
Bachelor’s Thesis Computing Science

Formally defining the semantics
for the Nix expression language

Rutger Broekhoff
s1083777

June 28, 2024

First supervisor/assessor:
dr. Robbert Krebbers

Second assessor
prof. dr. Herman Geuvers

https://orcid.org/0009-0009-3716-5638
https://orcid.org/0000-0002-1185-5237
https://orcid.org/0000-0003-2522-2980

Abstract

Nix is a purely functional package manager and NixOS is a Linux distri-
bution that builds on Nix. Both packages for Nix and system configurations
for NixOS make use of the Nix expression language: a lazy functional pro-
gramming language. The Nix language may seem like a simple extension of
the classic λ-calculus at first, but it has interesting semantics for bindings.

Although reduction rules for the language were defined when Nix was
introduced in 2006, they have become outdated. Nowadays, the official Nix
interpreter is the single source of truth; it is the definition of how the language
should function. This makes it difficult for alternative implementations of
the language to be created, or for many implementations to coexist while
retaining compatibility.

Based on earlier work on the Nix language, we define a new ‘core’ Nix
language, Mininix. We define revised operational semantics and solve issues
present in the older semantics. Most importantly, we are fully complete in
our description of the language to prevent ambiguity about how the language
should function.

Together with our Mininix semantics, we also provide an interpreter.
The goal of this interpreter is to function as a reference point for other
implementations of Mininix, so that these can use it to verify their own
behavior. The interpreter is verified to be sound and complete with regard
to the semantics of Mininix that we define.

All our work is mechanized using the Coq proof assistant.

This work is licensed under a Creative Commons “Attribution
4.0 International” license.

The artifacts of this work are licensed under the 3-clause BSD license (SPDX short
identifier: BSD-3-Clause).

1

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Contents

1 Introduction 3

2 A tour of the Nix language 7
2.1 Simple and composite values and expressions 7
2.2 Functions and recursion . 8
2.3 Sources of bindings . 10
2.4 Functors . 13
2.5 Miscellaneous peculiarities . 14

3 Defining a simplified version of the Nix language 16
3.1 Grammar . 16
3.2 The prelude . 19
3.3 Semantics . 19

4 Building a verified interpreter forMininix 33
4.1 Mechanizing shared components 33
4.2 Mechanizing the semantics . 35
4.3 Writing an interpreter . 37
4.4 Verifying the interpreter . 40

5 Related work 45
5.1 Previous Nix semantics . 45
5.2 Missing features . 49
5.3 Bindings and substitution . 50
5.4 Non-academic work on Nix . 53

6 Conclusions 54
6.1 Future work . 54

A Confluence of Mininix 60

2

Chapter 1

Introduction

Package managers are prolific on Unix-based systems. Users use package managers
to install, update and remove software from their systems. Package managers are
typically aware of dependencies between software packages. This way, dependen-
cies can automatically be installed when the user requests the installation of some
program.

However, package managers traditionally have two problems: lack of repro-
ducibility and ‘dependency hell’. Reproducibility means that, regardless of when
or on what system you build a package, the same artifacts result (i.e., the resulting
files are equal on a binary level). Dependency hell refers to different software
packages having conflicting version constraints for software they depend on.

Reproducibility issues typically occur when the build environment is not
sufficiently isolated or when inputs cannot be specified sufficiently precise. Depen-
dency hell is practically unavoidable when software (primarily shared libraries) is
installed on a system-wide level, as package managers typically do not allow two
versions of the same shared library installed at the same time.

Nix, as first introduced by Dolstra, De Jonge, and Visser [12] in 2004, aims to
solve these problems with three core ideas:

• Builds can be isolated to such an extent that all inputs used to build some
package uniquely identify the output of the build process. This way, the
build process is a deterministic partial function from build inputs to build
artifacts.

• Instances of a package can be identified not by the version of the package,
but by the hash of all inputs used to build said package.

• Packages do not need to be installed on system-wide level like /usr/bin

or /usr/lib, but instead can all be installed in their own folder, of which
the name is contains the hash of the package as described above. All these
folders can be placed in a single ‘store’ folder.

The last point may seem to make it impossible for programs to depend on
each other, as their dependencies are not in traditional folders such as /usr/bin

3

and /usr/lib. Very simply put: Nix primarily avoids this problem by patching
packages so that they directly refer to their dependencies by their store path. With
this construction, Nix avoids dependency hell. Dolstra, De Jonge, and Visser [12,
Fig. 4] give a good illustration about how the store works and how programs refer
to their dependencies.

NixOS is a Linux distribution that tightly integrates with the Nix package
manager. System configuration is described using the same language used to
describe packages in Nix. System configuration is declarative: instead of describing
what actions should be taken to activate certain programs as system services or to
install/remove software, the user specifies what they want the state of the system
to be. NixOS takes care that this desired state is reached [13]. A version of the
system configuration is called a ‘generation’. If desired, users can revert their
system to an older generation or boot into an older system generation from the
bootloader [26]. This makes it very easy to go back to an earlier working system
configuration if a newer configuration breaks the system.

The Nix expression language. Both packages1 and NixOS configurations
are written in a domain-specific language: the Nix expression language, or Nix
language for short. This is a lazy language that builds on the λ-calculus. The
language avoids side effects as much as possible.

Although the Nix language may seem like ‘just another functional language’, it
has interesting semantics for constructs that introduce bindings. The language has
native support for attribute sets: partial maps from names to values. The bindings
in the attribute set can be brought into scope using the with keyword, as we can
see below. However, as we can see in the following example, shadowing is not
trivial:

let x = 1; in let x = 2; in x gives 2

with { x = 1; }; in let x = 2; in x gives 2

let x = 1; in with { x = 2; }; x gives 1

with { x = 1; }; with { x = 2; }; x gives 2

Interestingly enough, with does seem to shadow earlier withs, but it does not
seem to shadow let bindings. The listed results of these programs are the output
that the official Nix interpreter gives, but earlier descriptions of the semantics of
the language disagree on the fourth example. Most prominent and complete is the
dissertation in which Dolstra describes Nix [11]. Here, however, a different syntax
for the let construct is used. Dolstra and Löh [13] introduce the let-in construct as
used above, but leave definition of the substitution function as an exercise for the
reader. Combining the substitution function from Dolstra [11] and the reduction
rules from Dolstra and Löh [13], we get that the last example should give 1 instead
of 2.

1Nix jargon: ‘derivations’. We refer to derivations as packages because this is a more well-known
term that suffices for our purposes.

4

Problems. In short, the semantics as described by Dolstra [11] and Dolstra and
Löh [13] suffer from the following problems:

1. They use mixed big-step and small-step reductions in the rules, which is not
very conventional. Most importantly, this makes it impossible to distinguish
errors from non-termination.

2. It is assumed that static analysis of the closedness of terms is possible. We
discuss why this assumption is problematic in section 5.1.1.

3. The semantics of some language features are incompletely defined. For
example, the way equality is defined is ambiguous. The way the inclusion
construct (with) is defined is also either incomplete or does not match the
way it works with the modern Nix interpreter anymore.

4. Other than the issues with these semantics, there is the general issue of
time: many years have passed since the last paper with a description of the
semantics of the Nix language was published [10]. During these years, the
language has been extended.

5. Although this is in no way common, there is no formal relationships between
any description of the semantics of the language and the Nix interpreter.

Meanwhile, the user base of the Nix package manager has also greatly grown in
size. New implementations aiming to be fully compatible with Nix have spawned,
such as Tvix [3] and HNix [27].

Although theNix reference documentation does provide an updated description
of most features of the language [15], it still lacks reduction rules. The Tvix project
has started working on a more detailed language specification [2], but this does
not seem to be finished at the time of writing.

This inconsistency and lack of specification makes it difficult for new imple-
mentations of the Nix language, let alone Nix in general, to be created in such a
way that the semantics are and remain consistent across the implementations.

Solutions. We can solve problems 1–4 by defining new, strictly small-step se-
mantics for Nix that does not make incorrect assumptions about closedness, and
that is fully complete. To ensure that we leave nothing open for interpretation, we
can formalize these semantics using a proof assistant.

Problem 5 can be solved by creating a verified interpreter for Nix, similarly
to how there exist verified compilers for ML (CakeML [19]) and C (CompCert
[20]). This interpreter does not have to be complex; it can be a near one-to-one
translation of the reduction rules. This interpreter could then serve as a starting
point for others looking to create more efficient interpreters for the language; it
could be used to quickly verify whether one properly understands the language,
and if another interpreter indeed matches the behavior of this reference interpreter,
without having to construct a full derivation tree. We can mechanically verify that

5

this interpreter is indeed sound and correct according to the semantics that we
also define.

Contributions. We aim to, at least partially, fill the gap between the last aca-
demic work on the Nix language, and the language as it stands today. We provide:

• A (brief) survey of the Nix language as it stands today.

• Revised and modernized semantics (using evaluation contexts [16]) for a
smaller version of the Nix language,Mininix. These semantics are formalized
and mechanically verified to be strongly confluent.

• An interpreter for Mininix that is mechanically verified to be sound and
complete.

Outline. We start by exploring the Nix language in chapter 2. In chapter 3, we
define the ‘core’ Nix language,Mininix. We sketch the confluence proof forMininix
in appendix A. We mechanize the semantics of Mininix, as defined in chapter 3, in
chapter 4. In chapter 4, we also discuss how we wrote and verified the reference
interpreter for Mininix. We discuss related work, including the relation of the
semantics forMininix with those described earlier by Dolstra et al., in chapter 5.
We conclude and describe future work in chapter 6.

Artifact availability. Our formalization of the semantics and interpreter for
Mininix using Coq is available on Zenodo [8].

6

Chapter 2

A tour of the Nix language

In this chapter, we go over the Nix language in a few parts. We discuss most impor-
tant language features, from simple values (section 2.1) and recursion (section 2.2)
to assertions and functors (section 2.4). Constructs which were not discussed in
Dolstra [11] and Dolstra and Löh [13] (due to them not being part of the language
yet) are also covered, namely:

• pattern-matching functions (section 2.3, p. 10),

• fallback in selection with attribute paths (section 2.3, p. 10), and

• callable attribute sets (functors) (section 2.4, p. 13).

We also discuss the inclusion (with) construct in detail, as it is similar to the let-in
construct, but has some significant semantic differences.

2.1 Simple and composite values and expressions

Before we discuss functions and recursion, it is good to be aware of the different
types of values which can be used in the Nix language. The following program
displays these:

{ 1⃝
ex1.foo = true -> false; 2⃝
ex2 = 2 + 1;

ex3 = "test" + "ing";

ex4 = ["fizz" "buzz"]; 3⃝
ex5 = { foo = 1; bar = 2; } // { bar = 3; }; 4⃝

}.ex1.foo

Listing 1: Simple and composite values and expressions in the Nix language.

This program returns false. With the knowledge that 〈true -> false〉 should
indeed be read as an implication, this is relatively trivial. Some points of interest:

7

1⃝ The top-level definition we see here is called an attribute set. It functions as
a partial map from some string (the relevant field) to an expression. Fields
are accessed using the selection (dot) operator. All bindings 〈x = e〉 in
the attribute set must be semicolon-terminated. This also includes the last
binding.

2⃝ Nested attribute set definitions may be defined using syntactic sugar. While
we see 〈ex1.foo = true -> false〉 here, this should be read as 〈ex1 = {

foo = true -> false; }〉.

