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Abstract

Parametric Markov decision processes (pMDPs) are an extension of classical
Markov decision processes (MDPs) where we also allow for functions over a
set of parameters as opposed to constant transition probabilities. Finding
a precise asymptotic bound on the size of the minimal set of strategies that
will be optimal for families of pMDPs, is an open problem in the domain of
theoretical computer science. Information on the bounds of this set could
namely be used to classify certain decision problems. We refer to this set
as the minimal optimal strategy set (MOSS). This thesis has the aim of
tackling the problem in question. During that process we proved that in
general for families of simple, acyclic, univariate pMDPs (SAU-pMDPs),
the MOSS can grow quadratically with respect to the size. This is done
constructively by providing a concrete family for which it holds. To expand
on this, an empirical argument is given for why it is likely that there also
exists a family for which the size of the MOSS even has an exponential lower
bound with respect to the number of states, which is conclusively formulated
by a conjecture. Furthermore, a candidate is presented for future analysis
that might yield more insights into the existence of an exponential lower
bound with respect to the number of actions. Several additional ideas are
presented as well that might prove useful in subsequent research.
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Chapter 1

Introduction

Markov decision processes (MDPs) [Put94; How72] are probabilistic models
that can be used to represent real life situations that involve elements of
uncertainty and sequential decision making. They provide numerous appli-
cations in fields that deal with optimization problems. An example of this
is the field of robotics, where a programmer could want to specify how a
robot makes decisions in response to insecure situations in order to achieve
a goal [Thr05]. In the study of MDPs, one aim we might have, is to look
for an optimal strategy, also called an optimal policy. In essence, a strategy
is a specification of what decision to make at each state, and the optimal
strategy refers to a strategy where the chances of reaching a certain objec-
tive are either maximized or minimized. This objective might for example
be to reach or avoid a certain state.

Parametric Markov decision processes (pMDPs) [HHZ11] extend regular
MDPs by allowing for more generalisation. What this means is that we can
model an entire set of MDPs at once where the graph structure is the same
but where the probabilities may differ. The way this is achieved, is by also
allowing for real/rational functions as transition probabilities in pMDPs.
These functions depend on variables, which in their turn can be any value
from a predefined set or interval. A specific choice of these values is called a
parameter valuation, and this valuation once again induces a regular MDP. A
valuation is well defined if the induced MDP does not have states where the
sum of the outgoing probabilities does not equal one. All of the well defined
valuations together construct the well defined parameter space, denoted by
VAL.

We can still search for an optimal strategy in pMDPs, but because we use
functions over parameters instead of constant values, we almost never have a
single strategy that is optimal for all parameter valuations. However, there
do exist strategies that are not optimal for any parameter valuations and
also strategies that are optimal for one or more valuations. The latter are
referred to as somewhere optimal strategies. Since there is usually more than
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one somewhere optimal strategy for a certain pMDP, we can construct an
optimal strategy set (OSS). For each parameter valuation, this set contains
at least one strategy that is optimal for that valuation. Furthermore, we
can reduce this to a minimal optimal strategy set (MOSS), which is an OSS
with minimal cardinality. In other words, a MOSS is an OSS such that it is
no longer an OSS if you remove a strategy.
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Figure 1.1: Graphical representation of an example pMDP

Motivation and related work The concept of pMDPs spawned new de-
cision problems of which their complexity is the subject of research [JKPW19;
JKPW20]. The idea of a MOSS then originated from the fact that this could
help classify certain decision problems. What previous research in particu-
lar has found is that there are two decision problems called ∃∃Reach▷◁∗ and
∃∀Reach▷◁∗ that reside in coNP if the size of a MOSS is in general polyno-
mially bounded [JKPW19].

Lemma 1.0.1. 1 If the size of a MOSS on a VAL is polynomially bounded
for fixed-parameter pMDPs then ∃∃Reach▷◁∗ and ∃∀Reach▷◁∗ are in coNP.

The bounds on a MOSS can be expressed with for example big O notation
as is also seen in the analysis of algorithm complexity. Thus far the only
thing that was known about the bounds on the size of a MOSS was that it
can grow exponentially in the arbitrary parameter case [Jun20], i.e., in that
case there is an exponential lower bound.

Proposition 1.0.1. 2 There exists a family (Mn)n∈N of simple pMDPs with
n + 2 states s.t. |ΩMn | ≥ 2n for any OSS ΩMn on VAL, i.e., the size of a
MOSS can grow exponentially in the pMDPs size.

1Refer to [JKPW19] for a definition of these decision problems.
2Refer to Chapter 2 and Chapter 3 for background information on the notation
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Research question Finding new bounds on the size of a MOSS is the
main purpose of this thesis, hence the research question is as follows: “What
are the asymptotic bounds on the size of the minimal optimal strategy sets
of pMDPs?”. In this thesis, we deliver partial answers to this question
in the form of a newly determined lower bound. Mathematical proofs are
also given to support these new discoveries. Additionally, there is also an
hypothesized stronger bound accompanied by numerical evidence. This list
is not exhaustive as several other ideas and results are presented.

Structure of the thesis In Chapter 2 the necessary background informa-
tion is provided on the topic of polynomials and the basics of Markov mod-
els, such as pMCs and pMDPs. Before we delve into the research portion of
the thesis, the problem that inspired the research question is formalized in
Chapter 3. Then, in Chapter 4 we investigate bounds on the MOSS and this
is accompanied by proofs to support the findings. Following that, there is a
brief reflection on the results and a discussion of additional ideas and future
research in Chapter 5. Finally, the most important findings are summarized
in Chapter 6.

4



Chapter 2

Preliminaries

2.1 Polynomials

Polynomials are algebraic expressions consisting of variables and coefficients,
combined through addition, subtraction and multiplication. Polynomials
can have as many different variables as needed and they do not have upper
bounds on their length. In this thesis we exclusively work with polynomials
consisting of only one variable. These are called univariate polynomials.
For general background material on the topics in this section consult [FR97;
Pra04].

Example 2.1.1. f(x) = x2 − 1, g(x) = 52
3x

3y4 + 1
2x

2 + y and h(x) = 4x
are all polynomials, where h(x) is a monomial.

Definition 2.1.1 (Univariate polynomial). A (real) univariate polynomial
f ∈ R[X] is an expression

∑n
i=0 aix

i with ai ∈ R and n ∈ N.

Remark. In this definition R[X] denotes the ring of all univariate polyno-
mials with coefficients in R. In other cases we could also have for example
Q[X] (polynomials with rational coefficients), but in this thesis we work ex-
clusively with polynomials with real coefficients for reasons that will later
become apparent.

We can also reason about polynomials consisting of only one term and
these are appropriately called monomials.

Definition 2.1.2 (Monomial). A (real) univariate monomial is an expres-
sion axi with a ∈ R and i ∈ N.

The degree of a polynomial is the highest power i of all terms aix
i with

ai ̸= 0.

Example 2.1.2. The degree of f(x) = x2−1 is 2 and the degree of g(x) = 4
is 0.
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2.1.1 Roots of polynomials

The roots of a univariate polynomial f are all values of x such that f(x) = 0.
The fundamental theorem of algebra states that each non constant polyno-
mial has at least one complex root. In the research section of this thesis,
roots of polynomials play an important role in proving the new theorems.
While searching for these roots, it is important to note that looking for the
roots of a polynomial is essentially equivalent to factorising the polynomial.
This is because the roots of a polynomial are determined by the roots of its
irreducible factors. We call a factor irreducible if it cannot be factored any
further.

Example 2.1.3. f(x) = x2 − 1 from Example 2.1.1 has as its roots x = 1
and x = −1 because f(1) = 0 and f(−1) = 0.

There do not exist general formulas for calculating the roots of polynomi-
als of degree 5 or higher [Abe26], therefore we often use numerical methods
to obtain/approximate roots of polynomials [DM89; McN07; MP13].

Example 2.1.4. Consider the polynomial f(x) = 3x4+5x3+10x2+20x−8.
We can factor this polynomial into (3x− 1)(x+2)(x2 +4), and we can find
roots for each of these factors. In fact, we can see that the real roots are
x = 1

3 and x = −2.

Two separate polynomials have a common root x when they share a com-
mon factor. The common root is then the root of this common factor. All
common factors of two polynomials are the common factors of the greatest
common divisor (GCD) of the two polynomials. We can compute the GCD
of two polynomials by using the Euclidean algorithm or by using factorisa-
tion. If two polynomials g(x) and f(x) happen to not share any factors, we
call these two polynomials coprime, i.e., when gcd(f(x), g(x)) = 1 (similar
to the case of integers).

Example 2.1.5. Consider the two polynomials f(x) = x2 + 5x + 4, and
g(x) = x2−2x−3. Then gcd(f(x), g(x)) = (1+x), because if we factorise the
two polynomials, we see that f(x) = (x+1)(x+4) and g(x) = (x+1)(x−3)
and here they both share the factor (x + 1). This is their greatest common
factor because there is no other way of factoring the polynomials. Thus these
two polynomials have the common root x = −1.

2.2 Markov Chains

A Markov chain (MC) [Nor97; kS60] is a stochastic process that describes a
state transition system of probabilities and can be modelled by a directional
graph (digraph) [Gou12]. It is essentially a finite state machine where you
do not always end up in the same next state, but where you can end up is
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specified by a fixed distribution of probabilities. Markov chains are appli-
cable in a broad range of fields, such as physics [Sen16], information theory
[Khi57] and many more. A concrete example is the page rank algorithm
that Google uses in their search engine [PLS13]. A distinctive quality of
Markov chains is that when we are in a certain state, the next state only
depends on this current state and not on states we previously visited. This
is called the memoryless property (or the Markov property).

Definition 2.2.1 (Markov chain). A (finite, discrete-time) Markov chain
M is a tuple (S, s0, P, T ) where S is a finite, nonempty set of states, s0 ∈ S
is the initial state, P : S × S → R is the transition probability function and
T ⊆ S denotes the set of target states.

Remark. In literature, the definitions of a Markov chain differ slightly per
paper but for the purposes of this thesis we define it in this manner. It is
conventional to use Q as the codomain of the transition probability function
for algorithmic purposes [BK08], but as we will later see it is more useful
for us to define it as R.

Remark. A Markov chain induces an underlying digraph where states act
as vertices, and there is an edge from s to s′ if and only if P (s, s′) > 0.

Example 2.2.1. Consider the Markov chain M with its corresponding di-
graph in Figure 2.1, with as set of states S = {q0, q1, q2}, initial state s0 = q0
and transition probability function

P (q0, q1) =
1
4 , P (q0, q2) =

3
4 ,

P (q1, q0) =
2
3 , P (q1, q2) =

1
3 ,

P (q2, q0) =
1
3 , P (q2, q2) =

2
3 .

