ-
ing, the (published) pyannote SOTA pipeline for speaker diarizations is the
speaker-diarization-3.1 pipeline. The three main modules that make this
pipeline up are segmentation, embedding, and clustering. This chapter de-
scribes each of these modules as well as how results are utilized in subsequent
modules.

6.1.1 Segmentation

Speaker segmentation is described as the task of ‘partitioning a conversa-
tion between one or more speakers into speaker turns’1 [3]. This is the first
phase of the speaker diarization pipeline, and it yields chunks of speech
that contain one (or more) speaker each. Traditionally, this module would
be separated into different steps. Speech activity detection (SAD) would
first be responsible for differentiating between speaker and non-speaker seg-
ments, followed by speaker change detection (SCD) where boundaries be-
tween speaker segments of different speakers are marked.

1A speaker turn is a point in an audio stream where ‘a change of speaker occurs’.

15



Sliding Windows

The segmentation model of pyannote adopts the EEND approach developed
by [8], but alters some specifics of the model. Instead of handling long
streams of audio at once, the model is trained on and operates in, windows
of five seconds. More specifically, these are fixed-size sliding windows that
move across the entire audio stream from start to end with a given step size.
The window represents a sequence of binary frames that encode whether
or not a speaker is active during some moment. To be more specific, the
pyannote-core library (responsible for providing the various data structures
for diarization) includes two structures: SlidingWindow and SlidingWin-
dowFeature.

The SlidingWindow does not hold the binary frame sequences but only
indicates how some sliding window should look like. For example, a Sliding-
Window object can indicate that some sliding window moves with a dura-
tion of 0.01 seconds and a step of 0.01 seconds. The SlidingWindowFeature
carries a SlidingWindow as well as the binary frame sequences that were
generated using it. Traditionally, the binary frames are computed using a
segmentation threshold that is passed through every speaker’s predictions
at test time to determine whether or not they were active. A static thresh-
old suffices, but a more sophisticated dynamic threshold method could yield
better results in practice.

Since the neural network no longer has to consider the entire audio
stream at once, it is also able to handle a much smaller set of speakers.
The modification is important not only for memory concerns but Kinoshita
et al. note that the EEND neural network faces considerable difficulty when
dealing with very long novel sequences of data [16]. With this challenge in
mind, Bredin and Laurent define a Kmax of four speakers per window [3].
This choice also follows the observation that 99% of every five-second chunk
encountered during training contained less than four speakers. However,
this sliding window approach introduces the inter-block label permutation
problem [16]. This means that although speakers within each five-second
window could be differentiated, it is not yet possible to infer the mapping
of identities across windows2.

Power-set Encoding

Speaker diarization is framed as a multi-label classification problem accord-
ing to the original EEND proposal, but an alternative phrasing, describing
it as a single-label power-set classification problem is later introduced [6]. In
the power-set encoding, instead of only encoding the speakers, the power-
set of speakers is encoded. For example, suppose that three speakers exist:

2Luckily, this pipeline does not end at segmentation, and the later modules will address
this issue.
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A, B, and C. Then, the multi-label encoding of these speakers would be
[{A}, {B}, {C}], while the power-set encoding would be [{∅} {A}, {B}, {C},
{A&B}, {A&C}, {B&C}, {A&B&C}]. This encoding provides the ability
to explicitly encode overlap in the segments as its own class, which leads to
better handling of overlap in the system. However, this approach could also
be more computationally demanding, as the number of encodings grows very
large with additional speakers. Specifically, for every new speaker added to
an encoding with N > 1 existing speakers, the set of classes doubles in size.
Luckily, with the pyannote-defined Kmax limiting the number of speakers
in a single window to four, the power-set encoding would be limited to six-
teen classes. As sixteen classes can still be more than one would prefer, an
alternative Kmax of three (which is used in practice) could be employed, as
it would only result in eight power-set classes! Moreover, the segmentation
threshold that was previously used would now get replaced by an argmax
that would select the class with the highest prediction at test time.