3⃝ While it may be natural to read 〈"fizz" "buzz"〉 as "fizz" applied to "buzz",
Nix has different rules inside lists. Any top-level expression in the list that
is not semicolon-terminated is treated as an entry in the list. If we do want
to write function application inside a list, we have to group the relevant
expression by surrounding it with parentheses.

4⃝ The // operator signifies a right-biased non-recursive union/merge of two
attribute sets. In this case, this means that evaluating 〈ex5.foo〉 would give
1 and evaluating 〈ex5.bar〉 would give 3.

2.2 Functions and recursion

As a first example, let us take a look at how we can define (recursive) functions in
the Nix language. In listing 2, we can see a very basic Nix program.

let binToString = n:

if n == 0

then "0"

else if n == 1

then "1"

else binToString (n / 2) + (if isEven n then "0" else "1");

isEven = n: n != 1 && (n == 0 || isEven (n - 2));

test = { x, y ? attrs.x, ... } @ attrs:

"x: " + x + ", y: " + y + ", z: " + attrs.z or "(no z)";

in test { x = binToString 6; }

Listing 2: Functions and recursion in the Nix language.

The output of this program looks like this:

x: 110, y: 110, z: (no z)

How should this program be read?

8

Functions. The Nix language is a functional programming language based on the
λ-calculus. Simple functions are written as 〈x: e〉, corresponding to the common
mathematical notation λ𝑥 .𝑒 .1 There are also functions which pattern-match on
their input.

At the top level, we have a let-in construct which binds three variables: isEven,
binToString and test. The definitions of isEven and binToString are more or less
trivial: they are defined as simple functions and have a single parameter, namely n.

In the test function, we do not see such a singular parameter name, as we
do for isEven and binToString. Instead, the function test pattern-matches on its
argument. Here is what the different parts of the pattern mean:

{ x, y ? attrs.x, ... } @ attrs: Match on an attribute set. (This is the only
type of pattern matching that the Nix language currently supports.)

{ x, y ? attrs.x, ... } @ attrs: Bind the entirety of the passed attribute set
to the variable attrs. (I.e., attributes which are not matched against in the
pattern will still be present in this attribute set.) Instead of writing 〈@ attrs〉
after the pattern, it is also allowed to write 〈attrs @〉 before the pattern.
Having both is not allowed.

{ x, y ? attrs.x, ... } @ attrs: The attribute set passed as the argument to
this function must contain the attribute x. Bind this to the variable x.

{ x, y ? attrs.x, ... } @ attrs: The attribute set passed as the argument to
this function may contain the attribute y. If it does, bind the corresponding
value to the variable y. If the passed attribute set does not contain y, then
bind attrs.x to the variable y.

{ x, y ? attrs.x, ... } @ attrs: The attribute set passed as the argument to
this function may contain other attributes than x and y. Note: If this ellipsis
is left out, the Nix evaluator will throw an error when an attribute set is
passed which contains attributes which are not explicitly matched against.

The default values for attributes can be expressed in terms of different argu-
ments matched against, or in terms of the entire passed attribute set, e.g., writing
attrs.x when the entire attribute set is bound using 〈@ attrs〉.

Once again, consider the example pattern { x, y ? attrs.x, ... } @ attrs.
Here, the default value for y is expressed in terms of the entire passed attribute set,
which is bound to attrs. Because this pattern matches against x, we could have
written x instead of attrs.x for the default value of y.

Moreover, the default value for an attribute can refer to itself. The following
program gives 20:

({ n, double ? (x: if x == 0 then x else double (x - 1) + 2) } : double n)

{ n = 10; }

1In Nix, the shortest function that can be written is the identity function: x: x. Omitting the
space causes the expression to be parsed as a string instead of as a function.

9

Recursion. While we just demonstrated a special case of recursion in the Nix
language, recursion is available more generally. As is likely apparent from the
code in listing 2, let bindings make all bound variables available recursively, in all
associated definitions (right-hand sides). As we can see in isEven and binToString,
this makes recursion possible. The order of the bindings is irrelevant. Although not
demonstrated here, it is indeed also possible to define mutually recursive functions
in this manner.

Other than these language-specific recursion, there is that the Nix language
is based on the classic λ-calculus. It is also lazy, so we can use the fixed point
combinator Y [7, Corollary 6.1.3] in the Nix language too:

Y ≡ f: (x: f (x x)) (x: f (x x))

For example, the following program calculates the 20th Fibonacci number:

Y (go: x: if x <= 1 then x else go (x - 1) + go (x - 2)) 20

Selection. In the definition of test, we write 〈attrs.z or "(no z)"〉. Con-
cretely, this has the following meaning: try to select attribute z from attrs, but
use the value "(no z)" if it does not exist. This also works for nested attribute sets:
you may also write 〈attrs.z.foo or "(no z.foo)"〉—this will give "(no z.foo)",
both when attrs does not have the attribute z and when attrs.z does not have
the attribute foo. This means that we cannot trivially rewrite 〈attrs.z.foo or

"(no z.foo)"〉 to 〈(attrs.z).foo or "(no z.foo)"〉.

2.3 Sources of bindings

So far, we have already seen the let-in constructs and recursion between bindings
in the let-in construct. We have also discussed attribute sets. However, we have not
yet discussed recursive attribute sets and inclusion: two other ways that variables
can be bound.

Recursive attribute sets. For an example of recursion and inheritance in recur-
sive attribute sets, see listing 3. The output of the listed program is

"foobarfoobarfoobar"

10

let test1 = {

foo = "foo";

bar = "bar";

};

test2 = rec {

inherit (test1) foo bar;

foobar = foo + bar;

x = n: if n > 0 then x (n - 1) + foobar else "";

};

in test2.x 3

Listing 3: Inheritance and recursion in recursive attribute sets.

In the Nix language, attribute sets (written as { 𝑥 = 𝑒; ...}) are not recursive
by default. This means that 𝑥 and 𝑦 are free variables in 𝑒1 and 𝑒2 iff they are free
variables in { 𝑥 = 𝑒1; 𝑦 = 𝑒2; }.

If we define a recursive attribute set, we can refer to the values of all attributes
in the attribute set from all attribute values. We do so by prefixing the attribute
set definition with the keyword rec. In listing 3, we can see that the value for x
can call itself and that it can also access foobar. Mutual recursion, although not
demonstrated here, is also possible.

Problems appear with recursive attribute sets when we want to define some
attribute 𝑥 to be equal to the value of some variable 𝑥 that is already in scope.
Selecting 𝑥 from rec { 𝑥 = 𝑥; } would cause infinite recursion. For that reason,
the Nix language has the inherit construct, which inserts a non-recursive binding
in a recursive attribute set and/or let binding. So instead, we would have written
〈rec { inherit x; }〉 here. Multiple space-separated arguments (names) can be
used with inherit. So 〈inherit 𝑥1 . . . 𝑥𝑛〉 is equivalent to having a non-recursive
binding 〈𝑥𝑖 = 𝑥𝑖〉 for every 𝑖 ∈ [1, 𝑛].

Formally, inherit is syntactic sugar. Nevertheless, using inherit is the only
way that a user of the Nix language can insert non-recursive bindings in recursive
attribute sets and let statements. See Dolstra [11, Sec. 4.3.2, p. 74] for more details.

It is also possible to define which attribute sets the inherited bindings should
come from. The syntax for that is 〈inherit (𝑥) 𝑦1 . . . 𝑦𝑛〉. But hic sunt dracones:
for recursive attribute sets, this inserts a recursive binding 〈𝑦𝑖 = 𝑥 .𝑦𝑖〉 for every
𝑖 ∈ [1, 𝑛]. So the following program gives 1:

let h = rec { inherit ({ y = z; }) y; z = 1; }; in h.y

For non-recursive attribute sets, 〈inherit (𝑥) 𝑦1 . . . 𝑦𝑛〉 can also be used, but it
will simply insert non-recursive bindings here.

Inclusion. As discussed earlier, NixOS is a Linux distribution which is based on
the Nix packagemanager and the Nix language. System configuration is declarative,
expressed in the Nix language. As an example, let us take a part of such a simple
NixOS system configuration, as shown in listing 4.

11

{ pkgs, ... }: 1⃝
let sl = import ./derivations/sl.nix; 2⃝
in {

environment.systemPackages =

with pkgs; 3⃝
[

pkgs.vim uses 1⃝
git uses 1⃝ via 3⃝
sl uses 2⃝

];

}

Listing 4: A part of a simple NixOS configuration.

We see two new constructs here: import and with.

import simply loads a Nix file as an expression and replaces the import statement
with the loaded expression, after performing various checks (e.g., whether
the loaded expression contains pattern-matching functions with duplicated
formal parameters) [11, Sec. 4.3.4, p. 80]. Here, Dolstra also claims that a
check for closedness is performed, but we believe that this is not possible.
See section 5.1.1 for more details.

with (also known as inclusion) binds attributes from its first argument in its second
argument. I.e., the program 〈with { x = 1; }; x〉 will return 1. Although
the inclusion construct might seem similar to the let-in construct, it has
different semantics. We discuss it below.

In the listing, the three places where bindings are created (variables are brought
into scope) are annotated with a number. Their uses are also annotated accordingly.
We attempt to provide some intuition for the way these bindings work below.

With the configuration in listing 4, the user wanted to define a system in
which all users can access Vim and Git. They also want all users to have access to
their customized version of a program called SL, which they patched to add some
feature.2 They have written their own derivation (read: package) for this patched
version of SL. However, sl is also in the official Nix package collection, Nixpkgs
(as passed to the configuration with the argument pkgs). Which package will be
selected?

The definition of sl at 2⃝ is kept; it is not shadowed by the sl package in pkgs.
We could say that the language chooses to let the inclusion construct be weaker
than the let-in construct. Why should the language work this way?

2SL(1) (Steam Locomotive) is a joke program written by Toyoda Masashi, intended to amuse/an-
noy users when they mistype the well-known Unix command ls. Instead of listing the contents
of the current working directory, the program will display a train that slowly drives across the
screen in ASCII art, and prevent the user from terminating it until the train has driven off the screen
(unless configured otherwise). The program can display different types of trains; for the sake of
this exercise, we will assume that the user has patched SL to support displaying the Dutch National
Railways’ (NS) ICM train.

12

Imagine a world in which sl is not yet in Nixpkgs (pkgs). The user wants to
install SL, but does not want to go through the process of submitting a package.
Instead, they simply write their own derivation and import it, adding it to the list
of system packages. So far, so good. However, one day, a new Nixpkgs release is
made—and this release does include the SL package! What happens now? As we
know from before: the code retains its original meaning. Indeed, imagine if it were
not to: the sole removal or addition of a package in Nixpkgs could result in Nix
programs showing unexpected behavior. That would be highly undesirable.

With this example, we can now clearly understand what the with construct: it
brings variables into scope which would have otherwise been free. Its bindings are
therefore weaker than bindings generated by let constructs, function parameters
and recursive attribute sets.

Still, there is one catch: lower inclusions generate bindings stronger than
higher-up inclusions. So with { x = 1; }; with { x = 2; }; x gives 2. As we
describe in section 5.1.1, this is where the official Nix interpreter does not agree
with the semantics described by Dolstra [11].

2.4 Functors

So far, we have covered the most important basic constructs in the language. Still,
there is one interesting constructs that has been left uncovered.

let divide = a: b: assert a >= 0 && b > 0;

if a < b then 0 else divide (a - b) b + 1;

divider = {

__functor = self: x: self // {

value = divide self.value x;

};

};

mkDivider = value: divider // { inherit value; };

in (mkDivider 100 5 4).value

Listing 5: Functors: repeated natural number division.