All other possible transitions have probability 0. There are no target states
in this case so we specify the set of target states as the empty set, i.e., T = ∅.

q0start

q1q2

1/4

3/4

1/3

2/3

2/3

1/3

Figure 2.1: Simple Markov chain with 3 states
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In probability theory, usually all the probabilities of a distribution must
add up to one, hence we often also want a Markov chain to have this property.
To differentiate between models where this property is satisfied and where
it is not, we call the models where it is satisfied well defined.

Definition 2.2.2 (Well defined). A Markov chainM is called well defined if
all transition probabilities are non-negative, and for each s ∈ S we have that
the sum of outgoing transition probabilities equals 1, i.e.,

∑
s′∈S P (s, s′) = 1.

Remark. In this thesis we only consider well defined models.

In Markov chains we also make a distinction between acyclic and cyclic
models, which are properties of its underlying digraph (Figure 2.2). Fur-
thermore, in a lot of situations we want a certain state to be such that you
cannot leave it. We refer to these states as absorbing states. See for example
Figure 2.3, where a six sided die is simulated by a two sided coin [KY76].
Eventually, you end up at one of the six numbers and you never leave these
states.

Definition 2.2.3 (Absorbing state). An absorbing state is a state s such
that P (s, s) = 1.

Remark. An absorbing state is graphically denoted either as a state with a
loop edge going to itself with transition probability 1, simply by omitting any
outgoing edges or lastly a special case of an absorbing state is the sink state
of which there is typically at most one per model. A sink state is denoted by
⊥.

Definition 2.2.4 (Acyclic). A Markov chain M is called acyclic when the
underlying digraph is acyclic (with possible exception of absorbing states).

Remark. The remainder of this thesis focuses exclusively on acyclic models.

s0start s1

s2

1/4

3/4

1/2

1/2

1/3

2/3
s0start s1

s3s4

1/4

3/4 1/3
2/3

Figure 2.2: cyclic (left) and acyclic Markov chain (right)
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Some definitions in literature also add a reward function that specifies
a reward for certain states, or a cost function that assigns costs to transi-
tions [BK08]. In this thesis we will be exclusively looking at Markov models
without a reward or cost associated with states or transitions. In stochastic
research there are several other types of Markov chains with additional prop-
erties being utilized, such as interval Markov chains [KU02], hidden Markov
chains [Yoo09], continuous time Markov chains [Nor97] and more. In this
thesis we mainly consider Markov decision processes (MDPs) [Put94] and
more specifically the parametric kind [HHZ11], which will both be explained
in the next sections.

s0start

s1s2
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1
21

2

1
2

1
2

1
2

Figure 2.3: Knuth and Yao Markov chain [KY76] (two sided coin simulating
a six sided die)

2.3 Markov Decision Processes

In Markov decision processes (MDPs) [Put94] we expand upon our notion
of Markov chains by also adding the element of choice, hence MDPs can be
truly nondeterministic. In MDPs, we have that in every state you can make
a choice, and only after you make a choice there is a probability distribution
that specifies in which state you can end up next. These choices are referred
to as actions. We cannot have actions in a regular Markov chain so we need
to add an extra element to our tuple, namely the Act set, where each ele-
ment is an action. An action is a label of an outgoing edge of a state that
can be chosen nondeterministically. Each state has its own set of available
actions, and each action you then choose has its own probability distribu-
tion. Because of their nondeterministic nature, MDPs have applications in
fields that contain optimization problems involving decision making, for ex-
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ample robotics [Thr05], machine learning [SB08] and more prominently in
reinforcement learning [vOW12].

Definition 2.3.1 (Markov Decision Process). A (finite) Markov decision
process M is a tuple (S, s0, Act, P, T ) where S is a finite, nonempty set of
states, s0 ∈ S is the initial state, Act is a finite set of actions, P : S×Act×
S → R is a transition probability function and T ⊆ S is the set of goal
states.

Remark. An MDP can also be called well defined and this is the case when
for every s ∈ S, we have that

∑
s′∈S P (s, α, s′) = 1 for every α ∈ Act (and if

all transition probabilities are non-negative). We only consider well defined
MDPs in this thesis.

Remark. The other properties and notions we defined for Markov chains
also apply to MDPs in a similar way as they did to Markov chains.

Remark. An MDP in essence, is a more general version of a Markov chain
because a Markov chain has in all states s ∈ S as set of available actions
the singleton set, i.e., Markov chains are a subset of MDPs.

Example 2.3.1. Consider the MDP M in Figure 2.4, with set of states
S = {q1, q2,⊥}, set of actions Act = {α, β}, initial state s0 = q1, transition
probability functionP(q0, α, q1) =

3
4 , P (q0, α, q2) =

2
3 ,

P(q0, β, q1) =
1
4 , P (q0, β, q2) =

1
3 ,

and set of goal states T = {q1, q2}.

q0start

q1 q2

α

β

3

4

1

4

2

3

1

3

Figure 2.4: Small example MDP

For MDPs, since we have nondeterminism, we can specify for a cer-
tain MDP what action to take in each state. This mapping from states
to actions is called a policy, but in literature the terms scheduler [BK08]
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and strategy [GOP11] are also used as synonyms. Additionally in litera-
ture there is a differentiation between memoryless policies and policies that
are not memoryless (see for example [J+19] for a definition of policies that
are not necessarily memoryless). In our case we only consider policies that
are memoryless. Before we formally define policies we will first define the
available set of actions for a certain state.

Definition 2.3.2. We define Act(s) = {α ∈ Act | ∃s′ ∈ S : P (s, α, s′) ̸= 0}.

Definition 2.3.3 (Policy). A (memoryless) policy/scheduler/strategy σ is a
function σ : S → Act defined by σ(s) = α with the condition that α ∈ Act(s).

Remark. We denote the set of all policies for a certain MDP M by ΣM.
Since we only concider finite MDPs, this set is always finite.

Example 2.3.2. In Figure 2.5, we can choose for example the policy σ =
{q0 → α, q1 → β}.

In Chapter 3, we will expand upon the notion of policy and introduce
the concept of optimal policies.

⊥ q1start q2 q3
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1

6

5

6

1

7
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7
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5 4

5

1

6

5

6

Figure 2.5: Small example MDP with sink state and 2 actions

Given a specific policy, an MDP will be transformed back into a regular
Markov chain because now the actions will disappear and we will instead
have regular transition probabilities. We call this the induced Markov chain.

Definition 2.3.4 (Induced Markov chain). For a MDPM with given policy
σ the induced Markov chainMσ is a Markov chain (S, s0, Pσ, T ) such that:

∀s, s′ ∈ S : Pσ(s, s
′) = P (s, σ(s), s′).
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2.4 Parametric Models

2.4.1 Parametric Markov chains

Instead of constants as transition probabilities, we might also need func-
tions depending on parameters that label the transitions. In practice, these
are used to describe sets of systems where the graph structure is the same
but where the probabilities may differ. To model this mathematically you
can use an interval Markov chain for intervals of probabilities [KU02] or
more generally, parametric Markov chains (pMCs) for real/rational func-
tions [Daw04].

Example 2.4.1. Consider again the Markov chain from Figure 2.3, but now
we use the parameters x and y instead of concrete transition probabilities
(Figure 2.6).

Definition 2.4.1 (Parametric Markov Chain). A parametric Markov chain
M is a tuple (S, s0, P, T,X) where S is a finite, nonempty set of states, s0
is the initial state, X = {x1, ..., xn} is a finite set of parameters, T is the set
of goal states and P is the transition probability function P : S ×S → R[X].

Remark. The notions we defined for regular Markov chains transfer to
pMCs (only well definedness is different but this will be explained later this
section).
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q1q2

q3 q5 q6 q7
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1/2

1/2

1/2

1/2 1/2
1/2

1/2

1/2

1/2
1/2

1/2

1/2
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q0start

q1q2

q3 q5 q6 q7

654321

x

1− x

y

1− y

x 1− y
y

1− x

x

1− y
y

1− x

1− x

1− x

Figure 2.6: Knuth and Yao Markov chain [KY76] with concrete transition
probabilities (left) and parameters (right)

In pMCs we speak of valuations, where a valuation means a specific
choice of values for every parameter x ∈ X. A useful, formal way to talk
about a valuation is that it is a function that assigns to each parameter a
value.
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Definition 2.4.2 (Valuation). A valuation is a function val : X → [0, 1]
that maps a parameter to a concrete value.

When using parameters, the pMC describes multiple Markov chains at
once because you essentially have a different Markov chain for every val-
uation of the parameters. In other words, when we choose a parameter
valuation for a certain pMC this will again yield a regular Markov chain.

Example 2.4.2. The Knuth and Yao Markov Chain [KY76] in Figure 2.6
on the left side is an induced Markov chainM(val) of the one on the right
side with val(x) = 1/2 and val(y) = 1/2.

For a pMC to be well defined, we need to have that for each valuation
it induces a well defined Markov chain. All valuations that induce a well
defined Markov chain together construct the well defined parameter space.

Definition 2.4.3 (Well defined parameter space). The well defined param-
eter space VAL for a certain pMCM is defined by

VAL = {val : X → [0, 1] :M(val) is a well defined Markov chain}.

2.4.2 Parametric Markov decision processes

Just as with pMCs, we can also parameterise MDPs, making us arrive at
the most important notion in this thesis, namely that of parametric Markov
Decision Processes (pMDPs)[HHZ11].

Example 2.4.3. Consider again the MDP from Figure 2.5. In Figure 2.7
we see a similar MDP but now some concrete probabilities are replaced by
parameters x and y, which makes it a pMDP.

Definition 2.4.4 (Parametric Markov Decision Process). A parametric
Markov Decision Process M is a tuple (S, s0, Act, P,X, T ) where S is a
finite set of states, s0 ∈ S is the initial state, Act is a finite set of actions,
X = {x1, ..., xn} is a finite set of parameters, P : S × Act× S → R[X] is a
transition probability function and T is the set of goal states.

Remark. A pMDP can induce both MDPs and pMCs. An MDP is induced
by choosing a parameter valuation and a pMC is induced by choosing a
policy. A well defined pMDP is a pMDP such that each induced MDP and
each induced pMC is well defined. All other properties we defined for regular
MDPs and pMCs transfer to pMDPs.
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Figure 2.7: Small example pMDP with two parameters
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Chapter 3

Problem Definition

This section formally defines the problem of this thesis, but before we can
define the problem, an understanding of several concepts is needed. We will
first briefly show how to calculate probabilities of reaching certain states and
what the different kinds of solution functions are. After this we are able to
explain the notion of (somewhere) optimal policies which can then be used
to understand the optimal strategy sets (OSS) and minimal optimal strategy
sets (MOSS) of pMDPs. Following these definitions, we will introduce some
necessary constraints on pMDPs that can narrow down the focus of our
research. We will refer to this special type of pMDPs as simple, acyclic,
univariate pMDPs (SAU-pMDPs). At the end of this chapter the formal
problem definition together with several subproblems will follow.