6.1.2 Embedding

Following segmentation, the pipeline moves to an embedding module that
converts the segments (or windows) it receives into numerical representations
that capture the unique characteristics of each speaker’s voice. The model
currently used in the SOTA pipeline is the wespeaker-voxceleb-resnet34-LM
model from the Wespeaker toolkit [24]. The underlying neural network
(NN) here is the ResNet34 convolutional NN. The utility of embeddings is
as follows: with a good set of embeddings, two embeddings should be as
similar as possible if they represent the same speaker, and as different as
possible if they represent different speakers3. This allows us to learn about
speaker identities within, but more importantly across, windows.

6.1.3 Clustering

In the final module of the pipeline, the previously generated embeddings can
now be clustered to demonstrate different (global) speaker identities. Pyan-
note employs an Agglomerative Clustering, which is a type of hierarchical
clustering. Generally, the clustering begins with each embedding as its own
cluster and computes distances between each pair of clusters. By default, a
cosine similarity measure is used but other metrics are also supported. Next,
the closest pair of clusters, determined by the previous metric, are merged
into a single cluster. The linkage method, which determines how metrics
should measure distances between clusters, can also be changed. For exam-
ple, the linkage method could dictate that the metric must be applied on the
centroids of the two clusters (average linkage), or the closest points between
two clusters (single linkage). After merging, the distances are updated and

3This is also true for any embedding of multiple speakers.
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the algorithm continues to search for another pair of clusters to merge. This
is repeated until termination, which is determined by a given threshold. The
threshold represents how far apart clusters must (at least) be for them to be
deemed ‘not similar’. A minimum cluster size that specifies the minimum
number of embeddings that a cluster must contain is also taken into account.
This parameter helps in filtering out smaller clusters that may not represent
a distinct speaker effectively.
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Chapter 7

Oracle Component Analysis

The SD pipeline dissected in section 6.1 was described as a sequence of
modules, making it suitable for an oracle component analysis. An oracle
is generally someone or something that can generate insight or truths. In
speaker diarization, an oracle replaces or simulates part of the system in a
perfect manner. This is typically done by ’cheating’ and using information
from the ground truth of a certain audio stream1.

By coming up with enough oracles, an oracle component analysis could
be performed, where certain parts of the system being analyzed are replaced
with their oracle counterparts. This is such that some experiments can be
executed to showcase the strengths and weaknesses of a given system. More
specifically, the performance of an SD system where every module but one
has been replaced by an oracle counterpart provides us insight into the
specific module that hasn’t been replaced.

The phase of coming up with oracle variants for each component can
often require the most time in this analysis as the task is quite elaborate
[13]. However, after tests have also been developed, they can be automated
across the different oracle configurations. This chapter will introduce the
experimental setup for the oracle component analysis followed by the actual
experiments and their results.

7.1 Setup

To execute this analysis on the pyannote pipeline, an experimental setup
must be established. This setup must replicate the original pipeline’s be-
havior when it’s under the same circumstances (hyper-parameters, data,
etc..) but also allow for internal changes to the pipeline. To accomplish
this, the scripts2 responsible for the pipeline’s execution are broken down

1From this, it naturally follows that an oracle component analysis requires the presence
of ground truth annotations.

2Namely pipeline.py and speaker diarization.py from the pyannote.audio library.
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and copied into a single Jupyter notebook. This helps break down the ab-
stractions of pyannote such that certain components of the pipeline can be
swapped out for their oracle counterparts.

7.1.1 Oracle Segmentation

The original segmentation function applies the chosen segmentation model
on the audio stream, resulting in a SlidingWindowFeature object which holds
a numpy array with shape: (num chunks, num frames, num speakers). On
the other hand, the oracle counterpart applies a deterministic algorithm to
generate oracle segments for the audio stream using its corresponding RTTM
file. This also results in a SlidingWindowFeature object similar to the one
generated with the original segmentation, except that this one accurately
represents the audio with no error3. The algorithm takes the following
steps:

1. Determine the audio duration, speaker labels, and number of speakers
from the input RTTM

2. Initialize SlidingWindow with given step and duration

3. Iterate over audio in equally sized chunks defined by the SlidingWin-
dow

4. For each chunk, discretize4 the annotation into a SlidingWindowFea-
ture based on the resolution defined by frames and add the specified
labels. This represents one segmentation.