Attribute sets become callable when they have a special attribute, namely
__functor. Such attribute sets are called functors. The value of the __functor

attribute must be a function that (1) takes the value of the attribute set itself
(usually aptly named self) and (2) returns another function. These requirements
are quite lax, and indeed show no practical resemblance to functors in classical
terms, as used in other functional programming languages.

As an example, take the program in listing 5. Here, we can see that divider
is bound to an attribute set which contains this __functor attribute. Whenever
divider (the attribute set) is called with 𝑥 , it updates its own attribute value to be
the current value divided by 𝑥 . Recall that the 〈//〉 operator signifies the right-
biased merge of two attribute sets. We would break repeated application of the

13

functor without the merge with self, because we otherwise discard the __functor
attribute.

We do see that the attribute set bound to divider does not define a value

attribute. Without this, invocation will fail as self.value is used in the __functor
definition. The mkDivider function addresses this by taking a value and initializing
the divider with it.

The expression 〈(mkDivider 100 5 4).value〉 denotes the following: “Take
the number 100, divide it by 5 and then by 4, then return the result.” Accordingly,
this program will indeed return 5.

In the custom division function divide (used here instead of the division
operator 〈/〉 for illustratory purposes), we can see an assertion. The assert construct
has the following syntax: 〈assert condition; result〉. When evaluating an assert
statement, the condition is checked first. If the condition does not evaluate to
a Boolean or if it evaluates to false, the program fails. Otherwise, the result is
returned.

Setting up recursion using functors. Using the functor mechanism, we have
a way to set up recursion without using any recursive bindings (i.e., without any
recursive attribute sets and let statements) or the fixed point combinator Y. We
give an example in listing 6, in which the Fibonacci function is defined. The result
of the listed program is 610, the same as the 15th Fibonacci number.

{ __functor = self: f: f (self f); }

(go: n: if n <= 1 then n else go (n - 1) + go (n - 2))

15

Listing 6: Functors: the Fibonacci function without recursive bindings.

2.5 Miscellaneous peculiarities

null, true and false are not keywords. Instead, they are constants which are
in scope by default. (More precisely, they are nullary primitive operations [11, Sec.
4.3.4, p. 81].) They can be shadowed in recursive attribute sets and let bindings.
For example,

let true = 42; in true == 42

gives the Boolean value true. The inclusion construct cannot shadow these be-
cause the bindings for builtins are equally strong as bindings generated by the let
construct and function parameters. I.e.,

with { true = 42; }; in true == 42

gives the Boolean value false.

14

Functions are not comparable. Comparing two functions will always return
false, except when comparing two attribute sets / lists in which there is a reference
to exactly the same function definition. In this case, the comparison of these
functions will be true. So for example,

let id = x: x; in id == id

and
[(x: x)] == [(x: x)]

both give false, but
let id = x: x; in [id] == [id]

gives true. In the official Nix interpreter, this depends on pointer equality. That
makes hard to implement. The Tvix project has put in effort to document this
behavior [3, tvix/docs/src/value-pointer-equality.md].

Mininix, which we describe in the following section, does not share all this
behavior. Instead, it always gives false when two functions are checked for equality.
We discuss future work in section 6.1.

Overrides. Attributes of a recursive attribute set can be updated with a magic
__overrides attribute. For example,

rec { __overrides = { x = 1; }; x = 2; y = x; }

gives { x = 1; y = 1; }when strictly evaluated. Recursive attribute sets in which
__overrides does not reduce to a non-recursive attribute set cause the program to
fail, i.e., the following program will cause an error:
rec { __overrides = 1; }

This feature is hardly documented and we only discovered its existence by reading
the language tests for the Nix interpreter [14, tests/functional/lang]. Mininix
lacks support for this feature.

Let-body. We have seen the let-in construct before, but it also exists in a different
form:

let { double = x: if x == 0 then 0 else body (x - 1) + 2; body = double; } 10

gives 20. The body attribute determines the output of the let-body construct. The
code shown above can simply also be rewritten to the following:

rec { double = x: if x == 0 then 0 else body (x - 1) + 2; body = double; }.body 10

This is also the syntax Dolstra uses in his PhD dissertation [11]. This way of
writing let bindings is not very common anymore, but is still supported. To keep
things simple, we do not support this syntax in Mininix. However, conversion
is trivial and can be done statically, as the argument provided to let may be
no other expression than an attribute set: let { #»

𝑏𝑟 } can simply be rewritten to
rec { #»

𝑏𝑟 }.body.

15

Chapter 3

Ex Nixo Mininix fit:

Defining a simplified version of
the Nix language

In this chapter, we describeMininix, a slightly simplified version of the modern
Nix language. We provide detailed descriptions of the semantics of all supported
features, in order to leave no room for different interpretations of how the language
should function. Section 3.1 discusses the grammar of Mininix. We very quickly
cover the prelude in section 3.2. Section 3.3 covers the semantics of Mininix,
including substitution.

Mininix should be seen as a ‘core language’ for Nix. In that sense,Mininix is
not intended as a language for programmers to work with; instead, it should be
viewed as a language that Nix programs can be converted to, provided that the
programs do not use any features thatMininix does not support. In section 5.1, we
extensively discuss the differences between our semantics and the work of Dolstra
et al. in describing the semantics of the Nix language.

3.1 Grammar

In fig. 3.1, we can see the grammar forMininix. Most of its grammar is very similar
to that of Nix, and particularly similar to the grammar by Dolstra and Löh [13, Fig.
5], which it was largely based on.

As we can see, values are defined as a subset of expressions. Values are
expressions that are in normal form. We can also see that there are a few constructs
that do not appear in Nix programs, but that we do have in Mininix: force 𝑒 ,
closed(𝑒), and placeholder𝑥 (𝑒).

While force 𝑒 may be necessary when translating Nix programs to Mininix,
closed(𝑒) and placeholder𝑥 (𝑒) are purely run-time constructs that should not be
need to be used when translating Nix programs toMininix or when writingMininix

16

Identifier 𝑥,𝑦

String 𝑠

Integer 𝑛 ∈ Z
Binding 𝑏 ::= 𝑥 ≔ 𝑒

Recursive binding 𝑏𝑟 ::= 𝑏 | 𝑥 ≔𝑟 𝑒

Binary operator ⊚ ::=
Comparison | = | <
Arithmetic | + | − | /
Update | //

Argument matcher 𝑚 ::=
Mandatory | 𝑥,𝑚
Default | 𝑥 ? 𝑒,𝑚
Any | . . .
Empty | 𝜀

Value 𝑢, 𝑣 ∈ Value ::=
Literal | true | false

| null | 𝑛 | 𝑠
Function | 𝑥 : 𝑒 | {𝑚 } : 𝑒
Attribute set | {𝑏∗ }

Expressions 𝑑, 𝑒 ∈ Expr ::=
Value | 𝑣
Identifier | 𝑥
Attribute set | rec {𝑏∗𝑟 }
Let binding | let 𝑏∗𝑟 in 𝑒

Must select | 𝑒.𝑥+
Try to select | 𝑒.𝑥+ or 𝑒
Application | 𝑒 𝑒
Conditional | if 𝑒 then 𝑒 else 𝑒
Inclusion | with 𝑒; 𝑒
Assertion | assert 𝑒; 𝑒
Operator | 𝑒 ⊚ 𝑒

Has attribute | 𝑒 ? 𝑥
Strictly evaluate | force 𝑒
Closedrt | closed(𝑒)
Placeholderrt | placeholder𝑥 (𝑒)
rt: purely a run-time construct.

Figure 3.1: Syntax for Mininix.

𝑥 @ {𝑚 } : 𝑒 ≜ 𝑥 : ({𝑚 } : 𝑒) 𝑥 if 𝑥 ∉ dom(𝑚)
{𝑚 } @ 𝑥 : 𝑒 ≜ 𝑥 : ({𝑚 } : 𝑒) 𝑥 if 𝑥 ∉ dom(𝑚)

inherit 𝑥1 . . . 𝑥𝑛 ≜ 𝑥1 ≔ 𝑥1; . . . ; 𝑥𝑛 ≔ 𝑥𝑛

inherit (𝑒) 𝑥1 . . . 𝑥𝑛 ≜ 𝑥1 ≔ 𝑒.𝑥1; . . . ; 𝑥𝑛 ≔ 𝑒.𝑥𝑛

inherit𝑟 (𝑒) 𝑥1 . . . 𝑥𝑛 ≜ 𝑥1 ≔𝑟 𝑒.𝑥1; . . . ; 𝑥𝑛 ≔𝑟 𝑒.𝑥𝑛

castbool(𝑒) ≜ if 𝑒 then true else false
𝑒1 ≠ 𝑒2 ≜ if 𝑒1 = 𝑒2 then false else true
𝑒1 ∥ 𝑒2 ≜ if 𝑒1 then true else castbool(𝑒2)

𝑒1 && 𝑒2 ≜ if 𝑒1 then castbool(𝑒2) else false
𝑒1 ⇒ 𝑒2 ≜ if 𝑒1 then castbool(𝑒2) else true

!𝑒 ≜ if 𝑒 then false else true

Figure 3.2: Macros.

17

programs in general. See section 3.3.1 for more details on force. We explain the
use of closed(𝑒) and placeholder𝑥 (𝑒) in more depth in section 3.3.4.

Notation. We use:

𝑏∗ to indicate a semicolon-separated list of non-recursive bindings that may be
empty and where no variable on the left-hand side of any binding is used
more than once;

𝑏∗𝑟 for the same purpose, but now also including potentially recursive bindings;

𝑥+ to indicate a period-separated list of identifiers that may not be empty.

dom(𝑚) as the keys which the matcher𝑚 (optionally) matches against.

Macros. In fig. 3.2, we can see macros forMininix. These define the expansion
of syntactic sugar for Mininix. We choose to define more syntactic sugar than
Dolstra [11] because this reduces the amount of constructs in the language. A
smaller grammar primarily makes it easier to prove properties about the language.
Besides, most syntactic sugar can trivially be verified to be correct, albeit manually.

We will now explain a select few macros that could benefit from clarification.

• 〈𝑥 @ {𝑚 } : 𝑒〉 denotes a function that takes an attribute set. The passed
attribute set is matched with 𝑚. All explicitly matched members of the
passed attribute set are brought into scope. The entire passed attribute set is
also bound to 𝑥 . See section 2.2 for a more detailed, practical example.

In Nix, the name 𝑥 may not be shared with a variable matched against in
𝑚. This causes an error. We encode this restriction as a condition for this
macro.

We may instead write 〈𝑥 @ {𝑚 } : 𝑒〉 as follows: 〈𝑥 : ({𝑚 } : 𝑒) 𝑥〉. Now,
we have a function that takes a parameter 𝑥 , the attribute set. This ensures
that the entire attribute set is bound to 𝑥 . Then, we invoke another function,
〈{𝑚 } : 𝑒〉, with this attribute set. This function now perform pattern-
matching on its argument, and ensures that all explicitly matched members
are bound in 𝑒 . This way, both all explicitly matched members are brought
into scope for 𝑒 , and the entire attribute set is also bound to 𝑥 in 𝑒 . So
〈𝑥 @ {𝑚 } : 𝑒〉 has the same behavior as 〈𝑥 : ({𝑚 } : 𝑒) 𝑥〉.