3.1 Solution Functions

Reachability probabilities Before we can properly introduce the solu-
tion function, we first need to understand how reachability probabilities
are calculated for (p)MDPs and (p)MCs. In Markov chains we denote by:
PrM(s→ ♢s′))1 the probability of eventually reaching s′ when starting from
s. We can calculate it by multiplying and adding certain transition prob-
abilities on the path between s and s′ as in the examples below, where we
determine it for induced Markov chains. In general, the reachability prob-
abilities can be computed by several techniques, e.g., by solving systems of
linear equations [BK08].

Example 3.1.1. Consider the induced Markov chain M(val) of the pMC
in Figure 3.1 with val(x) = 1

2 . The probability of reaching q3 starting from
q0 is calculated by: PrM(val)(q0 → ♢q3) = 1

2 ·PrM(val)(q1 → ♢q3)+ (1− 1
2) ·

PrM(val)(q4 → ♢q3) = 1
2 ·

1
3 + 0 = 1

3 ·
1
2 = 1

6 .

1♢s′ is notation from linear temporal logic [HR04]. In this case it denotes reaching s′.
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Figure 3.1: pMC for illustrating reachability probabilities

In (p)MDPs, the reachability probability depends on the chosen policy.
In the next example, we first get the induced pMC and from this we derive
the induced Markov chain, and calculate a reachability probability for it.

Example 3.1.2. Consider the pMDP M in Figure 3.2. Let the induced
pMC be Mσ with policy σ = {q1, q2 → α}, and let this pMC induce a
Markov chain Mσ(val) with val(x) = 1

3 , val(y) = 1
2 . The probability of

reaching q3 is then calculated by: PrMσ(val)(q1 → ♢q3) = 1
3 ·PrMσ(val)(q2 →

♢q3) = 1
4 ·

1
3 = 1

12 .

⊥ q1start q2 q3

α

β

α

β

1− x
x

2

3

1

3

3

4 1

4

1− y

y

Figure 3.2: Small pMDP to illustrate reachability probabilities

The solution function Usually, the most important reachability proba-
bility in (parametric) Markov models is the probability of reaching the goal
states T . In (p)MCs, we call this specific probability the solution. As we
already saw, in pMCs the reachability probabilities can depend on the val-
uation. This is why for the case of pMCs, we will express this as a function
that we will call the solution function [Jun20], which takes as input a val-
uation and gives as output the probability of reaching the goal state. In
pMDPs there is more to solutions than in pMCs because the probability of
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reaching the goal state depends on the policy we choose. To resolve this, in
the case of pMDPs, we talk about the minimal solution and the maximal
solution functions. These functions can be used to reason about the lowest
probability with which we can possibly reach the goal states given all poli-
cies, and the highest probability of reaching the goal states given all policies
respectively. The functions that map the valuations to these probabilities
are the minsol and the maxsol functions.

Example 3.1.3. In Figure 3.1, we have that the solution function with
respect to initial state q0 is 1 − 1

3x and in Figure 3.2, we have that the
maximal solution function with respect to the initial state q1 is

xy if val(x) ≥ 1
3 and val(y) ≥ 1

4 ,

1
3y if val(x) < 1

3 and val(y) ≥ 1
4 ,

1
4x if val(x) ≥ 1

3 and val(y) < 1
4 ,

1
12 if val(x) < 1

3 and val(y) < 1
4 .

Definition 3.1.1 (Solution function). For a pMC M and state s, let the
solution function solMs : VAL→ [0, 1] be defined as

solMs (val) = PrM(val)(s→ ♢T ).

Definition 3.1.2 (Minimal solution function). For a certain pMDPM, the
minimal solution is a function minsolMs : VAL→ [0, 1] which is defined as

minsolMs (val) = minσ∈ΣMsolMσ
s (val).

Definition 3.1.3 (maximal solution function). For a certain pMDPM, the
maximal solution is a function maxsolMs : VAL→ [0, 1] which is defined as

maxsolMs (val) = maxσ∈ΣMsolMσ
s (val).

Remark. We are allowed to take the minimum and maximum over all poli-
cies because ΣM is always a finite set.

Similarly to the regular reachability probabilities in Markov chains, for
(p)MDPs the maximal and minimal probabilities of reaching a goal state can
in general be calculated explicitly by solving a system of equations [BK08].

3.2 Optimal Policies

Now that we have defined the several types of solution functions, we can
build upon both these definitions and the definition of policies from last
chapter and define what an optimal policy is. Informally, an optimal policy
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(in our case) is a policy that reaches the goal state with the highest prob-
ability. An important thing to note as well is that there can be more than
one optimal policy for the same valuation. For pMDPs, this occurs in the
case where for a certain valuation, two or more policies result in induced
MCs with the same probability of reaching the goal state that is also the
maximal probability of reaching the goal state over all policies in the pMDP.

Definition 3.2.1 (Optimal policy). For a pMDP M and a certain val ∈
VAL the optimal policy is the policy σ such that

solMσ
s (val) = maxsolMs (val).

Example 3.2.1. In the pMDP in Figure 3.2, we have for a val with val(x) =
1/2, val(y) = 4/5 that the optimal policy is σ = {q1 → α, q2 → β}. To ver-
ify this we can calculate solMσ

s (val) = PrMσ(val)(s → ♢T ) = 1
2 ·

4
5 = 2

5 .
It can be verified that the other policies yield solutions lower than this so
solMσ

s (val) = maxsolMs (val), hence it is the optimal policy by definition.

If our (p)MDP is sufficiently small we can find an exact optimal policy
efficiently by methods that make use of dynamic programming techniques,
for example value iteration, policy iteration or linear programming [Bel58;
BK08].

3.2.1 Optimal strategy sets

In a pMDP, one can have policies that are nowhere optimal, and policies
that are somewhere optimal. A nowhere optimal policy is a policy that is
not optimal for any valuation, and a somewhere optimal policy is a policy for
which there exists at least one valuation such that it is optimal. It trivially
follows from this that we can construct a finite set out of all the somewhere
optimal policies together that is a subset of the set of all policies. Such a
set is called an optimal strategy set (OSS) [Jun20; JKPW19].

Example 3.2.2. In the pMDP M in Figure 3.3, we have that the policy
{q1 → α} is optimal when val(x) ≥ 1

3 and {q1 → β} is optimal when
val(x) ≤ 1

3 , so a somewhere optimal policy set is ΩM = {q1 → α , q1 → β}.

⊥ q1start q2

α

β

1− x

x

2

3

1

3

Figure 3.3: pMDP with two somewhere optimal policies
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Definition 3.2.2 (OSS). For a pMDP M, an optimal strategy set (OSS)
ΩM ⊆ ΣM is a set such that

∀val ∈ VAL : ∃σ ∈ ΩM : solMσ
s (val) = maxsolMs (val).

3.2.2 Minimal optimal strategy sets

An OSS can grow exponentially in simple cases (see Example 3.2.3) because
we allow for too many unnecessary policies. We are more interested in a set
with reduced cardinality, namely the minimal optimal strategy set (MOSS)
[Jun20; JKPW19]. The MOSS is an OSS such that if you remove any policy,
it is no longer an OSS. We will provide a few examples followed by a formal
definition.

Example 3.2.3. In the pMDP M in Figure 3.4, we have that |ΩM| = 24

because when val(x) = 1
2 , all policies result in solMσ

s0 (val) = (12)
4 = 1

16 .
However, |MOSSM| = |{q0, q1, q2, q3 → α} ∪ {q0, q1, q2, q3 → β}| = 2.

q0start q1 q2 q3 q4

α, 1/2

β, x

α, 1/2

β, x

α, 1/2

β, x

α, 1/2

β, x

Figure 3.4: pMDP with |ΩM| = 24 and |MOSSM| = 2 (sink edges omitted)

Example 3.2.4. in the pMDP M in Figure 3.1 we see that ΣM = 24, but
if we count optimal policies we find |ΩM| = 5.

For val(x) < 1
5 only the policy {q0, q1, q2, q3 → α} is optimal.

For 1
5 < val(x) < 1

4 we have that only {q0, q1, q2 → α, q3 → β} is optimal.
For 1

4 < val(x) < 1
3 we have that only {q0, q1 → α, q2, q3 → β} is optimal.

For 1
3 < val(x) < 1

2 we have that only {q0 → α, q1, q2, q3 → β} is optimal,
and for 1

2 < val(x) we have that only {q0, q1, q2, q3 → β} is optimal.
In the cases where val(x) equals one of these probabilities exactly, no new
policies become optimal.

It follows that in this case |MOSSM| = |ΩM| = 5.

q0start q1 q2 q3 q4

α, 1/2

β, x

α, 1/3

β, x

α, 1/4

β, x

α, 1/5

β, x

Figure 3.5: pMDP with |MOSS| = 5 (sink edges omitted)
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Definition 3.2.3 (MOSS). For a pMDP M, the minimal optimal strategy
set (denoted MOSSM) is an OSS ΩM such that for each element σ ∈ ΩM

it holds that ΩM\{σ} is not an OSS.

Remark. The M is omitted from MOSSM when it is clear from context
to which pMDP we refer.

3.3 SAU-pMDPs

The problem of this thesis is defined for a specific type of pMDP, which we
will call SAU-pMDPs. Here, SAU stands for simple, acyclic and univeriate.
We will only consider pMDPs for which these three properties hold. This
choice was made because it would make the focus of our research more
narrow and hence more organized. We can make this restriction because our
solutions for the problems defined for this specific type of pMDPs also hold
for the more general case mentioned as assumption in Lemma 1.0.1. This
is because we only discover new lower bounds, and relaxing our constraints
will not remove policies.

The notion acyclic has already been defined (Definition 2.2.4). A uni-
variate pMDP is a pMDP where the total number of parameters is one. The
definition of a simple pMDP is slightly more extensive but in summary it
comes down to a well defined pMDP where the transition probabilities are
only allowed to be constants, a parameter or the complement of a parameter.
In literature this notion is defined more in depth [Jun20].

Definition 3.3.1. A univariate pMDPM is a pMDP with |X| = 1.

Definition 3.3.2. A simple pMDP M is a well defined pMDP where the
codomain of the transition probability function P is defined as:

([0, 1] ∩ R) ∪ X ∪ {1− x |x ∈ X}.

Definition 3.3.3 (SAU-pMDP). A SAU-pMDP M is a pMDP which is
simple, acyclic and univariate.

Remark. All pMDPs seen in this chapter are examples of SAU-pMDPs.

3.4 Formal Problem Statement

An open question regarding the previously established notions is what the
asymptotic bounds are on the size of the MOSS, i.e., how fast does |MOSSMn |
grow as the size grows of an arbitrary family of (SAU-)pMDPs (Mn)n∈N
[Jun20; JKPW19]. We will first define the meaning of these terms more
precisely.