5. Stack the segments of all chunks into a single array and return it as a
SlidingWindowFeature object.

7.1.2 Oracle Embedding

Although the results of an oracle embedding experiment would be trivial,
it is still done as a sanity check to ensure that the regular agglomerative
clustering is functioning properly.

Assuming that embeddings in a system are perfect implies that the seg-
ments generated prior were also perfect. Moreover, the clustering done sub-
sequently should also have no trouble distinguishing the different speakers
since the embeddings being clustered are as distinct as possible.

Generating these embeddings is rather straightforward. Given the true
(oracle) segments, a one-hot encoding can be generated in the shape of

3Negligable errors, of at most 0.5%, might still occur due to system rounding errors.
4The discretize function takes an annotation and converts it into a binary feature

matrix.
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Figure 7.1: One-hot encoding of four speakers

embeddings5. The algorithm achieves these embeddings in the following
manner:

1. Iterate over the segments counting the occurrences of each speaker in
each chunk to create a list of speaker counts

2. Normalize the speaker counts by the number of frames to obtain the
average embedding vector for each speaker

3. Use torch.diag embed to transform the normalized counts into diagonal
matrices.

Figure 7.1 provides an example of a one-hot encoding matrix for four
speakers. This construction ensures that each embedding vector is unique,
which allows the clustering to clearly identify each speaker.

7.1.3 Oracle Clustering

The original clustering taking place in the pipeline is specifically agglom-
erative. This module receives speaker embeddings of the segments created
earlier in the pipeline along with some customizable hyper-parameters. In
turn, it produces a list of 0-indexed cluster indices. The oracle counter-
part for clustering has a slightly different I/O but accomplishes the same
task. The method receives previously computed speaker segments, but also
(optionally) receives speaker embeddings if centroids need to be returned.
The result of computation is hard clusters, soft clusters, and (optionally)
centroids. Hard cluster assignments indicate which cluster each speaker be-
longs to, while soft cluster assignments contain probabilities indicating the
likelihood of a speaker belonging to each cluster. The algorithm takes the
following steps:

5In pyannote, embeddings carry the shape (num chunks, local num speakers, dimen-
sion).
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Missed Detection False Alarm Confusion DER

9.53% 3.57% 5.71% 18.80%

Table 7.1: DER breakdown for AMI test set

1. Extract the shape and SlidingWindow from the given segments

2. Compute oracle segments for the audio stream and extract the number
of clusters needed from their shape

3. Align the number of frames in the input segments6 and the oracle
segments to the minimum of their respective lengths.

4. Initialize hard cluster assignments with −2 (indicating unassigned)
and soft cluster assignments with zeros.

5. Iterate over each chunk and its corresponding segments while using
a permutation function to align oracle segments with input segments
and update all cluster assignments based on the permutation.

6. If embeddings are not provided, return the hard and soft clusters with-
out centroids7.

7.2 Baseline

Before going over the results of the oracle experiments, baseline results for
the AMI test set are given in this section. Table 7.1 breaks down the aver-
age DER - computed between the ground truth annotations, and pipeline’s
output annotations - of the test set.

The DER of 18.80% matches the rate reported by pyannote for this
pipeline. Furthermore, the missed detection dominating about half of the
errors indicates that the pipeline fails to detect speech roughly 9.53% of the
time. This error is caused in the segmentation module but is also likely
caused by certain difficulties in the data. On the other hand, 3.57% of the
total speech hypothesized was not present in the data, which could also be
‘blamed’ on the segmentation module. For 5.71% of the speech time, the
clustering module assigned speaker labels to the wrong speaker.