• 〈{𝑚 } @ 𝑥 : 𝑒〉 has the same meaning as 〈𝑥 @ {𝑚 } : 𝑒〉.

• 〈inherit 𝑥1 . . . 𝑥𝑛〉 is only used in the context of bindings. That is, it can
only be used inside a let-in construct or an attribute set. The Nix language
provides it to allow users to insert a non-recursive binding in a recursive
attribute set. See section 2.3 for rationale.

18

Mininix does not strictly require inherit, because bindings inside attribute
sets are explicitly annotated with their recursiveness. However, for clarity,
we still keep inherit as a macro, which simply reduces to a non-recursive
binding (or multiple bindings). So writing { inherit 𝑥 𝑦 } is the same as
writing { 𝑥 ≔ 𝑥 ;𝑦 ≔ 𝑦 }.

• inherit (𝑒) 𝑥1 . . . 𝑥𝑛 is like inherit as described above. Only here, all variable
names listed must be members of the attribute set that 𝑒 reduces to. This
matches the behavior of inherit in Nix in the context of a non-recursive
attribute set. See section 2.3 for more details.

• inherit𝑟 (𝑒) 𝑥1 . . . 𝑥𝑛 is like the case described above, but instead of inserting
non-recursive bindings, it inserts recursive bindings. This matches the
behavior of inherit in Nix in the context of a recursive attribute set. Again,
we refer to section 2.3 for more details.

3.2 The prelude

As shown in fig. 3.1, true, false and null are all values. However, these should be
considered language-internal. That is, users should not be able to directly access
them. In the Nix language, it is also not possible to directly access the language-
internal representation of true. Users of the Nix language can make use of true,
false and null, which are predefined primitive operations (builtins) that give the
language-internal value.

In Nix, there are two classes of builtins. Those that are immediately avail-
able (e.g.: true, false, null), and those that are only available in builtins (e.g.:
currentTime, getEnv) [15]. All builtins in the former class are also available in the
latter, but not vice-versa. So one can use true and builtins.true interchangeably,
but writing getEnv will not work while writing builtins.getEnv will. Although
the builtins that we define are all in the first class, we still explicitly illustrate these
two classes in our prelude definition.

For Mininix, we only define the builtins ‘true’, ‘false’ and ‘null’. To make these
available in programs, we define the prelude. Its definition can be seen in fig. 3.3.
For some program 𝑒 , the prelude can be used by substitution with the prelude:
𝑒 [closeds(prelude)]. Or equivalently, by a let binding: 〈let prelude in 𝑒〉. Note
that this means that these constants can be shadowed by user-defined bindings.
For example, the program 〈let true ≔𝑟 42 in true = 42〉 returns true. This is also
possible in the Nix language.

3.3 Semantics

There are a good number of components to the semantics of Mininix. In fig. 3.5,
we can see the reduction rules forMininix. Note that this figure consists of two
parts. In fig. 3.7, we can see the evaluation contexts [16] used in the reduction

19

prelude ≡ true ≔ true; false ≔ false; null ≔ null;
builtins ≔ { true ≔ true; false ≔ false; null ≔ null }

Figure 3.3: Prelude.

relation. Figure 3.8 shows the−⊚→ relation, which defines how binary operations
should be evaluated. Finally, fig. 3.9 shows the{ relation, which is used to match
attribute sets to the patterns of functions that pattern-match on their attribute set
argument ({𝑚 } : 𝑒).

In fig. 3.10, we can see the substitution function 𝑒 [#»

𝑏]. We will first discuss
strict evaluation in section 3.3.1. In section 3.3.2, we cover the reduction rules.
Finally, we discuss the substitution function in section 3.3.4.

3.3.1 Strict evaluation

Normally, Mininix programs reduce no further than values. fig. 3.1 describes
what a value is. Non-recursive attribute sets are among the values. This means
that non-recursive attribute sets cannot be reduced. However, this is not always
desirable.

In the Nix language, equality checks are deep. In practical terms, this means
that attribute sets are compared recursively. However, attribute sets in Mininix
are values. I.e., they are normal forms. This is problematic if we want to translate
Nix programs toMininix. To overcome this problem, we also need the values of
the attributes to be reduced, so we can properly compare them.

To facilitate this and possibly other use cases, we have introduced the force
construct into the language. Writing force 𝑒 will return 𝑣𝑠 , the strong value
resulting from the strict evaluation of 𝑒 . The definition of strong values can be
seen in fig. 3.4. Strong values are not defined as a separate syntactic category;
instead, these values are a strict subset of values in which attribute values must
also be strong values.

Now, if we would have some expression 〈 x = 𝑒1; = x = 𝑒2; 〉 in the Nix
language, then we should write this as 〈force { x ≔ 𝑒1 } = force { x ≔ 𝑒2 }〉 in
Mininix to ensure that the deep comparison gives a meaningful result.

3.3.2 The reduction rules

We define two reduction relations. The base reduction relation→base contains valid
reductions under (strict) contexts. The reduction relation→ only contains one
rule: ctx. This rule expresses that for any context valid 𝐸, 𝐸 [𝑒] can be rewritten
to 𝐸 [𝑒′] if 𝑒 can be reduced to 𝑒′ per the base reduction relation.

20

Binding 𝑏𝑠 ::= 𝑥 ≔𝑠 𝑣𝑠
Strong value 𝑢𝑠 , 𝑣𝑠 ::=

Literal | true | false | null | 𝑛 | 𝑠
Function | 𝑥 : 𝑒 | {𝑚 } : 𝑒
Attribute set | {𝑏∗𝑠 }

Figure 3.4: Strong values.

On notation:

• Reductions on terms are described by the step relation→. The reflexive
transitive closure of → is denoted as ∗→. The 𝑛-step reduction with the
relation→ is denoted as 𝑛→. The same conventions also apply for other
reduction relations.

• Where in the grammar we write a list of semicolon-separated bindings (with
no duplicate keys) as 𝑏∗ or 𝑏∗𝑟 , we write this as

#»

𝑏 or
#»

𝑏𝑟 in the semantics. We
use 𝑥 ≔ 𝑒 ∈ #»

𝑏 (or
#»

𝑏𝑟) and 𝑥 ≔𝑟 𝑒 ∈
#»

𝑏𝑟 to write that respectively 𝑥 ≔ 𝑒 and
𝑥 ≔𝑟 𝑒 are in the list of bindings. We also write dom(#»

𝑏) (or #»

𝑏𝑟) for the set
of keys that the list of bindings

#»

𝑏 (or
#»

𝑏𝑟) comprises. We denote an empty
list as 𝜀.

• Where in the grammar we write a non-empty period-separated list of identi-
fiers as 𝑥+ or 𝑦+, we write this as #»𝑥 or #»𝑦 in the semantics. In the semantics,
these lists may also not be empty.

• For matchers𝑚, we use 𝑥 ? 𝑒 ∈ 𝑚 to write that the matcher𝑚 optionally
matches the key 𝑥 with 𝑒 as the default (fallback) value. We also use 𝑥 ∈𝑚
to write that the matcher𝑚 matches the key 𝑥 mandatorily, i.e., 𝑥 must be
in the attribute set which is matched against. As for lists of bindings, we use
𝜀 to write that an empty matcher that is strict (i.e., does not end with ⟨. . . ⟩).

• We use
#»

𝑏 ∼𝑚 { #»

𝑏′𝑟 to write that the matcher𝑚 matches bindings
#»

𝑏 of the
attribute set { #»

𝑏 }, giving the list of bindings #»

𝑏′𝑟 that should be used in order
to access the fields matched again directly, and to use the default values for
fields which were not present in the provided attribute set { #»

𝑏 }.

Reduction under a context. As mentioned before, the rule ctx allows for
reduction using→base under a weak context 𝐸. We have two types of evaluation
contexts, as shown in fig. 3.7. Weak evaluation contexts 𝐸 are for reductions that
are not under force. Strict evaluation contexts 𝐸𝑠 include all weak evaluation
contexts 𝐸, but also allow for reduction under attribute set values. Note that a
weak evaluation context can still very well end up using a strict evaluation context
internally. For example, take the context 𝐸 ≡ ⟨force { 𝑥 ≔ [·]; 𝜀 } = 𝑒2⟩.

21

ctx
𝑒 →base 𝑒

′

𝐸 [𝑒] → 𝐸 [𝑒′]

closed
closed(𝑒) →base 𝑒

placeholder
placeholder𝑥 (𝑒) →base 𝑒

force
force 𝑣𝑠 →base 𝑣𝑠

select
𝑥 ≔ 𝑒 ∈ #»

𝑏

{ #»

𝑏 }.𝑥 →base 𝑒

mselect
{ #»

𝑏 }.𝑥 .#»𝑦 →base ({
#»

𝑏 }.𝑥) .#»𝑦

select-or
{ #»

𝑏 }.𝑥 or 𝑒 →base if {
#»

𝑏 } ? 𝑥 then { #»

𝑏 }.𝑥 else 𝑒

mselect-or
{ #»

𝑏 }.𝑥 .#»𝑦 or 𝑒 →base if {
#»

𝑏 } ? 𝑥 then ({ #»

𝑏 }.𝑥).#»𝑦 or 𝑒 else 𝑒

rec
rec { #»

𝑏𝑟 } →base { recsubst(
#»

𝑏𝑟) }
let
let

#»

𝑏𝑟 in 𝑒 →base 𝑒 [closeds(recsubst(
#»

𝑏𝑟))]

with
with { #»

𝑏 }; 𝑒 →base 𝑒 [placeholders(
#»

𝑏)]

with-no-attrset
¬attrset 𝑣1

with 𝑣1; 𝑒2 →base 𝑒2

apply-simple
(𝑥 : 𝑒1) 𝑒2 →base 𝑒1 [𝑥 ≔ closed(𝑒2)]

apply-attrset
#»

𝑏 ∼𝑚 {
#»

𝑏′𝑟

({𝑚 } : 𝑒) { #»

𝑏 } →base let
#»

𝑏′𝑟 in 𝑒

apply-functor
__functor ≔ 𝑒2 ∈

#»

𝑏

{ #»

𝑏 } 𝑒1 →base 𝑒2 {
#»

𝑏 } 𝑒1

if-true
if true then 𝑒2 else 𝑒3 →base 𝑒3

if-false
if false then 𝑒2 else 𝑒3 →base 𝑒2

assert
assert true; 𝑒2 →base 𝑒2

op
𝑢1 J⊚K 𝑢2−⊚→ 𝑣

𝑢1 ⊚ 𝑢2 →base 𝑣

op-has-attr-true
𝑥 ∈ dom(#»

𝑏)
{ #»

𝑏 } ? 𝑥 →base true

op-has-attr-false
𝑥 ∉ dom(#»

𝑏)
{ #»

𝑏 } ? 𝑥 →base false

op-has-attr-no-attrset
¬attrset 𝑣

𝑣 ? 𝑥 →base false

Figure 3.5: Reduction rules.