Definition 3.4.1. We define the size of a pMDPM by |S|+ |Act|.
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Remark. Note that the definition of size varies per paper. In the paper
where Lemma 1.0.1 originates from [JKPW19], the total number transition
probabilities greater than zero also counts towards the size. For simplicity
we use the alternative definition in our case.

Definition 3.4.2. A family of pMDPs is a sequence (Mn)n∈N of pMDPs
where for each pMDP in the sequence, zero or more elements of the tuple
depend on the index n.

Remark. We denote by Sn, Actn andXn the set of states, actions and pa-
rameters respectively for instance n of a family of pMDPs.

So far we know that a MOSS can at least grow exponentially in the
arbitrary parameter case [Jun20], but it remains open what further bounds
are. This is the problem that this thesis addresses and the answer comes in
the form of a function f(m) that will bound the size of the set.

Problem 1. Given an arbitrary family of SAU-pMDPs (Mn)n∈N, find a
function f(k) such that |MOSSMn | ∈ Θ(f(k)), where k is the size of SAU-
pMDPMn.

This problem can be broken down into smaller problems in multiple
ways. It can be split into a questions regarding only a lower or only an
upper bound (O and Ω), but we can also split the size of the pMDP into
states and actions and search for bounds with respect to those more specific
properties. We will define the latter option explicitly.

• Bound in States: Given an arbitrary family of SAU-pMDPs
(Mn)n∈N, find a function f(|Sn|) such that |MOSSMn | ∈ Θ(f(|Sn|)).

• Bound in Actions: Given an arbitrary family of SAU-pMDPs
(Mn)n∈N, find a function f(|Actn|) such that |MOSSMn | ∈ Θ(f(|Actn|)).

We could even drop the univariate condition and study how the MOSS
grows when the set of parameters grows. The next chapter will not involve
attempts to solve this problem.
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Chapter 4

Finding the Asymptotic
Bounds

In this chapter, we provide partial solutions to the problems stated in the
previous chapter, supported by mathematical proofs. We first explain how
polynomials relate to SAU-pMDPs, which is necessary because it builds
the foundation of the results. We then use this to provide an example of
a family of SAU-pMDPs that has an quadratically growing MOSS with
respect to size. After that, we expand on this by providing another family
accompanied by numerical evidence which hints at an exponential lower
bound with respect to states. At the end of the chapter, a candidate is
presented for further analysis that could provide insight into the existence
of a new exponential lower bound with respect to actions.

4.1 Polynomials in Relation to SAU-pMDPs

When looking at large and complicated SAU-pMDPs, it becomes increas-
ingly difficult to formally analyze the size of the MOSS. So it is helpful to
represent a SAU-pMDP in a more simple way, in our case with a set of poly-
nomials. Polynomials are a well-researched topic that we can hence use to
do calculations with in a straightforward manner [Pra04; FR97]. The main
idea is that we first translate from SAU-pMDPs to sets of polynomials, then
derive the necessary results for these sets, and finally we translate back to
SAU-pMDPs. We will first explain how to convert between sets of polyno-
mials and SAU-pMDPs, and following this we will introduce some important
additional definitions for these sets of polynomials such as the equal maxima
set and the unique maxima quantity. The theory in this section is presented
along with several results which we will use while proving the new bounds
in the later sections.
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4.1.1 Conversion between polynomials and SAU-pMDPs

We can convert between polynomials and SAU-pMDPs in two directions.
We can generate from a SAU-pMDP a set of polynomials where each poly-
nomial corresponds to a policy namely, the polynomial equals the solution
function that results from a policy induced pMC. The other way around
means constructing a SAU-pMDP from a set of polynomials which allows
for more freedom as we will see.

From SAU-pMDPs to polynomials We first explain how to construct
a set of polynomials from a concrete SAU-pMDP by an example.

Example 4.1.1. Consider the SAU-pMDP M in Figure 4.1. In this case
ΣM = 24 and each σ ∈ ΣM can be represented by a polynomial, for example
the policy σ = {q0, q1, q2, q3 → β} can be represented by solMσ

s0 (val) = x4.
This way we can represent the entire policy space of the SAU-pMDP with
this set of polynomials:

{x4, c1x3, c1x3, c2x3, c3x3, c0c1x2, c0c2x2, c0c3x2, c1c2x2, c1c3x2,
c2c3x

2, c0c1c2x, c0c1c3x, c0c2c3x, c1c2c3x, c1c2c3c4}.

We can do it this way because we have as a corollary of a result by
[JKPW19] that the solution function of an induced pMC Mσ of a SAU-
pMDP M is always a polynomial. In the general case we create the set
of polynomials corresponding to a SAU-pMDP using the following set con-
struction.

Definition 4.1.1. The set of polynomials P corresponding to a SAU-pMDP
M is defined as

P = {solMσ
s0 (val) |σ ∈ ΣM}.

Remark. We will sometimes use x as a substitute for val, and f(x) as a
substitute for solMσ

s0 (val).

We can also represent an entire family of SAU-pMDPs with a set of poly-
nomials, and this is done by constructing a sequence of sets of polynomials.

Definition 4.1.2. The sequence of sets of polynomials (Pn)n∈N correspond-
ing to a family of SAU-pMDPs (Mn)n∈N is defined by

Pn = {sol(Mn)σ
s0 (val) |σ ∈ ΣMn}.
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q0start q1 q2 q3 q4

c0

x

c1

x

c2

x

c3

x

Figure 4.1: small example pMDP (sink edges omitted)

From polynomials to SAU-pMDPs Now that we have established how
to construct a set of polynomials given a SAU-pMDP or a family of SAU-
pMDPs, we continue by explaining how this can be done the other way
around. This procedure provides much more freedom as there are usually
multiple SAU-pMDPs that map to the same set of polynomials P as is seen
in Example 4.1.2. This is why we do not know of a general procedure apart
from choosing a SAU-pMDP followed by checking if the set of polynomials
generated by this SAU-pMDP is equal to the set of polynomials you started
with.

Example 4.1.2. Consider the set of polynomials P = {(1 − x)ixj | i, j ∈
N ∧ i + j ≤ 3}. This set is generated by the SAU-pMDP M in Figure 4.2.
In Figure 4.3 we have another SAU-pMDPM that also generates P.

q0start q1 q2 q3

p0 p1 p2 p3

1− x 1− x 1− x

x x x

1
1 1 1 1

1
1

1
1

1

Figure 4.2: SAU-pMDP that generates P (sink edges omitted)

q0start q1 q2 q3

1− x

x

1

1− x

x

1

1− x

x

1

Figure 4.3: Another SAU-pMDP that also generates P (sink edges omitted)

Adequate polynomials We conclude this subsection by providing a pair
of statements. One will give us an indication for when we can for a certain
set of polynomials P produce a SAU-pMDP M that generates this set,
and the other provides insight into what the elements of P might look like.
Before that however, it is needed to define what adequate polynomials are.
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This term will also reappear several times in the next sections. In essence,
an adequate polynomial is a polynomial f for which f(val) stays between
the boundaries of 0 and 1 when val is between 0 and 1.

Definition 4.1.3 (Adequate polynomials). A polynomial f ∈ Q[X] is ade-
quate if 0 < f(val) < 1 for all val : X → (0, 1), and 0 ≤ f(val) ≤ 1 for all
val : X → [0, 1].

The theorem below then states that all adequate polynomials are the
solution function of a certain pMC. Since for any pMC there exists a pMDP
where choosing a policy induces it1, we can conclude that for all sets of
adequate, univariate polynomials, we can construct a SAU-pMDP that gen-
erates it.

Theorem 4.1.1 (Winkler’s trick). [Jun20] Let f ∈ Q[X] be a univariate,
adequate polynomial. There exists a simple, acyclic pMC M with a target
state T such that f = solMs .

Remark. The definition of adequate polynonials and Winkler’s trick will
also hold for R[X] instead of Q[X].

We can also deduce as a result of a lemma from [Jun20], that the other
way around, each polynomial from a set of polynomials P generated by a
SAU-pMDP is adequate, constantly zero or constantly one.

Lemma 4.1.1. Let M be a simple, acyclic pMC. The function solMs is
adequate, constantly zero or constantly one.

As any pMC can be induced from choosing a policy in a pMDP, and
since SAU-pMDPs are a subset of simple, acyclic pMDPs, we can derive our
desired result.

4.1.2 Somewhere optimal polynomials

Now that we understand how to make a mapping between sets of polynomials
and SAU-pMDPs, we would like there to be a connection between the notion
of optimal policies and a comparable property in polynomials. For this
purpose, we introduce the notion of somewhere optimal polynomials. Given
a set of polynomials P, a somewhere optimal polynomial is a polynomial f
for which there is at least one point x ∈ (0, 1) such that f(x) is greater or
equal to all values g(x) of the other polynomials g from the same set. We
can directly make a connection between somewhere optimal polynomials and
somewhere optimal policies as is seen in Lemma 4.1.2.

1This trivially follows from the fact that pMCs are a subset of SAU-pMDPs, namely
in pMCs the set of available actions is the singleton set in each state.
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Example 4.1.3. In Figure 4.4, we see a SAU-pMDP that generates P =
{x, 1 − x, 23}. If we plot these polynomials we see that they each become
somewhere optimal on a different interval on the x-axis. 1 − x is optimal
for val(x) ∈ [0, 13 ],

2
3 is optimal for val(x) ∈ [13 ,

2
3 ] and x is optimal when

val(x) ∈ [23 , 1].

q0start

q1

1− xx 2
3

Figure 4.4: SAU-pMDP (sink edges omitted) and its corresponding set of
polynomials plotted

Definition 4.1.4 (Somewhere optimal polynomial). For a certain set P of
polynomials, a somewhere optimal polynomial f ∈ P is a polynomial such
that

∃x ∈ [0, 1] : ∀g ∈ P : f(x) ≥ g(x).

For the value of x at which this condition holds, we say that f is optimal in
x.

Sometimes we want to reason about a stronger notion called somewhere
super optimal polynomials.

Definition 4.1.5 (Somewhere super optimal polynomial). For a certain
set P of polynomials, a super somewhere optimal polynomial f ∈ P is a
polynomial such that

∃x ∈ [0, 1] : ∀g ∈ P : f(x) > g(x).

For the value of x at which this condition holds, we say that f is super
optimal in x.

Lemma 4.1.2. For a SAU-pMDP M and its generated set of polynomials
P, a polynomial solMσ

s0 (val) ∈ P is a somewhere optimal polynomial if and
only if σ is a somewhere optimal policy forM.
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Proof. Take an arbitrary SAU-pMDPM and its corresponding set of poly-
nomials P. Then, a polynomial solMσ

s0 (val) ∈ P for a certain policy σ ∈ ΣM

is a somewhere optimal polynomial (by definition) if and only if

∃val ∈ VAL : ∀solMσ′
s0 (val) ∈ P : solMσ

s0 (val) ≥ sol
Mσ′
s0 (val).