Moreover, since speaker overlap is one of the major challenges that
speaker diarization faces, and a focus of this research, some figures and
experiments included in this thesis aim to give a clearer idea of how well
this pipeline can handle its presence. One way of quantifying the amount of

6Note that these are regularly computed segments, but oracle segments can also be
inputted. In that case, one would be simulating a near perfect system.

7The rest of the algorithm responsible for computing centroids will not be covered as
it is not relevant enough.
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Missed Detection False Alarm Confusion DER

6.22% 0.00% 3.32% 9.55%

Table 7.2: DER breakdown for AMI test set on overlap segments only

difficulty that overlap imposes on this SD system would be to obtain a DER
measure computed only over parts of the output that contain overlap. This
can be done by first obtaining the difference in errors (MD, FA, confusion)
between the DER computed over the whole speech and the DER computed
without overlap. The latter can be done conveniently using a skip overlap
parameter. Next, after the difference in error has been summed, they are
divided by the total speech time. This translates into percentages of error
on segments that only contain speaker overlap.

According to table 7.2, about half of the errors made in the diarization
of an audio stream are present in speaker overlap sections. These overlap
sections also make up only 11% of the total speech time on average. No false
alarm is detected in overlap sections, but about 65% of all missed speech
occurs in these sections. As overlapping speech segments can be difficult to
label, the segmentation model might behave more conservatively in label-
ing a segment as speech when facing overlap. This bias would explain an
increase in missed detection and the inverse in false alarms. Finally, 58%
of the total confusion is made in overlap sections. As this is only 3.32% of
the whole speech time, it seems that the clustering in this BoBW system
can handle overlap very well. Regardless, the system still faces some diffi-
culty distinguishing between multiple speakers that happen to be speaking
simultaneously, which leads to incorrect attribution.

To support the previous table, figure 7.2 plots each test file’s DER against
the amount of true overlap relative to their total length8. A trend line, com-
puted using numpy’s polyfit function, is also displayed in red, highlighting
the upward trend in DER as the relative amount of overlap grows. Accord-
ing to the figure, audio with less than 12% overlap tends to face a DER
of roughly 10-20%, while audio with 20-27% overlap faces a higher DER of
roughly 23-28%.

This analysis can be taken a step deeper by breaking the figure down
into three other individual figures. Namely, the rates of Missed Detection,
False Alarm, and Confusion could be plotted against the amount of relative
overlap. Each of these figures also contains their corresponding trend line.
The upwards trends in A.3 and A.2, as well as the slightly downwards trend
in A.1, can all be explained by the results of table 7.2.

8This overlap is true in respect to the ground truth annotations, as opposed to the
hypothesized annotations. Picking the latter would indicate how much overlap the system
can hypothesize and not how well it deals with existing overlap.
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Figure 7.2: DER vs Relative Overlap amount

Missed Detection False Alarm Confusion DER

0.01% 0.41% 8.59% 9.01%

Table 7.3: DER breakdown for AMI test set with Oracle Segmentation

7.3 Oracle Segmentation

This section explores how the pipeline performs when segments are replaced
with oracle segments. First, the system is run on the 16 audio files that
make up the AMI test set. Table 7.3 shows the results of this inference in
terms of DER. Moreover, figure 7.3 plots the DER computed in this config-
uration against each audio stream’s relative overlap amount9. In this figure,
a strong upward trend line can be seen. The DER noted here translates
fully to confusion, which reinforces the idea that clustering segments with
overlapping speech is a difficult task.

7.3.1 False Alarm & Missed Detection

Although much lower than the baseline, the false alarm and missed detection
remain just above 0. This could suggest that the oracle segments generated
are not fully accurate with respect to the ground truth annotations. Recall
from section 7.1.1 that every chunk in the oracle segments is discretized
according to a specified resolution. The default resolution (≈ 0.01697) is
defined by the segmentation model and seems to have a notable influence
on the extracted segments.