22

Auxiliary predicates:

attrset
attrset { #»

𝑏 }

Auxiliary functions:

recs(#»

𝑏𝑟) = { 𝑥 ≔𝑟 𝑒 | 𝑥 ≔𝑟 𝑒 ∈
#»

𝑏𝑟 }
nonrecs(#»

𝑏𝑟) = { 𝑥 ≔ 𝑒 | 𝑥 ≔ 𝑒 ∈ #»

𝑏𝑟 }
indirect(#»

𝑏𝑟) = { 𝑥 ≔ rec { #»

𝑏𝑟 }.𝑥 | 𝑥 ∈ dom(
#»

𝑏𝑟) }
closeds(#»

𝑏) = { 𝑥 ≔ closed(𝑒) | 𝑥 ≔ 𝑒 ∈ #»

𝑏 }
placeholders(#»

𝑏) = { 𝑥 ≔ placeholder𝑥 (𝑒) | 𝑥 ≔ 𝑒 ∈ #»

𝑏 }
recsubst(#»

𝑏𝑟) = recs(#»

𝑏𝑟) [closeds(indirect(
#»

𝑏𝑟))]; nonrecs(
#»

𝑏𝑟)

Figure 3.6: Reduction rules: auxiliaries.

𝐸 ::= [·] hole
| 𝐸.#»𝑥 selection: lhs
| 𝐸.#»𝑥 or 𝑒2 selection with default: lhs
| with 𝐸; 𝑒2 inclusion: lhs
| 𝐸 𝑒2 application: lhs
| 𝑣1 𝐸 application with lhs value: rhs
| ({𝑚 } : 𝑒1) 𝐸 pattern-matching fn: argument
| if 𝐸 then 𝑒2 else 𝑒3 if: condition
| assert 𝐸; 𝑒2 assert: condition
| 𝐸 ⊚ 𝑒2 binop: lhs
| 𝑣1 ⊚ 𝐸 binop with lhs value: rhs
| 𝐸 ? 𝑥 has attribute: lhs
| force 𝐸𝑠 force: argument

𝐸𝑠 ::= 𝐸 weak
| { 𝑥 ≔ 𝐸𝑠 ;

#»

𝑏 } attribute value

Figure 3.7: Evaluation contexts.

23

The different contexts that can be created primarily facilitate normal order
reduction, i.e., a reduction order in which the leftmost outermost redex is reduced
first [22, Sec. 2.3.1]. For example, take the two evaluation context rules for
application: 𝐸 𝑒2 and 𝑣1 𝐸. The left-hand side of the application must first be a
value (normal form) before the right-hand side may be rewritten (via ctx).

Such a constraint, however, does not exist for attribute sets under strict evalu-
ation. Here, we can select any attribute 𝑥 for reduction at random. Nevertheless,
we do not risk being able to create infinite derivation trees where this would not
be possible with deterministic semantics: all values can only be reduced to normal
form and no further; if some attribute value does generate an infinite derivation
tree, then this would also have happened under a deterministic semantics.

We would also like to note that no evaluation context ever introduces any
bindings for the expression in the hole, as the constructs used simply do not
introduce bindings in the places where other contexts can be inserted. (For example,
the with construct only provides new bindings for its second argument, but we
can only insert contexts in the first argument.)

Placeholders and terms marked as closed. When we want to reduce some
term 𝐸 [closed(𝑒)] or 𝐸 [placeholder𝑥 (𝑒)], we know that there are no constructs
used in 𝐸 that could introduce any new bindings for 𝑒 (see fig. 3.7). That means that
there will be no substitutions performed on closed(𝑒) and placeholder𝑥 (𝑒). For that
reason, we can simply strip these ‘wrappers’: both closed(𝑒) and placeholder𝑥 (𝑒)
can simply be reduced to 𝑒 . This is exactly what the closed and placeholder
rules do.

Force. For the results of strict evaluation to be usable, we must be able to escape
force. For this, we have the force rule. When the argument of force has been
reduced to a strong value (as described in fig. 3.4), no further reductions under
(strict) contexts will be possible anymore, so force returns its argument verbatim.

Selections. As can be seen in fig. 3.5, there are six different rules. The reason
for this is that there are different types of selections, which require different rules:

• Selectionswhich have no default value, i.e., whichmay fail: 𝑒. #»𝑥 . The relevant
rules are mselect and select.

With the appropriate context, the ctx rule handles reductions on the left-
hand side of the selections. We can only select values for attribute sets,
so the expression on the left-hand side of the selection must first be fully
reduced to an attribute set before we can proceed. Furthermore, we need the
attribute that we will select to not have any referenced to other attributes
in the same attribute set, so we require the attribute set to be a value and
therefore non-recursive.

24

The mselect rule handles selection paths which contain more than one
element. It turns a selection { #»

𝑏 }.𝑥 . #»𝑦 into a selection ({ #»

𝑏 }.𝑥). #»𝑦 . The
first part of this selection, itself a selection, can then be reduced using, e.g.,
the select rule.

The select rule handles selection paths consisting of only a single part. In
this rule, we require that the attribute which is being selected is part of the
list of bindings

#»

𝑏 of the attribute set { #»

𝑏 }.

• Selections which have a default value, i.e., which will always succeed:
𝑒1.

#»𝑥 or 𝑒2. The relevant rules are select-or and mselect-or.

To reduce the amount of rules, we have made the select-or and mselect-or
rules reduce the term to if statements. These handle failing selections by
using the default value as a fallback value. The default value is passed along
when parts of the selection have succeeded (but not the full selection has
been completed yet).

Recursive attribute sets and let. The rec and let rules are very simple. Both
make use of the recsubst function, which translates a set of bindings potentially
containing recursive bindings into a set of non-recursive bindings. Non-recursive
bindings are left untouched, while all bindings within the set substituted for in the
recursive bindings by means of indirection (see the indirect function).

In the rec rule, we make use of the auxiliary construct closed(𝑒). For more
information on why this is necessary, we refer to the section 3.3.4.

Inclusion. Inclusion, as performed by the with rule, is conceptually very simple.
All bindings in the provided attribute set { #»

𝑏 } are made available in the subterm
𝑒 . However, we do make use of the auxiliary construct placeholder𝑥 (𝑒) here via
placeholders(#»

𝑏). We explain why this is necessary in section 3.3.4.
In the case that the left-hand side of the with statement ends up reducing to a

value that is not an attribute set, we apply the with-no-attrset rule instead.

Application. We have three rules for application.

apply-simple is for simple lambda abstractions. Other than marking the argument
as closed before substitutions, it performs trivial 𝛽-reduction.

apply-attrset Besides simple lambda abstractions, Mininix has functions which
can pattern-match against their argument. There is one condition: the
argument must be an attribute set. Based on the matching relation

#»

𝑏 ∼
𝑚 {

#»

𝑏′𝑟 , the bindings in the result of the match
#»

𝑏′𝑟 are brought into scope
for the function body. See section 3.3.3 for a more detailed explanation of
the matching relation.

25

apply-functor is a rule covering a newer feature. See section 2.4 for a discussion
of functors and how they work. This rule is quite simple: whenever there is
a juxtaposition with an attribute set on the left-hand side and any expression
on the right-hand side, we check if the ‘__functor’ attribute is in the attribute
set on the left-hand side. If yes, the juxtaposition reduces to a double function
application:

• first, the value of the ‘__functor’ attribute (which should be a function
or an attribute set containing the ‘__functor’ attribute) applied with
the attribute set on the left-hand side of the juxtaposition;

• the result of the previous application applied with the expression on
the right-hand side of the juxtaposition.

Conditionals and assertions. Assertions (assert) and conditionals (if-true,
if-false) are very simple. For assertions, reduction becomes stuck when the
condition does not reduce to true. For if statements, reduction also becomes stuck
when the condition does not reduce to a Boolean value.

Binary operations. For binary operations, the left-hand side and right-hand
side are reduced under the ctx rule. When both sides are reduced to values, the
op rule can be applied. The actual application of the operation is done by the
reduction relation for binary operations. This relation can be seen in fig. 3.8. It
is trivial that this relation is deterministic: 𝑢1 J⊚K 𝑢2−⊚→ 𝑣1 and 𝑢1 J⊚K 𝑢2−⊚→ 𝑣2
implies that 𝑣1 = 𝑣2.

Most rules here should be relatively straightforward, but there are a few where
it is good to explicitly indicate what we mean.

binop-add-str. We use the binary operator ++ to denote string concatenation.

binop-lt-str. With 𝑠1 <lex 𝑠2, we mean that 𝑠1 is lexicographically smaller than
𝑠2. Specificially, we mean the following. If 𝑠1 is shorter than 𝑠2, then 𝑠1 is
also smaller than 𝑠2. If 𝑠1 is longer than 𝑠2, then 𝑠1 is not smaller than 𝑠2. If 𝑠1
and 𝑠2 are equally long, we perform a character-by-character (lexicographic)
comparison. This is done on the basis of the respective ASCII codes.

binop-eq. The definition of expreq should be applied from top-to-bottom; the last
case expreq(𝑒1, 𝑒2) = false should only be used when none of the other cases
can be used.

binop-upd-attrset. The union of the two sets of bindings, written
#»

𝑏2 ∪
#»

𝑏1, is
left-biased. So if we have 𝑘 ≔ 𝑑 ∈ #»

𝑏1 and 𝑘 ≔ 𝑒 ∈ #»

𝑏2, then we will have
𝑘 ≔ 𝑒 ∈ #»

𝑏2 ∪
#»

𝑏1.

26

binop-add-int
𝑛1 J+K 𝑛2−⊚→ 𝑛1 + 𝑛2

binop-add-str
𝑠1 J+K 𝑠2−⊚→ 𝑠1 ++ 𝑠2

binop-min-int
𝑛1 J−K 𝑛2−⊚→ 𝑛1 + 𝑛2

binop-div-int
𝑛2 ≠ 0

𝑛1 J/K 𝑛2−⊚→ 𝑛1 + 𝑛2

binop-lt-int
𝑛1 J<K 𝑛2−⊚→ 𝑛1 < 𝑛2

binop-lt-str
𝑠1 J<K 𝑠2−⊚→ 𝑠1 <lex 𝑠2

binop-eq
𝑣1 J=K 𝑣2−⊚→ expreq(𝑣1, 𝑣2)

binop-upd-attrset
{ #»

𝑏1 } J//K {
#»

𝑏2 }−⊚→
#»

𝑏2 ∪
#»

𝑏1

Auxiliary functions:

expreq(null, null) = true
expreq(true, true) = true
expreq(false, false) = true

expreq(𝑛1, 𝑛2) = true if 𝑛1 = 𝑛2

expreq(𝑠1, 𝑠2) = true if 𝑠1 = 𝑠2

expreq({ #»

𝑏1 }, {
#»

𝑏2 }) = true if dom(#»

𝑏1) = dom(#»

𝑏2) and ∀𝑘 ∈ dom(
#»

𝑏1) .
expreq(#»

𝑏1(𝑘),
#»

𝑏2(𝑘)) = true
expreq(𝑒1, 𝑒2) = false

Figure 3.8: Binary operation reduction.

27

match-empty
𝜀 ∼ 𝜀 { 𝜀

match-any
#»

𝑏 ∼ . . . { 𝜀

match-mandatory
𝑥 ∉ dom(#»

𝑏) 𝑥 ∉ dom(𝑚) #»

𝑏 ∼𝑚 {
#»

𝑏′𝑟

𝑥 ≔ 𝑒;
#»

𝑏 ∼ 𝑥, 𝑚 { 𝑥 ≔ 𝑒;
#»

𝑏′𝑟

match-opt-avail
𝑥 ∉ dom(#»

𝑏) 𝑥 ∉ dom(𝑚) #»

𝑏 ∼𝑚 {
#»

𝑏′𝑟

𝑥 ≔ 𝑑 ;
#»

𝑏 ∼ 𝑥 ? 𝑒,𝑚 { 𝑥 ≔ 𝑑 ;
#»

𝑏′𝑟

match-opt-default
𝑥 ∉ dom(#»

𝑏) 𝑥 ∉ dom(𝑚) #»

𝑏 ∼𝑚 {
#»

𝑏′𝑟
#»

𝑏 ∼ 𝑥 ? 𝑒,𝑚 { 𝑥 ≔𝑟 𝑒;
#»

𝑏′𝑟

Figure 3.9: Matching rules.