This is equivalent to saying that

∃val ∈ VAL : ∀σ′ ∈ ΣM : solMσ
s0 (val) ≥ sol

Mσ′
s0 (val)

by definition of the set of polynomials, which holds if and only if

∃val ∈ VAL : solMσ
s0 (val) = maxsolMs0 (val)

by definition of the maxsol function. To conclude, we note that by definition
of an optimal policy, the former is true if and only if σ is an optimal policy
for M for some valuation val ∈ VAL, which is equal to saying that σ is a
somewhere optimal policy forM.

Making polynomials somewhere (super) optimal Before we try to
make a connection from a set of polynomials to a MOSS we will first explain
how we can make more polynomials from a set somewhere (super) optimal.
This is useful because when we try to prove the new lower bounds we try to
make the number of policies as high as possible in order to rule out certain
upper bounds.

If we plot the polynomials from the set P = {(1 − x)xi | 1 ≤ i ≤ 4}
(see Figure 4.5), for example, we see that only (1 − x)x is a somewhere
super optimal polynomial and the others are not. By a simple procedure
however, we can let each polynomial become somewhere super optimal. This
procedure consists of multiplying each polynomial f ∈ P with a scalar, such
that the value of f(x) of their maxima between 0 and 1 will end up at the
same exact value. The way these scalars are created is by dividing for a
certain polynomial f ∈ P the value g(x), the lowest local maximum of all
polynomials g ∈ P between 0 and 1, by the f(x) value of the local maximum
of f between 0 and 1. It can easily be deduced from Rolle’s Theorem and
elementary calculus that each adequate polynomial will have a maximum
between 0 and 1 [Ste08].
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(a) Without scalars (b) With scalars

Figure 4.5: Polynomials of P = {(1 − x)xi | 1 ≤ i ≤ 4} without (left) and
with additional scalars (right)

In general, once we have multiplied each polynomial from the set by this
scalar, we end up with a new set of polynomials which we will call the equal
maxima set. For a certain set of adequate polynomials P we denote this
set by P ′. We will first give a formal definition of this set, followed by an
example of how such a set P ′ can be computed given a set of polynomials
P.

Definition 4.1.6 (Equal maxima set). The equal maxima set P ′ of a set P
of adequate polynomials, is the set

P ′ = {c · f | f ∈ P, c = maxl
maxf

},

where maxl = min{max{g(x) |x ∈ [0, 1]} | g ∈ P}, and maxf = max{f(x) |x
∈ [0, 1]}.

Remark. Note that in the above definition we always have that c ∈ [0, 1].

Example 4.1.4. Consider the set P = {(1− x)xi | 1 ≤ i ≤ 4} once again.
We construct the equal maxima set P ′ by first taking the derivative of each
polynomial:

d

dx
(1− x)x = 1− 2x,

d

dx
(1− x)x2 = 2x− 3x2,

d

dx
(1− x)x3 = 3x2 − 4x3,

d

dx
(1− x)x4 = 4x3 − 5x4.
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Setting them equal to 0 and solving for x gives:

x =
1

2
, x =

2

3
, x =

3

4
, x =

4

5
.

Substituting back in the formulas gives the y coordinates of the maxima:

1

4
,
4

27
,
27

256
,
256

3125
.

The lowest is 256
3125 , so we multiply (1−x)x with

256
3125
1
4

, (1−x)x2 with
256
3125
4
27

,

(1− x)x3 with
256
3125
27
256

, and we multiply (1− x)x4 with
256
3125
256
3125

= 1.

Then we get a set of polynomials for which all elements are somewhere
super optimal, as seen in Figure 4.5.

The following lemma and its corollary are important as they insure that
necessary conditions for later statements are satisfied.

Lemma 4.1.3. For every set P of univariate, adequate polynomials, and
its equal maxima set P ′, we have that there exists a value y ∈ R such that
for all f ∈ P ′, the value of f(x) for the maximum of f in (0, 1) equals y.

Proof. When an adequate, univariate polynomial f is multiplied by a scalar
to obtain a new polynomial g = c · f for c ∈ [0, 1], then for all x ∈ dom(f)2,
we have that g(x) = c · f(x) so also for all x such that f(x) is a local
maximum (of which there is always at least one between 0 and 1 since f is
adequate).

If c = maxl
maxf

then c ·maxf = maxl so each newly obtained polynomial g will

have the y coordinate of its maximum between (0, 1) end up at maxl.

Corollary 4.1.3.1. For a set of univariate, adequate polynomials P, each
polynomial f ∈ P ′ is a somewhere optimal polynomial.

Proof. Each polynomial f ∈ P ′ has a maximum at the same value of f(x)
by Lemma 4.1.3. This means that for a certain polynomial f , it holds
that at the x coordinate of its maximum, we have that f(x) ≥ g(x) for all
other polynomials g. Therefore, f is a somewhere optimal polynomial by
definition.

2We use dom(f) to indicate the domain of f .
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Counting unique x coordinates of maxima To finally make a useful
connection between sets of polynomials and the MOSS, we must observe
that in some cases the maxima belonging to separate polynomials from the
same set P have the exact same x coordinate. When counting the number of
somewhere super optimal polynomials from a certain set P ′, we only count
one of them in this case. This is similar to the definition of a MOSS, where in
most cases we also discard policies when multiple are optimal for the same
valuation. Establishing how many somewhere super optimal polynomials
there are is generally difficult and requires an analysis of the patterns of
local maxima. Nonetheless, this brings us to the unique maxima quantity.
Here, we define a function that returns the quantity of different local maxima
for a given set of polynomials.

Definition 4.1.7 (Unique maxima quantity). The unique maxima quantity
is a function UI : P → N defined by

UI(P) = |{x ∈ I : ∃f ∈ P :
d

dx
f(x) = 0 ∧ d2

dx2
f(x) < 0}|

where P denotes the set of all sets of univariate polynomials.

Remark. In our case we only consider I = [0, 1].

Example 4.1.5. For the set of polynomials P = {(1 − x)xi | 1 ≤ i ≤ 4}
displayed in Figure 4.5, we have that U[0,1](P) = |{12 ,

2
3 ,

3
4 ,

4
5}| = 4.

Example 4.1.6. In Figure 4.6, we see the polynomials (1− x)x2 and
(1− x)2x4 which both have their maximum at x = 2

3 , hence

U[0,1]({(1− x)x2, (1− x)2x4}) = 1

even though the number of polynomials is 2.

(a) Without scalars (b) With scalars

Figure 4.6: Two different polynomials with a maximum at x = 2
3 without

and with additional scalars
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From our definition of the unique maxima quantity, we can finally make
the important connection to the MOSS using a theorem that we later use
to prove the new bounds.

Theorem 4.1.2. For a SAU-pMDPM with its generated set P of polyno-
mials such that P = P ′ and for all f ∈ P we have that f has at most one
local maximum in [0, 1], it holds that |MOSSM| = U[0,1](P ′).

Proof. Take an arbitrary SAU-pMDPM with its corresponding set of poly-
nomials P that is equal to P ′. By Lemma 4.1.1, each polynomial in this set
is adequate, constantly zero or constantly one, and since we have as a condi-
tion that each polynomial has at most one local maximum in [0, 1], it cannot
be constantly zero or constantly one, so it must be adequate. Furthermore,
because a SAU-pMDP is univariate, each polynomial in P is univariate.

It follows from this that by Lemma 4.1.2, we have for all f ∈ P ′ that their
corresponding σ is a somewhere optimal policy, since all polynomials in this
set are somewhere optimal by Corollary 4.1.3.1.

All these policies together construct an OSS ΩM with |ΩM| = |P ′|. If
ΩM is not a MOSS we are able to remove elements from ΩM such that it
is still an OSS by definition. If we remove such an element this equates to
removing a policy such that after removal, we still have that for all val there
exists a policy that is optimal for that val by definition. This translates to
removing a f from P ′ such that at the points x ∈ [0, 1] where it is optimal,
there is also another polynomial which is optimal at that point. In other
words, f is not somewhere super optimal, so its maximum in [0, 1] (of which
there is one by assumption) is the maximum of another polynomial in P ′ as
well.

Starting with the equation |ΩM| = |P ′|, if we remove all σ from ΩM until
it is a MOSS and these corresponding polynomials f from P ′ we end up
with |MOSSM| on the left side and U[0,1](P ′) on the right side by their

definitions, i.e., we then have that |MOSSM| = U[0,1](P ′).

Remark. The condition that a polynomial should have at most one max-
imum in [0, 1] is necessary because otherwise you could have a case where
for a SAU-pMDP M and its generated set of polynomials P, a polynomial
f ∈ P ′ has two maxima with the exact same value of f(x). In that case
|MOSSM| < U[0,1](P ′).

4.2 A Quadratic Lower Bound

Now that we have established all the necessary results for polynomials, we
can start with investigating new bounds on the MOSS. The way we did this
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is by first ruling out a linear upper bound by finding a specific family of
SAU-pMDPs (Mn)n∈N for which |MOSSMn | /∈ O(n). In particular, it is
the case that there exists a family for which the MOSS grows quadratically.
We will first give a sequence of sets of polynomials and later present an
example of a SAU-pMDP family that corresponds to it where this bound
holds, which we will prove rigorously.

The sequence of sets of polynomials The first step is to find a useful
sequence of sets of polynomials (Pn)n∈N for which the cardinality of its sets
is not linearly bounded from above so that we can later construct a SAU-
pMDP family (Mn)n∈N where its policies correspond to the polynomials in
the equal maxima sets of this sequence (P ′

n)n∈N. In order to prove that
|MOSSMn | grows superlinearly we will make sure that U[0,1](Pn) does (as
U[0,1](P ′

n) = U[0,1](Pn), since only y values change in the transformation from
P to P ′) and the rest will follow from Theorem 4.1.2, since we make sure
that its conditions are satisfied.

Definition 4.2.1 (The quadratic sequence). Consider the sequence of sets
of polynomials (Pq

n)n∈N defined by (n ≥ 2):

Pq
n = {(1− x)ixj | 1 ≤ i < j ≤ n where i, j ∈ N}.

We call this sequence the quadratic sequence.

Remark. Letting i < j is a deliberate choice that was made to simplify the
analysis of the sets graphically. To achieve the result of finding a family with
a superlinear growing MOSS, this restriction is not needed. By symmetry
all the results also hold for a set without this constraint, but the number of
polynomials is only roughly cut in half in our case.

Remark. Note that Pq
n is undefined for n = 1 and n = 0.

Example 4.2.1. Pq
3 = {(1− x)x2, (1− x)x3, (1− x)2x3}.

The quadratic sequence is useful because it is easy to show that its
cardinality grows quadratically when n increases and every polynomial in
any of its sets is adequate. The following two lemmas support these claims.

Lemma 4.2.1. |Pq
n| = 1

2n
2 − 1

2n.