As the resolution gets closer to 0, so do the false alarm and missed
detection rates. The DER in this configuration is then made up entirely

9This DER was computed after the resolution increase described in section 7.3.1
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Figure 7.3: Oracle Segmentation DER vs Relative Overlap amount

of confusion, which remains almost identical to the one computed before
adjusting the resolution. The remaining DER can be seen as an estimate
of how accurately the embeddings (produced from the oracle segments) are
clustered later in the pipeline. This amounts to 7.10% DER after optimizing
the clustering hyper-parameters.

7.3.2 Confusion

When compared to the baseline confusion, it is worth noting that the confu-
sion in this setup has increased. The already notable confusion rate indicates
that the clustering done later in the pipeline is not able to perfectly distin-
guish between the different speakers.

Since the clustering hyper-parameters were not trained on oracle seg-
ments, the clustering is expected to perform worse than usual in this setup,
which partially justifies the increase in confusion. When clustering is tuned
on the dev set using oracle segments, a new confusion rate of 7.10% is
reached10. In this fine-tuning, the min cluster size increased from 12 to 20,
while the threshold decreased from 0.70 to 0.61.

Moreover, the embeddings in this configuration are still being generated
using the Wespeaker model, which also hasn’t been trained/tuned on any
oracle segments (or even the AMI set in general, as opposed to the segmen-
tation module). This is another factor that further explains the increased
confusion (in comparison to the baseline) that is computed even after tuning
the cluster parameters.

It is also worth noting that the clusters hypothesize anywhere between 6
and 22 speakers across the AMI test sets (compared to 3 and 9 in the oracle-

10This is an improvement from the previous 8.60% but still over the baseline of 5.71%.
This is the result of 20 epochs, and confusion would likely decrease further with more
tuning epochs.
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Figure 7.4: Hypothesized # of speakers vs Relative Overlap amount pre-
tuning

free system), which is always above the true amount of speakers (4). The
amount of different speakers is determined after clustering and derived from
the number of detected clusters. These additional speakers are generally not
very active but are always viewed as confusion nonetheless.

By increasing the minimum cluster size parameter, less active speaker
clusters are ignored and the system thus produces fewer speakers in its
hypothesis. Furthermore, by decreasing the clustering threshold, less active
speakers can also get merged into the closest speaker if they are within the
new threshold. The parameter adjustments specified earlier result in a more
conservative range of detected speakers of 3 to 9. The difference made on
the hypothesized amount of speakers against the relative amount of overlap
before and after tuning the clustering parameters can be seen in figures 7.4
and 7.5 respectively. From these figures, it can be seen that optimizing
the clustering parameters makes the system more resistant to overlap. The
remainder of the confusion is then a general failure to correctly label some
segments.

Closed Clustering

Since the only error occurring in this configuration is due to clustering,
a closed clustering experiment was done to see whether is it possible to
get better results if the amount of speakers is known beforehand. In the
case of the AMI test set, each audio file contains exactly 4 speakers. By
specifying the number of speakers before running inference, the clustering
module knows exactly how many clusters it should end up with, and can
potentially produce a better fit.

However, upon experimentation, it is found that this approach does not
necessarily lead to better diarization results. In the case of confusion com-
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Missed Detection False Alarm Confusion DER

0.00% 0.00% 6.40% 6.40%

Table 7.4: DER breakdown for AMI test set on overlap segments only with
Oracle Segmentation

puted with oracle segmentation, an increase of 312% was noted when per-
forming closed clustering. As discussed earlier in the section, this configu-
ration tends to heavily overestimate the amount of speakers present in an
audio stream. Under closed clustering, the module attempts to force the
clusters to fit the pre-specified cluster amount. It does so by refining the
threshold used until a fit is found. By doing so, the ‘additional’ speakers
must eventually get merged into the closest cluster, which might be the
wrong one according to the annotation. Although this is a worse result ac-
cording to the DER, it must be noted that this metric could sometimes be
biased in the way it computes errors.