Attribute set membership. The attribute membership check operator 〈?〉 is
not among the normal operators because its right-hand side may not be reduced:
it must be an identifier. As such, we also have separate top-level rules for this
operator: op-has-attr-true, op-has-attr-false and op-has-attr-no-attrset.
The first two of these rules are trivial. The last rule, op-has-attr-no-attrset,
is also there, as it is not an error to check for the existence of an attribute in a
value that is not an attribute set; checking if the integer zero has the attribute “foo”
should simply give false.

3.3.3 Pattern matching

We already discussed pattern-matching functions in section 2.2. Now, we will
discuss the relation that turns these patterns and a passed attribute set into a list
of bindings.

In fig. 3.9, the matching relation
#»

𝑏 ∼ 𝑚 {
#»

𝑏′𝑟 is shown. We say that the
bindings

#»

𝑏 of the passed attribute set are matched by the pattern𝑚, yielding the
list of potentially recursive bindings

#»

𝑏′𝑟 . Substituting for these bindings will make
the matched attributes (or their default values) available.

Variables matched against with a default value are handled by the match-opt-
avail and match-opt-default rules. The former can be used when the variable
matched against is in the bindings of the passed attribute set; the latter is used
when this variable is missing, and instead adds a binding with the default value to
the list of resulting bindings.

The match-mandatory rule handles attributes mandatorily matched against.

28

If that attribute is indeed member of the passed attribute set, then its binding is
copied to the list of resulting bindings.

The match-empty rule handles an empty strict matcher and empty passed
attribute set, naturally yielding an empty list of bindings.

We also support patterns which are not strict (i.e., that end with 〈...〉). The
match-any rule matches an empty matcher with an arbitrary list of bindings

#»

𝑏

from the passed attribute set, yielding an empty list of bindings.

3.3.4 Parallel substitution

The parallel substitution function is shown in fig. 3.10. Most cases are trivial, but
we still list them for the sake of completeness.

We can see that the substitution function prevents substitutions of variables
that are guaranteed to be bound in the bodies of let statements and functions.
However, it is not decidable what variables will be made available by the inclusion
(with) construct, so we simply substitute in the body of this construct as well. To
overcome the issues this causes, we make use of placeholders (in the with rule),
which we will explain now.

Placeholders. Mininix includes so-called placeholders, which the Nix language
does not have. A placeholder, denoted placeholder𝑥 (𝑒), can be seen as an identifier
𝑥 which has already been substituted for, but which can be substituted for again.
When not substituted for, a placeholder reduces to its associated expression 𝑒 .

Placeholders, as a run-time construct, are necessary when evaluating Mininix
programs. In particular, they are required for the correct evaluation of the inclusion
(with) construct. In section 2.3, we already discussed the way the semantics of this
construct had changed.

Let us take the example from section 2.3 once again to illustrate the use of
placeholders:

with { x ≔ 1 }; with { x ≔ 2 }; x

Now, let us rewrite this program until we arrive at a normal form. But instead of
using the with rule, we define a new rule, with-bad, which does not make use
placeholders.

with-bad
with { #»

𝑏 }; 𝑒 →base 𝑒 [
#»

𝑏]

When using this rule, we get the following reduction (leaving out contexts for

29

null[#»

𝑏] = null

true[#»

𝑏] = true

false[#»

𝑏] = false

𝑠 [#»

𝑏] = 𝑠

𝑛[#»

𝑏] = 𝑛

𝑥 [#»

𝑏] =
{
𝑒 if 𝑥 ≔ 𝑒 ∈ #»

𝑏 for some 𝑒
𝑥 otherwise

{
#»

𝑏′ }[#»

𝑏] =
{ {

𝑥 ≔ 𝑒 [#»

𝑏]
��� 𝑥 ≔ 𝑒 ∈

#»

𝑏′
}}

rec { #»

𝑏𝑟 }[
#»

𝑏] =

{
𝑥 ≔ 𝑒 [#»

𝑏]
��� 𝑥 ≔ 𝑒 ∈ #»

𝑏𝑟

}
∪{

𝑥 ≔𝑟 𝑒 [
#»

𝑏 \ dom(#»

𝑏𝑟)]
��� 𝑥 ≔𝑟 𝑒 ∈

#»

𝑏𝑟

}
(let #»

𝑏𝑟 in 𝑒) [#»

𝑏] = let
{
𝑥 ≔ 𝑑 [#»

𝑏]
��� 𝑥 ≔ 𝑑 ∈ #»

𝑏𝑟

}
∪{

𝑥 ≔𝑟 𝑑 [
#»

𝑏 \ dom(#»

𝑏𝑟)]
��� 𝑥 ≔𝑟 𝑑 ∈

#»

𝑏𝑟

}
in 𝑒

(𝑒. #»𝑥) [#»

𝑏] = 𝑒 [#»

𝑏] . #»𝑥

(𝑒1. #»𝑥 or 𝑒2) [
#»

𝑏] = 𝑒1 [
#»

𝑏] . #»𝑥 or 𝑒2 [
#»

𝑏]
(𝑥 : 𝑒) [#»

𝑏] = 𝑥 : 𝑒 [#»

𝑏 \ {𝑥}]

({𝑚} : 𝑒) [#»

𝑏] =

{ 𝑥 | 𝑥 ∈𝑚 } ∪{
𝑥 ? 𝑒 [#»

𝑏 \ dom(𝑚)]
��� 𝑥 ? 𝑒 ∈𝑚

}  :

𝑒 [#»

𝑏 \ dom(𝑚)]
(𝑒1 𝑒2) [

#»

𝑏] = 𝑒1 [
#»

𝑏] 𝑒2 [
#»

𝑏]
(if 𝑒1 then 𝑒2 else 𝑒3) [

#»

𝑏] = if 𝑒1 [
#»

𝑏] then 𝑒2 [
#»

𝑏] else 𝑒3 [
#»

𝑏]
(with 𝑒1; 𝑒2) [

#»

𝑏] = with 𝑒1 [
#»

𝑏]; 𝑒2 [
#»

𝑏]
(assert 𝑒1; 𝑒2) [

#»

𝑏] = assert 𝑒1 [
#»

𝑏]; 𝑒2 [
#»

𝑏]
(𝑒1 ⊚ 𝑒2) [

#»

𝑏] = 𝑒1 [
#»

𝑏] ⊚ 𝑒2 [
#»

𝑏]
(𝑒 ? 𝑥) [#»

𝑏] = 𝑒 [#»

𝑏] ? 𝑥

(force 𝑒) [#»

𝑏] = force 𝑒 [#»

𝑏]
closed(𝑒) [#»

𝑏] = closed(𝑒)

(placeholder𝑥 (𝑑)) [
#»

𝑏] =
{
𝑒 if 𝑥 ≔ 𝑒 ∈ #»

𝑏 for some 𝑒
placeholder𝑥 (𝑑) otherwise

Figure 3.10: Parallel substitution.

30

brevity):

with { x ≔ 1 }; with { x ≔ 2 }; x
→ with { x ≔ 2 }; x[x ≔ 1] by with-bad
→ x[x ≔ 1] [x ≔ 2] by with-bad

= 1[x ≔ 2] by definition of 𝑒 [#»

𝑏]
= 2 by definition of 𝑒 [#»

𝑏]

As explained in section 2.3, this is not the result that we want to see. Now instead,
let us use the actual Mininix rules.

with { x ≔ 1 }; with { x ≔ 2 }; x
→ with { x ≔ 2 }; x[x ≔ placeholder

x
(1)] by with

→ x[x ≔ placeholder
x
(1)] [x ≔ placeholder

x
(2)] by with

= placeholder
x
(1) [x ≔ placeholder

x
(2)] by definition of 𝑒 [#»

𝑏]
= placeholder

x
(2) by definition of 𝑒 [#»

𝑏]
→ 2 by placeholder

One might wonder why we cannot simply adjust the substitution function for
inclusions, simply not substituting for the variables which are in the attribute set
on the left-hand side, just like let-in statements. But this approach is not feasible:
unlike let-in statements, the left-hand side of inclusions is an expression. We can
not always statically determine if this expression will reduce to an attribute set,
let alone what attributes it will have.

Terms marked as closed. Take the followingMininix program:

(x : y : x) (with { y ≔ 2 }; y)

Now, let us rewrite this program until we arrive at a normal form. But instead of
using the apply-simple rule, we define a new rule, apply-simple-bad, which does
not make use of ‘terms marked as closed’. We also use the with-bad rule from
section 3.3.4.

apply-simple-bad
(𝑥 : 𝑒1) 𝑒2 →base 𝑒1 [𝑥 ≔ 𝑒2]

31

Then, we would have the following reduction:

(x : y : x) (with { y ≔ 2 }; y) 1
→ (y : x[x ≔ with { y ≔ 2 }; y]) 1 by apply-simple-bad

= (y : with { y ≔ 2 }; y) 1 by definition of 𝑒 [#»

𝑏]
→ with { y ≔ 2 }; y[y ≔ 1] by apply-simple-bad

= with { y ≔ 2 }; 1 by definition of 𝑒 [#»

𝑏]
→ 1[y ≔ 2] by with-bad

= 1 by definition of 𝑒 [#»

𝑏]

But this is not the desired result! The argument of a lambda should not be able to
capture any arguments bound by the lambda (in this case: y). Indeed, the official
Nix interpreter gives the result ‘2’ for this program.

We avoid capture by marking terms as closed. Simply put, when substituting
the argument for a function or substituting let bindings, we mark all substituted
terms as closed. Whenever another substitution is applied that reaches this term,
the substitution function will not recurse into this marked term. Instead, the term
will remain unchanged, and capture will not occur.

Let us look at the example from just then once again, now withMininix and
placeholders (leaving out the contexts for brevity):

(x : y : x) (with { y ≔ 2 }; y) 1
→ (y : x[closeds(x ≔ with { y ≔ 2 }; y)]) 1 by apply-simple
→ (y : x[x ≔ closed(with { y ≔ 2 }; y)]) 1 by definition of closeds

= (y : closed(with { y ≔ 2 }; y)) 1 by definition of 𝑒 [#»

𝑏]
→ closed(with { y ≔ 2 }; y) [y ≔ 1] by apply-simple

= closed(with { y ≔ 2 }; y) by definition of 𝑒 [#»

𝑏]
→ with { y ≔ 2 }; y by closed
→ y[y ≔ placeholder

y
(2)] by with

= placeholder
y
(2) by definition of 𝑒 [#»

𝑏]
→ 2 by placeholder

As we can see, this reduction does yield the right result.

Further considerations. Of course, both placeholders and terms marked as
closed are very ad-hoc ways of implementing capture avoidance, and more well-
known ways of doing this such as De Bruijn indices [9] might be more appropriate.
We discuss the tradeoffs in chapter 5.

32

Chapter 4

Building a verified interpreter
forMininix

In this chapter, we cover the process of building and verifying an interpreter for
Mininix. We do so using the proof assistant Coq [23].