Proof. We use proof by induction.
Base case (n = 2):

Pq
2 = {(1− p)p2} −→ |Pq

2 | = 1 =
1

2
· 22 − 1

2
· 2.
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Inductive step: For size n we have |Pq
n| = 1

2n
2− 1

2n. This is the induction
hypothesis. We now prove it for n+ 1:

|Pq
n+1| = (there are n polynomials (1− x)ixn+1 with 0 < i < n+ 1)

|Pq
n|+ n

IH
=

1

2
n2 − 1

2
n+ n

=
1

2
n2 + n+

1

2
−
(
1

2
n+

1

2

)
=

1

2
(n2 + 2n+ 1)−

(
1

2
n+

1

2

)
=

1

2
(n+ 1)2 − 1

2
(n+ 1).

Before we state the next lemma, first note that in general the derivative
of a polynomial f ∈ Pq

n is given by

d

dx
f(x) = (1− x)i−1xj−1(j(1− x)− ix). (4.1)

Lemma 4.2.2. Every polynomial f ∈ Pq
n has exactly one maximum with its

x coordinate in (0, 1) and f(x) in (0, 1).

Proof. Let f be an arbitrary polynomial in Pq
n. It holds that

(1− x)ixj = 0 −→ 1− x = 0 ∨ x = 0 −→ x = 1 ∨ x = 0,

and then it follows from Rolle’s Theorem [Ste08] that f attains at least one
local extreme point with its x coordinate between 0 and 1.

Now take the derivative d
dxf(x) = (1 − x)i−1xj−1(j(1 − x) − ix). We see

that all irreducible factors of this derivative are of the form (1 − x), x and
(j(1 − x) − ix), therefore the roots of the derivative are of the form x = 1,
x = 0 and x = j

i+j and we know that j
i+j ∈ (0, 1). Substituting yields

(1− ( j
i+j ))

i( j
i+j )

j which is also clearly in (0, 1). We know now that there is
only one extreme point in (0, 1) and that it is a maximum.

Corollary 4.2.2.2. Each polynomial f ∈ Pq
n is adequate.

Proof. It immediately follows from Lemma 4.2.2 that each polynomial from
f ∈ Pq

n is adequate, since it follows from the reasoning in the proof that the
extreme points at x = 0 and x = 1 are not maxima, because if they were
maxima there must have been minima between them and j

i+j . We can see
that the values of f(x) of the local minima at 0 and 1 are precisely 0, and
the f(x) value of the only maximum in (0, 1) is in (0, 1). The conditions for
a polynomial being adequate are therefore satisfied.
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Concurrent x coordinates of maxima For the quadratic sequence we
can generate its corresponding sequence of equal maxima sets (Pq

n
′)n∈N

where for a certain size n, each polynomial f ∈ Pq
n
′ has the f(x) value

of its maximum between 0 and 1 at the same value by Lemma 4.1.3. The
more important question is how often maxima occur at the same x coordi-
nates, i.e., what is U[0,1](P

q
n) for arbitrary n. We see that two maxima are

on the same position on the x-axis for example for the polynomials (1−x)x2

and (1 − x)2x4, namely in both cases it is at x = 2
3 . If we investigate into

why that is, we see that (1 − x)2x4 = (1 − x)x2 · (1 − x)x2 = ((1 − x)x2)2.
Generally speaking, it holds that two polynomials from Pq

n have a maximum
on the same x value when one is a power of the other.

Proposition 4.2.1. Two polynomials f, g ∈ Pq
n attain a maximum on the

same x ∈ (0, 1) if and only if f(x) = (g(x))c or g(x) = (f(x))c for some
c ∈ N.

Proof. We will prove both implications separately. For better readability
we use m and n instead of i and j, and we use k as the index of the set of
polynomials.
(−→):

Take two arbitrary polynomials f, g ∈ Pq
k and assume they attain a maxi-

mum on the same x value for x ∈ (0, 1) then this implies that their deriva-
tives share a common factor with a root in (0, 1), i.e., (1−x)m1−1xn1−1(n1(1−
x) −m1x) and (1 − x)m2−1xn2−1(n2(1 − x) −m2x) (4.1) share a common
factor with a root in (0, 1).

Since all factors of these derivatives are of the form: (1 − x), x or (n(1 −
x) −mx) the former implies that the common factor with a root in (0, 1)
must be a factor of (n2(1− x)−m2x) and (n1(1− x)−m1x) since (1− x)
has as root x = 1 and x has as root x = 0 which are both not in (0, 1).

Since the factors (n2(1 − x) − m2x) and (n1(1 − x) − m1x) are both ir-
reducible we have that the former implies that one of these factors divides
the other, i.e., (n2(1−x)−m2x) = c·(n1(1−x)−m1x) = (cn1(1−x)−cm1x)
or (n1(1−x)−m1x) = c · (n2(1−x)−m2x) = (cn2(1−x)− cm2x) for some
c ∈ N. This implies that (n1,m1) = c · (n2,m2) or (n2,m2) = c · (n1,m1) for
some c ∈ N.

So when we look at the entire derivatives again, we have that either (1 −
x)m1−1xn1−1(n1(1−x)−m1x) = (1−x)cm2−1xcn2−1(cn2(1−x)−cm2x) or (1−
x)m2−1xn2−1(n2(1−x)−m2x) = (1−x)cm1−1xcn1−1(cn1(1−x)−cm1x). The
polynomials on the right side are precisely the derivatives of (1− x)cm1xcn1

and (1− x)cm2xcn2 respectively, and these are equal to ((1− x)m1xn1)c and
((1 − x)m2xn2)c, so if we integrate on both sides we get q(x) = (p(x))c or
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p(x) = (q(x))c for some c ∈ N (plus integration constant, but this must
equal zero since none of the polynomials in Pq

k contain a constant term).

(←−):

Take two arbitrary polynomials f, g ∈ Pq
k and assume f(x) = (g(x))c or

g(x) = (f(x))c for some c ∈ N. If we take the derivatives on both sides we
get (1−x)m1−1xn1−1(n1(1−x)−m1x) = c·(1−x)cm2−1xcn2−1(n2(1−x)−m2x)
or (1−x)m2−1xn2−1(n2(1−x)−m2x) = c·(1−x)cm1−1xcn1−1(n1(1−x)−m1x)
(4.1), therefore it must be the case that the factor (n2(1−x)−m2x) divides
(1 − x)m1−1xn1−1(n1(1 − x) − m1x) or that the factor(n1(1 − x) − m1x)
divides (1− x)m2−1xn2−1(n2(1− x)−m2x).

It cannot be the case that a factor of the form (n(1 − x) − mx) divides
one of the form (1 − x) or x so we must have that (n2(1 − x) − m2x)
divides (n1(1 − x) − m1x) or that the factor(n1(1 − x) − m1x) divides
(n2(1− x)−m2x). This implies that the derivatives share a common factor
of the form (n(1−x)−mx), and thus a common root of the form x = n

n+m .

Since this root clearly lies in (0, 1), we have that the original polynomi-
als f and g have a common extreme point that lies in (0, 1). It follows from
Lemma 4.2.2 that this must be a maximum and not a minimum, so these
two polynomials have a maximum on the same x ∈ (0, 1).

Given this mandatory condition for when two polynomials have a max-
imum on the same x coordinate between 0 and 1 this gives us enough in-
formation to be able to construct a precise formula for U[0,1](P

q
n). Namely

for a number n it equals the number of polynomials that are not a power of
another polynomial from the same set, and this is precisely the case for a
polynomial (1 − x)ixj when i and j are coprime so when gcd(i, j) = 1. To
count the number of polynomials for which this holds, we use the Euler’s
totient function because this function returns for a number n precisely the
amount of numbers i < j such that i and j are coprime.

Definition 4.2.2 (Euler’s totient function). The Euler’s totient function
φ : N→ N is defined by:

φ(n) = |{1 ≤ m ≤ n : gcd(m,n) = 1}|.

Remark. For more background reading consult [Apo76].

Proposition 4.2.2. U[0,1](P
q
n) =

∑n
i=2 φ(i).

Proof. By Proposition 4.2.1, we know that two polynomials in Pq
n share

a maximum if and only if one is a power of the other, so if a polyno-
mial (1 − x)i1xj1 is not a power of any other polynomial (1 − x)i2xj2 then
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this polynomial has a new maximum. This is precisely the case when
(i1, j1) ̸= c(i2, j2) for any c, i2, j2 ∈ N (exponent rules). This means that
gcd(i1, j1) = 1 because no number c besides 1 divides both.

For a certain size n we can count the number of times that gcd(i1, j1) = 1
with i1, j1 ≤ n by using the Euler’s totient function for each i lower than n
starting from 2, and we obtain

φ(2) + φ(3) + ...+ φ(n) =
n∑

i=2

φ(i).

The corresponding family of SAU-pMDPs From the sequence of sets
of somewhere optimal polynomials we now have (written as (Pq

n
′)n∈N), we

construct a family of SAU-pMDPs (Mn)n∈N where for every size n, each
policy corresponds to exactly one of the polynomials in the set Pq

n
′ (Theo-

rem 4.1.1 together with Corollary 4.2.2.2 ensure that we can construct such
a family). In order to satisfy our goal of showing that there exists a family
of SAU-pMDPs for which the MOSS grows superlinearly with respect to
states, we can choose our family in such a way that it generates precisely
this sequence of polynomials, because as we will see

∑n
i=2 φ(i) grows super-

linearly. We give a few concrete examples of members of this family. The
general idea is that we must first take a 1−x transition probability because
every polynomial in Pq

n
′ contains this. From then we choose how many more

1−x transitions we take before we step out by choosing an action that brings
us to a new location (with transition probability defined by the scalars to
obtain Pq

n
′ from Pq

n) in the next row where there are only transitions for-
ward with probability x. However, when we are still in the 1−x row we can
only choose actions that brings us to states where the remaining number of
x transitions will be higher than the number of 1 − x transitions that we
have travelled through. This is because of the i < j condition in the set
construction.

Definition 4.2.3 (The quadratic family). Consider the family of SAU-
pMDPs (Mq

n)n∈N with set of states S = {q0, q1, ..., qn−1, p0, p1, ..., pn}∪{⊥},
initial state s0 = q0, set of actions Act = {αi | 0 ≤ i < n}, goal state
T = {pn} and transition probability function

P (qi, α0, qi+1) = 1− x,

P (pi, α0, pi+1) = x,

P (qi, αj , pj) = ci,j if ci,j(1− x)ixn−j ∈ Pq
n
′.

Each transition probability has a complementary transition probability for
the sink state and the unspecified transitions have probability 0.
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Remark. Note that |S| and |Act| clearly grow linear with respect to n, hence
the size does as well.