Finally, table 7.4 reveals that sections of speaker overlap contribute
6.40% to the total confusion. That is roughly 75% of the total confusion
caused by approx. 11% of speaker time overall, indicating a great struggle
in accurately labeling speaker segments containing speaker results.

7.4 Oracle Embedding

Instead of using the regular embeddings module, this configuration uses
oracle segments to produce ideal embeddings. As mentioned in section 7.1.2,
if the clustering module is working adequately, it should provide a perfect
diarization with 0% DER, as:
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Missed Detection False Alarm Confusion DER

9.53% 3.57% 2.90% 16.00%

Table 7.5: DER breakdown for AMI test set with Oracle Clustering

Missed Detection False Alarm Confusion DER

6.22% 0.00% 1.32% 7.54%

Table 7.6: DER breakdown for AMI test set on overlap segments only with
Oracle Clustering

• The missed detection & false alarm is at 0% as the segments were
generated using the ground truth.

• The confusion would be at 0% as clustering fully disjoint and consistent
embeddings is a trivial task.

After running the inference on the AMI test set, this is noted to be the case.

7.5 Oracle Clustering

In this section, experiments are done as the clustering module is replaced
with its oracle counterpart. Recall that in this configuration, speaker em-
beddings are not necessary for generating a diarization, but they might be
provided for computing centroids. In this setup, centroids are not needed.

The clustering method relies on ground truth segmentations to directly
assign clusters as opposed to inferring labels from speaker embeddings. In-
ference was performed on the test set using this system as shown by the
results in table 7.5. Table 7.6 displays the DER breakdown computed only
over speaker overlap segments in this configuration. To aid the table in
showcasing the struggle against overlap, figure 7.6 plots this configuration’s
DER against the relative overlap, where an upward trend is still clear.

7.5.1 Confusion

When compared to the baseline confusion, a reduction of roughly 50% can
be seen, signifying a noticeable improvement. A reduced confusion rate is
to be expected when considering that the clustering component can make
use of the true speaker labels in this configuration. For overlap-only regions,
confusion faces a reduction of roughly 40%.

7.5.2 False Alarm & Missed Detection

Both measures of false alarm and missed detection remain identical in this
configuration in comparison to the baseline. Similar to the baseline, the
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Figure 7.6: Oracle Clustering DER vs Relative Overlap amount

Missed Detection False Alarm Confusion DER

0.00% 0.00% 0.00% 00.00%

Table 7.7: DER breakdown for AMI test set with both Oracle Clustering &
Segmentation

segmentations generated here rely on the pyannote segmentation model. By
only changing the clustering component, the system can start allocating
different speaker labels to certain segments, but cannot alter the speaker
segments. This leads to the hypothesis that this configuration would lead
to the same FA and MD as the baseline, which can be seen in table 7.5.
For the DER computed over the overlap-only sections, the same reasoning
holds.

7.6 Fully-Oracle Pipeline

With the oracle segmentations and oracle clustering modules set up, the
pipeline can also be executed using both at once. As the oracle clustering
ignores embeddings, this constitutes a full oracle system. Any hypothesis
produced from the ground truth should measure a 0% DER. This provides
no further insights besides serving as a sanity check to prove that each oracle
component is functioning properly and that the results generated using them
are valid.

As shown by 7.7, the system is able to generate a hypothesis that exactly
matches the reference!
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7.7 Limitations

The oracle components analysis points out the weaknesses and strengths of
the pipeline, but it also faces some limitations. Some of the assumptions
that are made following the results of an experiment can often be biased
by the data used (amongst other variables), and not deliver a complete
picture. This would especially be the case in this study as the AMI dataset
was amongst the datasets used to train the segmentation module. Ideally,
the experiments are replicated with data from different settings, different
speaking styles (accents/inflections/etc.), different speaker amounts, etc.