In section 4.3, we discuss how the interpreter was written. As preparation for
verification of the interpreter, we discuss mechanization of the semantics described
from section 3.3 in section 4.2. We discuss the actual verification of the interpreter
in section 4.4, particularly touching on soundness and completeness in section 4.4.4
and section 4.4.5, respectively.

4.1 Mechanizing shared components

As the interpreter we give is very simple, it shares quite some functionality with
the semantic rules. For example, the substitution function is shared between the
two. The syntax for expressions and values and the way strong values are defined
are also shared. In this section, we do not discuss how we translate the substitution
function to Coq, because this is relatively trivial.

4.1.1 Representing expressions

We define expressions as an inductive type expr with different constructors for
every syntactic element. The definition of this type can be seen in listing 7. Most
constructs are very simple to represent, so we will not explicitly cover them. A
few things stand out.

Attribute sets, let bindings, pattern-matching functions. There are many
ways to represent attribute sets; which one is best depends on the application. In
Mininix, the name of an attribute is always a simple string—there are no dynamic
attributes that first have to be reduced from an expression to a string. So naturally,
a partial map is a good fit here. More specifically, we use the new generic finite

33

Inductive expr : Type :=

| X_V (v : value) (* v *)
| X_Id (x : string) (* x *)
| X_Attrset (bs : gmap string b_rhs) (* { br* } *)
| X_LetBinding (bs : gmap string b_rhs) (e : expr) (* let br* in e *)
| X_Select (e : expr) (xs : nonempty string) (* e.xs *)
| X_SelectOr (e : expr) (xs : nonempty string) (or : expr) (* e.xs or e *)
| X_Apply (e1 e2 : expr) (* e1 e2 *)
| X_Cond (e1 e2 e3 : expr) (* if e1 then e2 else e3 *)
| X_Incl (e1 e2 : expr) (* with e1; e2 *)
| X_Assert (e1 e2 : expr) (* assert e1; e2 *)
| X_Op (op : op) (e1 e2 : expr) (* e1 <op> e2 *)
| X_HasAttr (e1 : expr) (x : string) (* e ? x *)
| X_Force (e : expr) (* force e *)
| X_Closed (e : expr) (* closed(e) *)
| X_Placeholder (x : string) (e : expr) (* placeholderx(e) *)

with b_rhs :=

| B_Rec (e : expr) (* := e *)
| B_Nonrec (e : expr) (* :=r e *)

with matcher :=

| M_Matcher (ms : gmap string m_rhs) (strict : bool)

with m_rhs :=

| M_Mandatory

| M_Optional (e : expr) (* ? e *)
with value :=

| V_Bool (p : bool) : value (* true | false *)
| V_Null : value (* null *)
| V_Int (n : Z) : value (* n *)
| V_Str (s : string) : value (* s *)
| V_Fn (x : string) (e : expr) : value (* x: e *)
| V_AttrsetFn (m : matcher) (e : expr) : value (* { m }: e *)
| V_Attrset (bs : gmap string expr) : value. (* { b* } *)

Listing 7: Expressions, formalized in Coq. Snippet from expr.v.

map facility from Coq-std++ [24], called ‘gmap’. Based on the work by Appel and
Leroy [5], this structure has a few very desirable properties, as summarized by
Krebbers [18]; the following are relevant for us:

• it satisfies the extensionality property𝑚1 =𝑚2 ↔ ∀𝑘. 𝑚1(𝑘) =𝑚2(𝑘),

• it works well in nested recursive definitions: nested induction is possible.

Attribute selection paths. Remember that the right-hand side of selections,
the selection path, may not be empty. To facilitate this requirement, we define our
own nonempty type, which defines a generic list that contains at least one element.
It is represented as an algebraic datatype with a single constructor, which is exactly
like the ‘cons’ constructor for lists: the first argument is the head and the second
argument is the tail.

34

Binary operations. We also define the op type, which is a variant of all different
operators that can be represented. Strings, integers and Booleans are represented
with types provided by the standard library of Coq. The string type provided by
Coq can represent ASCII strings.

4.1.2 Strong values

Strong values, as shown in fig. 3.4, are shared between the semantics and the
interpreter. They are defined as a separate inductive type and are very close to the
value type; the only difference is that the attribute set constructor now takes a gmap
string strong_value instead of a gmap string expr. To facilitate the conversion
from strong values to values, we have an injective function value_from_strong_

value. We also define expr_from_strong_value as 〈X_V ◦ value_from_strong_

value〉.
Because we later perform induction for a recursive function on strong values,

we need to define a custom induction principle. This must allow us to prove that
𝑃 (𝑣𝑠) holds for an entire strong value that is an attribute set { #»

𝑏𝑠 } if 𝑃 (𝑣𝑠) holds for
every attribute of the set. Our induction principle (strong_value_ind’) is based
on a test for finite maps in Coq-std++ [24], as we have to define this induction
principle in such a way that it works with the gmap data structure.

4.1.3 Coercions

We define six coercions which makes working with our expression representation
more convenient. Namely: from string to expr via X_Id, from value to expr via
X_V, from Z (integers) to value via V_Int, from bool to value via V_Bool and from
strong_value to value via value_from_strong_value. For example, this allows us
to use true in a context where an expr is expected. This is then the same as writing
X_V (V_Bool true).

4.2 Mechanizing the semantics

For the relations→base and→, we define two inductive types: base_step and step,
respectively. These have the type expr → expr → Prop. For every reduction rule,
we define a constructor in the type for the respective relation.

Note that in the E_ApplyAttrset rule, we make use of the matching relation
bs ~ m ~> bs’, just like in the corresponding reduction rule apply-attrset.

4.2.1 Evaluation contexts

We define evaluation contexts in a functional way, very similar to the way that
Jacobs [17] suggests doing this. See listing 9 to see the structure of our code for
evaluation contexts.

35

Inductive base_step : expr → expr → Prop :=

| E_Force (sv : strong_value) :

X_Force sv -->base sv

(* ... *)
| E_ApplyAttrset m e bs bs' :

bs ~ m ~> bs' →
X_Apply (V_AttrsetFn m e) (V_Attrset bs) -->base

X_LetBinding bs' e

(* ... *)
| E_Op op v1 v2 u :

v1 JopK v2 -⊚-> u →
X_Op op v1 v2 -->base u

(* ... *)
| E_Assert e2 :

X_Assert true e2 -->base e2

where "e -->base e'" := (base_step e e').

(* ... *)

Variant step : expr → expr → Prop :=

E_Ctx e1 e2 E uf_int :

is_ctx false uf_int E →
e1 -->base e2 →
E e1 --> E e2

where "e --> e'" := (step e e').

Listing 8: The→base and→ relations in Coq.

Variant is_ctx_item : bool → bool → (expr → expr) → Prop :=

| IsCtxItem_Select uf_ext xs :

is_ctx_item uf_ext false (λ e1, X_Select e1 xs)

(* ... *)
| IsCtxItem_ApplyAttrsetR uf_ext m e1 :

is_ctx_item uf_ext false (λ e2, X_Apply (V_AttrsetFn m e1) e2)

(* ... *)
| IsCtxItem_Force uf_ext :

is_ctx_item uf_ext true (λ e, X_Force e)

| IsCtxItem_ForceAttrset bs x :

is_ctx_item true true (λ e, X_V (V_Attrset (<[x := e]>bs))).

(* ... *)

Inductive is_ctx : bool → bool → (expr → expr) → Prop :=

| IsCtx_Id uf : is_ctx uf uf id

| IsCtx_Compose E1 E2 uf_int uf_aux uf_ext :

is_ctx_item uf_ext uf_aux E1 →
is_ctx uf_aux uf_int E2 →
is_ctx uf_ext uf_int (E1 ◦ E2).

Listing 9: Predicates for evaluation contexts.

36

An evaluation context can be seen as a function Expr → Expr . However, not
all functions in Expr → Expr may be evaluation contexts. We define a predicate
is_ctx to validate that a function is in the set of valid contexts.

We facilitate nested contexts by defining the predicate is_ctx_item, which
defines a single ‘level’ of the context. The is_ctx predicate then only needs two
rules: composition and the identity context.

Instead of having two separate evaluation context types, we have one that
encodes bothweak and strong contexts. We use Booleans to encode the relationship
between weak and strong contexts. The first Boolean parameter of is_ctx_item
specifies whether the item itself is strong, i.e., whether it is part of the definition
of 𝐸 of 𝐸𝑠 as in fig. 3.7. The second Boolean parameter of is_ctx_item specifies
whether the item internally uses a weak or strong context. In both these cases,
true stands for strong (𝐸𝑠) and false stands for weak (𝐸) contexts.

With this information for context items available, we can correctly compose
context items. This is what is_ctx does.

4.3 Writing an interpreter

The most simple evaluation function signature thinkable is that of a partial map
from expressions to values:

eval : Expr ⇀ Value

However, as we are working with Coq, such a signature is not feasible. Firstly,
functions in Coq must be total. Practically, this means (1) that our function may
not be partial and (2) that we must prove that the function terminates.

(1) is easily satisfied by making the output type a variant, i.e., using Coq’s
option type with the constructors Some 𝑒 and None. (2) however, remains a chal-
lenge.

BecauseMininix (as an extension of the λ-calculus) is Turing-complete, it is
not decidable whether any given program will terminate. This means that we
cannot prove that the interpreter will terminate for any arbitrary Nix program.
Instead, we must resort to other measures to have a total interpreter. We can use
the same approach as Amin and Rompf [4] by resorting to ‘Partiality Fuel’: we can
parameterize our evaluation function with a ‘fuel value’ 𝑛 ∈ N, which is decreased
every time the evaluation function recursively calls itself. When the fuel runs out
(i.e., 𝑛 = 0), the interpreter then reports that evaluation has failed. The structural
reduction of 𝑛 in recursive calls allows Coq to reason about the totality of our
evaluation function.

So, in Coq, we would have an evaluation function with a signature like this:

eval : nat → expr → option value

Although this signature does suffice to write an interpreter forMininix, we still add
one more parameter for convenience. We call this Boolean parameter uf : ‘under

37

force’. When uf is true, then we know that we should recursively evaluate the
values of attribute set members. This way, we reduce to strong values (see fig. 3.4).
When uf is false, we instead simply reduce to ‘normal’ values (see fig. 3.1). Finally,
in Coq, we have the following signature:

eval : nat → bool → expr → option value

For the sake of simplicity, our interpreter only returns an option value instead
of, e.g., option (option value) like the interpreter fromAmin and Rompf [4]. Note
that this means that, unlike the interpreter defined by Amin and Rompf [4], we
cannot discern between the interpreter failing because of a faulty program, or
because of fuel running out (non-termination).

Our interpreter is also not maximally lazy, as defined by Dolstra [10]—we have
no cache which allows us to share terms and to rewrite in more than one place
at the same time. We also perform no checks for simple infinite recursion using
‘blackholing’ like Dolstra [10]. Finally, our interpreter is substitution-based and
does not use make use of environments.

Implementation of the interpreter. Because the entire interpreter is too long
to fully write out here, we instead take a look at part of the interpreter in which
we highlight a few cases. The snippet of the interpreter can be found in listing 10.

We define the evaluation function in two parts so that we have more control
over the simplification of applications of eval. We define a trivial lemma (eval_S)
that states that ∀𝑛. eval (S 𝑛) = eval1 (eval 𝑛). We can then use this lemma to
manually unfold applications of eval.