In Figure 4.7 and Figure 4.8, we can see a visualization of how the
members of the family change from n = 2 to n = 4. It can easily be checked
that the quadratic family conveniently generates the sequence of sets of
polynomials (Pq

n
′)n∈N by definition of its transition probability function.

q0start q1

p0 p1 p2

1− x

x x

c1,0

Figure 4.7: Graphical representation ofMq
2 (sink edges omitted)

q0start q1 q2 q3

p0 p1 p2 p3 p4

1− x 1− x 1− x

x x x x

c1,0
c1,1 c1,2

c2,0
c2,1

c2,2

c3,0 c3,1

Figure 4.8: Graphipcal representation ofMq
4 (sink edges omitted)

We now arrive at the most important result in this section. We can de-
duce from previously established results that the growth rate of |MOSSMq

n |
must be precisely equal to

∑n
i=2 φ(i), and for this function the asymptotic

growth rate is known.
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Figure 4.9:
∑n

i=2 φ(i) plotted to visualize its clear superlinear growth

Theorem 4.2.1. In the quadratic family we have that |MOSSMq
n | =

∑n
i=2 φ(i).

Proof. Each polynomial in Pq
n
′ has roots at x = 0 and x = 1 so it follows

from this and Lemma 4.2.2 that each polynomial in Pq
n
′ has exactly one

maximum in [0, 1]. Therefore, we may apply Theorem 4.1.2 and we get
|MOSSMq

n | = U[0,1](P
q
n
′) which equals U[0,1](P

q
n) in our case, and according

to Proposition 4.2.2, this is equal to
∑n

i=2 φ(i).

From this we can derive the result that in general the size of a MOSS
has a quadratic lower bound with respect to size. More specifically we know
that in the quadratic family, we have a quadratically growing MOSS (both
upper and lower bound) with respect to size.

Corollary 4.2.1.1. Given an arbitrary family of SAU-pMDPs (Mn)n∈N,
we have that |MOSSMn | ∈ Ω(k2) with k the size ofMn.

Proof. By Theorem 4.2.1, we have for (Mq
n)n∈N, that |MOSSMq

n | =
∑n

i=2 φ(i),
and it is known (see [BDH+19]) that

n∑
i=1

φ(i) =
n2

2ζ(2)
+O(n(log(n))

2
3 (log(log(n)))

4
3 ),

so
n∑

i=2

φ(i) =
n2

2ζ(2)
+O(n(log(n))

2
3 (log(log(n)))

4
3 )− 1,

and clearly

n2

2ζ(2)
+O(n(log(n))

2
3 (log(log(n)))

4
3 )− 1 ∈ Θ(n2),

38



so consequently |MOSSMq
n | ∈ Θ(n2), hence in general for a family of SAU-

pMDPs (Mn)n∈N, we have that |MOSSMn | ∈ Ω(k2) where k equals the
size ofMn (since the size has a linear relationship with n in the quadratic
family).

4.3 A Potentially Exponential Bound

The question that remains is if a quadratic, or more generally a polynomial
upper bound could also be ruled out. For this purpose, we try to con-
struct a new sequence of sets of polynomials with its corresponding family
of SAU-pMDPs, for which the size of its MOSS would grow exponentially.
In particular, we construct a sequence of sets of polynomials with an ex-
ponential cardinality with respect to n, and based on numeric evidence we
have strong reasons to believe that its unique maxima quantity also grows
exponentially. However, to prove this formally remains an open problem as
it may require very nontrivial algebraic methods. If each polynomial were
to be adequate, Theorem 4.1.1 would then imply that our sequence can be
generated using a family of SAU-pMDPs. This family could then have an
exponentially growing MOSS. However, this does not hold with respect to
actions, but only states, and as a consequence also not with respect to size.
For a potentially exponential lower bound with respect to actions, an al-
ternative candidate family is presented following our conjecture about the
bound with respect to states.

4.3.1 Bound with respect to states

We first define our sequence of sets of polynomials which we will refer to as
the exponential sequence.

Definition 4.3.1 (The exponential sequence). Consider the sequence of sets
of polynomials (Pe

n)n∈N defined by (n ≥ 1):

Pe
n = {1

k
(1− x)(b1x

1 + b2x
2 + ...+ bnx

n) | bi ∈ {0, 1}, k = |{bi : bi = 1}|},

with the additional constraint that at least one bi is equal to 1.

Remark. Pe
0 is undefined.

Example 4.3.1. Pe
2 = {(1− x)(x), (1− x)(x2), 12(1− x)(x+ x2)}.

This sequence is useful because each element seems to be an adequate
polynomial with exactly one local maximum in (0, 1), and it is easy to prove
that the cardinality of the sets grows exponentially when n increases3.

3There is no rigorous proof as well for the claim that each polynomial has one local
maximum in (0, 1), but refer to Figure 4.11 for an numerical argument.
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Lemma 4.3.1. |Pe
n| = 2n − 1.

Proof. If we combinatorically analyze the set construction of Pe
n we see that

there is a case distinction. We can choose one bi to be equal to 1, or two
terms bi, bj to be both equal to 1, etc., up to choosing n terms b1, ..., bn to
be all equal to 1. Each of those cases can be done in

(
n
i

)
ways with i the

number of terms. So added together we have
∑n

i=1

(
n
i

)
ways and we know

that
∑n

i=0

(
n
i

)
= 2n (follows from the binomial theorem [HK16]). Choosing

0 terms can only be done in one way, so we subtract it since we must at
least choose one bi to be equal to 1, and we get

∑n
i=1

(
n
i

)
= 2n − 1.

Resulting family of SAU-pMDPs Because of Lemma 4.1.3, we can
acquire the equal maxima set Pe

n
′ for each n. A family of SAU-pMDPs that

generates the sequence of equal maxima sets of the exponential sequence
(Pe

n
′)n∈N is (Me

n)n∈N, which we call the exponential family. We make use of
actions and their flexibility in how many outgoing transitions they can have
to construct it. Again, we can easily see that this family generates (Pe

n
′)n∈N

because of how the transition probability function is defined.

Definition 4.3.2 (The exponential family). Consider the family of SAU-
pMDPs (Me

n)n∈N, with set of states S = {q0, q1, p0, p1, ..., pn} ∪ {⊥}, initial
state s0 = q0, goal state T = {pn}, set of actions Act = {α} ∪ {βc | cf ∈
Pe
n
′ for some f ∈ Pe

n} and transition probability function
P (q0, α, q1) = 1− x,

P (pi, α, pi+1) = x,

P (q1, βc, pi) =
c
k if bn−i = 1 in f s.t. cf ∈ Pe

n
′.

Furthermore, each transition probability has a complementary probability of
going to the sink state and all non specified transitions have probability 0.
Note that in the transition probability function, k in c

k means k in f (s.t.
cf ∈ Pe

n
′) as in Definition 4.3.1.
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q0start q1

p0 p1 p2

1− x

x x

q0start q1

p0 p1 p2 p3 p4

1− x

x x x x

Figure 4.10: SAU-pMDPs (sink edges omitted) from the exponential family
with size 2 (above) and 4 (below)

Remark. This definition is the reason we use R instead of the conventional
Q in the definition of the transition probability function (Definition 2.4.4 and
Definition 2.4.1). For example 1

2(1 − x)(x + x2) has as its local maximum
in (0, 1) the coordinate ( 1

3
√
3
, 1√

3
), so in order to create Pe

n
′ one must use

irrational numbers since
√
3 /∈ Q.

Factorisation The problem however, is that it is very complicated to
algebraically compute the value of U[0,1](Pe

n) (which is equal to U[0,1](Pe
n
′)).

This arises from the fact that for the set of derivatives of the polynomials
(needed to find the maxima), we have not yet found a general method for
factorising them. Consequently, we cannot easily find a pattern for when two
polynomials have a common factor with its roots lying in (0, 1) like we did
with Proposition 4.2.1. Or differently put, a condition for when the GCD of
two polynomials equals 1. This makes it hard to show when maxima occur
at the same x value.

Numerical evidence Nonetheless, when calculating the roots through
numerical methods by using a python program, it becomes evident that
concurring roots in [0, 1] of the derivative set of the polynomials are very
rare. In particular, it occurs only 3 times at n = 20. Judging from the table
below, it appears that U[0,1](Pe

n) grows exponentially and thus |MOSSMe
n |

as well by Theorem 4.1.2. We can possibly apply this theorem, because
judging from the table, it is likely that all of the polynomials obtain exactly
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one local maximum in [0, 1] (which is a condition). We can observe this,
because each polynomial is adequate, so they have at least one maximum
(between 0 and 1), and since the unique maxima quantity is less than or
equal to the number of polynomials it does not exceed 1.

Growth of U[0,1](Pe
n) with respect to n

n 2 3 4 10 15 20

|Pe
n| 3 7 15 1023 32767 1048574

|{p ∈ Pe
n : p is adequate}| 3 7 15 1023 32767 1048574

U[0,1](Pe
n) 3 7 15 1023 32765 1048571

|Pe
n| − U[0,1](Pe

n) 0 0 0 0 2 3

Figure 4.11: Table showing that the number of x values of maxima that
are shared between multiple polynomials is negligible up to n = 20. It also
shows that all polynomials are adequate and contain one local maximum in
[0, 1] up to n = 20.

Since in Definition 4.3.2, it is clear that the cardinality of the set of states
has a linear relationship with n and the cardinality of the set of actions has
an exponential relationship with n, we conclude with a conjecture regarding
only a new bound in states.

Conjecture 4.3.1. For the exponential family (Me
n)n∈N we have that

|MOSSMe
n | ∈ Θ(2|Sn|), and consequently, that the size of a MOSS is in

general exponentially lower bounded with respect to states.

4.3.2 Bound with respect to actions

Because in Definition 4.3.2 the size of the set of actions has an exponential
relationship with n, we can see that with respect to actions, the MOSS in the
previous case still grows only linearly. One possible route of continuation
now is to try to reduce the number of actions for the exponential family
and still generate the same sequence (Pe

n)n∈N (or a similar sequence). The
goal is to let different policies use the same action as often as possible. In
this section we provide an (incomplete) alternative family that generates a
similar sequence to the exponential sequence (Pe

n)n∈N, which in the future
could lead to a configuration of transition probabilities being found for this
family such that the MOSS grows exponentially with respect to actions.

Alternative exponential family Consider again the exponential sequence
(Pe

n)n∈N, but now construct a family of SAU-pMDPs (that generates a se-
quence of supersets of it) in a different manner (Figure 4.12). Here only
linearly many actions remain. We call this family the alternative exponen-
tial family.
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Definition 4.3.3 (The alternative exponential family). Consider the fam-
ily of SAU-pMDPs (Me

n∗)n∈N with set of states S = {s0, s1, s2} ∪ {⊥} ∪⋃n
i,j=0 qi,j, initial state s0, goal state T = {s2}, set of actions Act = {αi | 1 ≤

i ≤ n} and transition probability function

P (s0, α, s1) = 1− x,

P (s1, α, qi,0) =
1
n ,

P (qi,n, α, s2) = x,

P (qi.j , α, qi,j+1) = x if j > 0,

P (qi,0, αj , qi,j) = ci,j s.t. ci,j ∈ R.