Moreover, the results of every experiment are framed using the DER
framework, which might deliver a narrowed view of the system’s perfor-
mance. Although this metric is the most popular in the diarization realm,
it tends to leave some oversight. For example, errors made in shorter seg-
ments can often be overlooked or ’drowned out’ by the presence of longer
segments. Errors concerning less active speakers can also get overlooked.
This motivated Tao Liu, and Kai Yu to describe the Balanced Error Rate as
a more even metric for diarization [19]. Other popular metrics besides the
DER also include the Jaccard Error Rate (JER), and the Conversational
Diarization Error Rate (CDER).

The embedding module of the pipeline had unfortunately contributed to
bits of uncertainty in the experiments as well. For example, in the oracle
segmentation setup, clustering is not done directly on the oracle segments,
but on the embeddings of those segments. When an oracle embedding is also
provided, clustering becomes trivial. Thus, the extent to which embeddings
contribute to the DER is not exactly clear, which makes the computed error
rate an upper bound for clustering performance rather than an accurate mea-
surement. In addition, since embeddings are not needed when performing
oracle clustering, they are only ignored. Therefore, the embedding module
is not directly assessed by the oracle components approach. Luckily, the
developers of the Wespeaker embeddings module reported the model’s per-
formance in their paper that introduces the Wespeaker toolkit. Under an
oracle speech activity detection (SAD) setup, they report a DER of 4.2%
[24]11.

11This DER is not directly comparable to the other error rates computed in this work
as it was measured on a different dataset. Namely, the VoxConverse dev set.
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Chapter 8

Conclusions

This thesis explored the effects of speaker overlap on the performance of
Pyannote’s speaker-diarization-3.1 pipeline through an oracle component
analysis. The analysis confirmed that overlapping speech still poses signifi-
cant challenges for speaker diarization systems. Segments with overlapping
speech accounted for a disproportionate share of errors, highlighting the
need for better handling of such scenarios.

Experiments using oracle segmentation demonstrated a substantial re-
duction in missed detections and false alarms, emphasizing the importance
of accurate segmentation. However, even with perfect segmentation, the
clustering component still struggled with overlap, suggesting that clustering
improvements are critical for overall performance enhancement.

The use of oracle embeddings resulted in perfect clustering, indicating
that the current embedding methods contribute notably to the overall error
rate1. Oracle clustering reduced the DER by approximately 50%, primarily
by reducing speaker confusion. These findings underscore the necessity of
better embedding techniques and more sophisticated clustering algorithms.

The research highlighted certain limitations, including the potential bi-
ases introduced by using DER as the sole metric as well as AMI as the sole
dataset. Future work should focus on generalizing these findings across di-
verse datasets and exploring additional metrics for a more comprehensive
evaluation of diarization systems.

In conclusion, while Pyannote’s speaker-diarization-3.1 pipeline demon-
strates strong diarization results, significant challenges persist in accurately
processing overlapping speech. The oracle component analysis provided
valuable insights into the strengths and weaknesses of individual pipeline
components, guiding future research directions to enhance the state-of-the-
art in speaker diarization.

1This does not provide a full picture for embeddings as an oracle embedding in this
setup was only possible from oracle segmentations
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[2] Hervé Bredin. pyannote-audio/questions/pyannote.question.md at de-
velop · pyannote/pyannote-audio, Mar 2023.
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Appendix A

Appendix

A.1 Oracle Component Analysis Baseline (addi-
tional figures)

A.2 Oracle Clustering (additional figures)
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Figure A.1: False Alarm vs Relative Overlap amount

0 5 10 15 20 25

5

10

Overlap % of audio length

C
on

fu
si
on

in
%

Figure A.2: Confusion vs Relative Overlap amount
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Figure A.3: Missed Detection vs Relative Overlap amount
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Figure A.4: Oracle Clustering Confusion vs Relative Overlap amount
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Figure A.5: Oracle Clustering Missed Detection vs Relative Overlap amount
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Figure A.6: Oracle Clustering False Alarm vs Relative Overlap amount
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