Each transition probability has a complementary probability of going to the
sink state, unspecified transitions have probability 0 and the values of the
constants ci,j are left undetermined as of now.

Remark. When each c is equal to 1, this generates a sequence of supersets
of (Pe

n)n∈N.
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1
4

1
4

1
4

1
4

x x x

x x x

x x x

x x x

x

x

x

x

Figure 4.12: Grahpical representation ofMe
4∗ (sink edges omitted)

Lemma 4.3.2. In the alternative exponential family, we have that ΣMe
n∗ =

nn.

Proof. There are n states (qi,0) where we are allowed to choose between n
different actions each. This results in n · n · ... · n (n times) = nn policies in
total.

It might be possible to choose the not yet decided transition probabilities
in Definition 4.3.3 in such a way that we generate a set of polynomials Pe

n∗,
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such that exponentially many polynomials from this set become somewhere
optimal with respect to actions. To find this transition probability function,
it is likely that we need to relax the requirement that all maxima of the
polynomials need to obtain the exact same y value. See Appendix A for
an example configuration of transition probabilities for n = 3 that would
still result in 7 elements in the MOSS, which is equal to |MOSSMe

3 |. We
conclude this section with the following statements.

Proposition 4.3.1. If there exists a transition probability function P such
thatMe

n∗ generates a set Pe
n∗ for which it holds that

|{f ∈ Pe
n∗ : f is somewhere optimal}| ∈ Θ(2n),

then
∃ΩMe

n∗ ⊆ ΣMe
n∗ : |ΩMe

n∗| ∈ Θ(2|Actn|).

Proof. (We abbreviate {f ∈ Pe
n∗ : f is somewhere optimal} to Pe

n ∗ +) As-
sume that such a transition probability function P exists. Since a somewhere
optimal polynomial corresponds to a somewhere optimal policy by Lemma
4.1.2, we can construct an OSS ΩMe

n∗ that consists of all of these opti-
mal policies corresponding to the polynomials in Pe

n ∗ +. Since Pe
n ∗ + has

an exponential cardinality and |Pe
n ∗ +| = |ΩMe

n∗|, it holds that |ΩMe
n∗| ∈

Θ(2n). Since |Actn| has a linear relationship with n, we have that |ΩMe
n∗| ∈

Θ(2|Actn|).

Conjecture 4.3.2. If there exists a transition probability function P such
thatMe

n∗ generates a set Pe
n∗ for which it holds that

|{f ∈ Pe
n∗ : f is somewhere optimal}| ∈ Θ(2n),

then we have that
|MOSSMe

n∗| ∈ Θ(2|Actn|)

Remark. The reason this is a conjecture and not a proposition is because
we do not know for certain that the number of different x coordinates for
which a maxima is obtained is growing exponentially, and if the number of
maxima that each polynomial has between 0 and 1 is exactly one. Figure
4.11 provides some evidence for this however, since the polynomials in Pe

n∗
are very similar to the polynomials in Pe

n.

If this conjecture, Conjecture 4.3.1 and their assumptions are all true
then that would imply that for an arbitrary family of SAU-pMDPs, a MOSS
has an exponential lower bound with respect to size. The alternative ex-
ponential family seems to be a very promising candidate because with nn

total policies (Lemma 4.3.2), which is greater than 2n, we have a lot of free
space.
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Chapter 5

Discussion

As the bound of a MOSS has a newly proven quadratic lower bound with
respect to the size of a pMDP, our research question is partly answered.
However, a complete answer that also includes an upper bound has not
been found yet. Aside from proving an upper bound, there remain other
parts that are still open such as a proof for the exponential lower bound
with respect to states, or any information on an exponential bound with
respect to actions. Several questions were not considered in this thesis, such
as what the bound with respect to parameters is or, how a MOSS behaves
when the pMDP is not univariate. While not considered, these questions
might also be the focus of future exploration. In this chapter we will discuss
several of these questions, whether our work has implications and parts that
are still left to be completed after our research.

5.1 More Parameters

As the previous results were all about SAU-pMDPs, it was always the case
that |X| = 1 by definition. The lemma (Lemma 1.0.1) that spawned the
research question did not require this. This still leaves us to wonder how fast
a MOSS grows when for example |X| = 2 (bivariate pMDPs). If Conjecture
4.3.1 were to be proven that would imply that for any fixed number of
parameters the MOSS can at least grow exponentially with respect to states
since if the lower bound holds for |X| = 1, it must also hold for |X| > 1.

Bound with respect to parameters If instead of looking at fixed pa-
rameter cases, we look at families of well-defined, acyclic pMDPs where the
number of parameters grows as a function of n, we can perhaps also find
a bound for the MOSS with respect to the number of parameters. Our re-
search has been solely dedicated to finding bounds with respect to states
and actions because the lemma that inspired the search for such bounds
(Lemma 1.0.1) specifically mentions fixed parameter cases. Nonetheless, it
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is likely that the lower bound with respect to parameters is exponential, and
this can be illustrated by an example (Figure 5.1). It is then only left to
rigorously prove that this is true.

qx0start qx1

px0 px1 px2 px3 px4

qy0 qy1

py0 py1 py2 py3 py4

1− x

x x x x

1

1− y

y y y y

Figure 5.1: Member of a family of well-defined, acyclic pMDPs (sink edges
omitted) for which its MOSS might grow exponentially with respect to |X|.
In this family, every time we add a parameter, we add a copy of the initial
structure.

5.2 Proving Further Bounds

A quadratic lower bound with respect to our definition of size has been
rigorously proved. However, despite efforts, we have not been able to math-
ematically prove that there exists a family of SAU-pMDPs where its MOSS
has an exponential lower bound. Nonetheless, it is very likely that it is
the case (with respect to states), as is shown in Figure 4.11. Proving this
exponential lower bound rigorously would likely require advanced algebra
techniques which we have not been able to find/apply during this research.
This is because the problem likely comes down to analyzing the general fac-
torisation of a complicated set of polynomials. Namely the set of derivatives
of polynomials in Pe

n. The proof might involve the use of the Euclidean
algorithm [Pra04], as this can be used to compute the GCD for concrete
polynomials. In the arbitrary case however (so for not precisely known
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polynomials), it seems very complicated for this set.

Changing the conditions Factorising the polynomials might however
not even be necessary in order to prove that the exponential family yields
an exponential lower bound on the size of its MOSS with respect to states.
This is the case, since this is built on the assumption that all the values
of f(x) of the maxima of the polynomials in Pe

n need to be the exact same
value. If we relax this condition and add a very small number ε > 0 to the
denominator of the scalars, we can solve the issue of concurring maxima on
the x-axis. What this means is, we can make two polynomials with their
maximum on the same x coordinate both somewhere super optimal, as can
be seen in Figure 5.2.

Figure 5.2: Two polynomials with their local maximum between 0 and 1
at the same x coordinate but with epsilon adjusted scalar. For a small
interval the red polynomial has a larger value of solMσ

s0 (val) than the blue
polynomial.

Further research in this direction is still open for future consideration.
A downside of this method is that it can become increasingly complicated
when the number of polynomials with their maxima at the same x coordinate
becomes higher than 2.

Super exponential bounds While Conjecture 4.3.1 mentions a new ex-
ponential lower bound, this does not mean that there does not exist a family
of SAU-pMDPs for which we have, for example n! growth or nn. Finding
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such a SAU-pMDP family is also something that can be tried in future re-
search. Another way of stating this is that there is as of yet no clear new
upper bound.

Exponential bound with respect to actions For the exponential lower
bound with respect in actions, there is still a lot unknown after our research
but a promising candidate family of SAU-pMDPs is presented nonetheless.
Meaning, if an exponential lower bound exists it could potentially be found
in this particular family. This could perhaps be achieved by building on the
pattern in Appendix A. The family we presented does not have to be the
only candidate however.

5.3 Implications

If a transition probability function for the alternative exponential family
could be found then that could mean that in general for a family of SAU-
pMDPs (Mn)n∈N that |MOSSMn | /∈ Θ(poly(n)). This would then not
satisfy the conditions of Lemma 1.0.1 because we could then have that the
MOSS also grows exponentially with respect to how size is defined for that
case, because the total number of transition probabilities grows only polyno-
mially. This still leaves the possibility open that ∃∃Reach▷◁∗ and ∃∀Reach▷◁∗
are not in class coNP because the size of the MOSS is not polynomially
bounded for fixed-parameter pMDPs [JKPW19]. With regards to the proven
quadratic bound, for how size is defined in the case of Lemma 1.0.1, it
would still only be a linear bound (as the number of non-zero transitions
grows quadratically in the quadratic family). This would still satisfy the
conditions of the lemma because a linear bound is also a polynomial bound.
Therefore, the restriction we made in the definition of size does not make a
huge difference.

48



Chapter 6

Conclusions

In this thesis, we have proven that there exists a family of SAU-pMDPs
(Mq

n)n∈N for which it holds that |MOSSMq
n | grows quadratically with re-

spect to size. This proves that in general, the size of a MOSS has a quadratic
lower bound for an arbitrary family of SAU-pMDPs. Numerical evidence
shows why it is likely that there also exists a family of SAU-pMDPs (Me

n)n∈N
for which |MOSSMe

n | has an exponential growth rate with respect to the
number of states. In particular, the data shows that the number of polyno-
mials from the corresponding set of polynomials that do not become some-
where optimal is negligible up to n = 20. A formal proof for this exponential
lower bound with respect to states has not been found during our research
and thus, remains open. The question whether an exponential lower bound
on the MOSS with respect to actions also exists is unanswered as well, but
a promising candidate family of SAU-pMDPs is presented that could lead
to an exponential lower bound being found if it exists. This thesis might
provide a basis for future research with regards to the open questions.
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Appendix A

Appendix

Example transition probability configuration for the alternative
exponential family (Definition 4.3.3)
For the instance n = 3 consider the probability transition function:

P(qi,0, α, qi,1) = 1 for i ∈ [0, 2],

P(qi,0, α, qi,3) =
27
256
1
4

for i ∈ [0, 2],

P(q0,0, α, q0,2) =
27
256
4
27

,

P(q1,0, α, q1,2) =
27
256
4

27−0.001

,

P(q2,0, α, q2,2) =
27
256
4

27−0.0001

.

The other transition probabilities are as specified in Definition 4.3.3.

s0start s1

q0,0

q1,0

q2,0

q0,1

q1,1

q2,1

q0,2

q1,2

q2,2

q0,3

q1,3

q2,3

s2
1− x

1
3

1
3

1
3

x x

x x

x x

x

x

x

Figure A.1: Alternative SAU-pMDP that generates a superset of Pe
3 (sink

edges omitted)

We now have that for the set of polynomials P that this generates, that
U[0,1](P) = 7 which is equal to U[0,1](Pe

3).
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