The interpreter makes use of the monadic operations defined for the option
monad by std++ [24]. The syntax 〈x ← v; M〉 is syntactic sugar for the monadic
bind operation similar to the do notation in Haskell, i.e., 〈v >>= λx, M〉.

The eval1 function pattern-matches on the expression that needs to be evalu-
ated. Let us now discuss a few specific cases that are listed.

• d = X_Id x (𝑑 = 𝑥). We are instructed to evaluate an identifier. But an
identifier cannot be reduced to a value; this identifier was not substituted
for. We report failure by returning None.

• d = X_Force e (𝑑 = force 𝑒). We need to return the strict evaluation of 𝑒 .
We return the recursive call of the interpreter for the evaluation of 𝑒 and
provide uf = true, making the interpreter strictly evaluate 𝑒 .

• d = X_V (V_Attrset bs) (𝑑 = { #»

𝑏 }). What we need to do here depends on
whether we are operating under force or not, i.e.. We do this by checking
the argument provided for the uf parameter. If this is false, we can return
the provided attribute set verbatim. If it is true however, we need to do a bit
more work.

38

Definition eval1 (go : bool → expr → option value)

(uf : bool) (d : expr) : option value :=

match d with
| X_Id _ => None

| X_Force e => go true e

(* ... *)
| X_V (V_Attrset bs) =>

if uf

then vs' ← map_mapM (go true) bs;

Some (V_Attrset (X_V <$> vs'))

else Some (V_Attrset bs)

| X_V v => Some v

| X_Attrset bs => go uf (V_Attrset (rec_subst bs))

(* ... *)
| X_Apply e1 e2 =>

v1' ← go false e1;

match v1' with
| V_Fn x e =>

let e' := subst {[x := X_Closed e2]} e

in go uf e'

| V_AttrsetFn m e =>

v2' ← go false e2;

bs ← maybe V_Attrset v2';

bs' ← matches m bs;

go uf (X_LetBinding bs' e)

(* ... *)
end

(* ... *)
end.

Fixpoint eval (n : nat) (uf : bool) (e : expr) : option value :=

match n with
| O => None

| S n => eval1 (eval n) uf e

end.

Global Opaque eval.

Listing 10: Structure of the interpreter.

39

We recursively strictly evaluate every binding in bs. We do this by mapping
the value 𝑣 of every member to go true 𝑣 . By using map_mapM (go true)

bs, we get an option (list value) instead of the list (option value) we
would get when using go true <$> bs. Practically, this means that either
‘all values successfully strictly evaluated to a strong value’ (we have Some)
or ‘the strict evaluation of at least one attribute value failed’ (we have None).

map_mapM is an auxiliary function which we define separately. It functions
very similarly to the mapM function for lists (as in Haskell and std++), but
works for finite maps instead. Its simplified signature looks like this:

map_mapM : (f : A → M B) → gmap K A → M (gmap K B)

where M is a monad, K is the key type and A and B are the value types.

• d = X_Assert e1 e2 (𝑑 = assert 𝑒1; 𝑒2). We need to check if e1 evaluates
to the Boolean value ‘true’. So we first recursively call the interpreter to
evaluate e1 normally. Note that we do not pass along uf: as we need e1 to
evaluate to a Boolean, strictly evaluating it has no use.

After evaluating e1 (with the resulting value now in v1’), we check if it
indeed evaluated to a Boolean value. If not, we stop return that an error
occurred. Otherwise, we return the result of the recursive evaluation of e2.
This time, we do pass along uf, as we do no further processing of the value
returned by this recursive interpreter call.

The prelude. As the attentive reader may have noticed: the val function does
not make the prelude available (see section 3.2). Because the interpreter calls itself
recursively, this is also not desirable. However, we do have the top-level evaluation
function tl_eval, which makes the prelude available by substitution. This is the
function that should actually be called when evaluating aMininix program.

4.4 Verifying the interpreter

We use the notation 𝑒
𝑛↦→ 𝑣 to write that the expression 𝑒 successfully evaluates

to the value 𝑣 with 𝑛 amount of partiality fuel. Moreover, we use 𝑒 𝑛↦→𝑠 𝑣 to mean
the same, but now under strict evaluation. The former would be written in Coq as
〈eval 𝑛 false 𝑒 = Some 𝑣〉. The latter as 〈eval 𝑛 true 𝑒 = Some 𝑣〉. Finally, we
also have 𝑒 𝑛↦→uf 𝑣 where uf is a Boolean. When uf is true, then this means the
same as 𝑒 𝑛↦→𝑠 𝑣 . Otherwise, it means the same as 𝑒 𝑛↦→ 𝑣 .

Before we can verify the interpreter, we need to choose how we even define
the interpreter ‘functioning correctly’. The definition we use is as follows:

• The interpreter is complete with regard to the semantics when for every
derivation tree proving the reduction from an expression to a value 𝑒 ∗→ 𝑣 ′

40

there exists an amount of fuel 𝑛 such that the interpreter normally (non-
strictly) evaluates 𝑒 to 𝑣 ′:

∀𝑒 𝑣 ′. 𝑒 ∗→ 𝑣 ′ =⇒ ∃𝑛. 𝑒 𝑛↦→ 𝑣 ′

• The interpreter is sound with regard to the semantics when there exists a
derivation tree proving the reduction from an expression to a value 𝑒 ∗→ 𝑣 ′

if there exists an amount of fuel 𝑛 such that the interpreter normally (non-
strictly) evaluates 𝑒 to 𝑣 ′:

∀𝑛 𝑒 𝑣 ′. 𝑒 𝑛↦→ 𝑣 ′ =⇒ 𝑒
∗→ 𝑣 ′

4.4.1 Binary operations

The interpreter makes use of an auxiliary function binop_eval for binary opera-
tions. To prove the correctness of the interpreter, we have the following lemma.

Lemma 1 (binop_eval_sound, binop_eval_complete). binop_eval op u1 u2 =

Some v if and only if u1 JopK u2 -⊚-> v.

This correspondence also makes it trivial that the binary operation relation is
deterministic.

4.4.2 Pattern matching

When evaluating the application of a pattern-matching function, the interpreter
uses the auxiliary function matches to generate a list of bindings for the variables
matched against. In the semantics, we use the matching relation

#»

𝑏 ∼𝑚 { #»

𝑏′𝑟 for
this task. To be able to prove the soundness and completeness of the interpreter, we
must first prove that the matches function is correct with respect to the matching
relation.

Lemma 2 (matches_correct). matches m bs = Some brs’ if and only if bs ~> m

~> brs’.

This correspondence also makes it trivial that the matching relation is deter-
ministic, as matches is a function.

4.4.3 map_mapM and map_Forall2

The gmap plays a prominent role within our formalized semantics. It is used to
represent collections of bindings for (recursive) attribute sets and the let construct,
and is used to represent patterns for pattern-matching functions.

However, the way that the gmap is used differs between the semantics and
the interpreter. The semantics prescribe no fixed order when reducing attribute
set values under force, but the interpreter does use a fixed order with the use of
map_mapM.

41

We have a higher-order relation that forms a bridge between these two models:
map_Forall2. This relation is very similar to the Forall2 relation for simple lists.
Based on a relation R between the value types A and B of two maps m1 and m2

respectively, map_Forall2 R m1 m2 holds iff m1 and m2 have the same domain and
the values for the respective keys relate to each other as per the provided relation R.
It is based on map_relation from std++ and has the following simplified definition:

map_relation (M := gmap K) R (λ x, False) (λ x, False)

where K is a key type and R is a relation between A and B, where A and B can be any
type. The two occurrences of (λ x, False) instruct map_relation what to do in
case a key is missing from one of the maps but present in the other; in both cases
we return False because we require the domains of the two maps to be the same.

Recall that the signature of map_mapM is

(A → gmap K B) → gmap K A → M (gmap K B)

where M is a monad, K is the key type and A and B are value types.

Correspondence under the option monad. For simple lists, std++ already
provides the lemma mapM_Some:

mapM f l = Some k if and only if Forall2 (λ x y, f x = Some y) l k

We derive a similar lemma for finite maps.

Lemma 3 (map_mapM_Some_L). map_mapM f m1 = Some m2 if and only if
map_Forall2 (λ x y, f x = Some y) m1 m2.

4.4.4 Soundness

For our soundness proof, we have a stronger theorem that we can use to prove
the weaker soundness property. For this stronger theorem, we define the auxiliary
function cforce:

cforceuf (e) =
{
𝑒 if uf = true
force 𝑒 if uf = false

We will now also make use of mathematical notation instead of the notation
as in Coq, because this makes the lemmas and proofs easier to read. We use
∀2𝑚𝑥 ∈𝑚1, 𝑦 ∈𝑚2. 𝑃 (𝑥,𝑦) to denote map_Forall2 𝑃 𝑚1 𝑚2.

Lemma 4 (force_map_fmap_union). ∀2𝑚𝑒 ∈
#»

𝑏, 𝑣𝑠 ∈
#»

𝑏′𝑠 . force 𝑒
∗→ 𝑣𝑠 implies

that force { #»

𝑏 ∪ #»𝑐𝑠 } ∗→ force { #»

𝑏′𝑠 ∪ #»𝑐𝑠 }.

Lemma 5 (force_map_fmap). ∀2𝑚𝑒 ∈
#»

𝑏, 𝑣𝑠 ∈
#»

𝑏′𝑠 . force 𝑒
∗→ 𝑣𝑠 implies that

force { #»

𝑏 } ∗→ force { #»

𝑏′𝑠 }.

42

Proof. This holds trivially by lemma 4 with #»𝑐𝑠 = ∅. □

Theorem 1 (eval_sound_strong). For every expression 𝑒 , value 𝑣 ′ and amount of
fuel 𝑛, we have that 𝑒 𝑛↦→uf 𝑣

′ implies that cforceuf (𝑒)
∗→ 𝑣 .

Proof. We perform induction on the ‘Partiality Fuel’ 𝑛. The base case 𝑛 = 0 trivially
holds by the definition of eval. In the inductive case, we have the following IH:

∀𝑒 𝑣 ′. 𝑒 𝑛↦→uf 𝑣
′ =⇒ cforceuf (𝑒) ∗→ 𝑣 ′

We have that 𝑒 𝑛+1↦→uf 𝑣
′ and need to prove that cforceuf (𝑒) ∗→ 𝑣 ′.

We then do a case distinction on 𝑒 . In all the cases where 𝑒 is not a value, we
follow the interpreter and use the IH to finish the proof.

In the case where 𝑒 is a value 𝑣 , we do a case distinction on 𝑣 and unfold eval
in our assumption by one step. If 𝑣 is not an attribute set, we have that 𝑣 = 𝑣 ′ by
definition of eval. Furthermore, 𝑣 can be converted to from a strong value. We
know that strong values can never be reduced, also not under force, so we have
that cforce uf 𝑣 ∗→ 𝑣 by the reflexivity of ∗→.

If 𝑣 is an attribute set, then it depends on the argument uf whether 𝑣 will
be reduced to a strong value. If uf is false, then we are done, just like before.
Otherwise, we have that map_mapM (eval 𝑛 true) #»

𝑏 = Some
#»

𝑏′ and need to prove
that force { #»

𝑏 } ∗→ { #»

𝑏′ }. Due to the correspondence between map_mapM and
map_Forall2, we have that ∀2𝑚𝑒 ∈

#»

𝑏 , 𝑢 ∈ #»

𝑏′ . 𝑒
𝑛↦→𝑠 𝑢. By the induction hypothesis,

we can now state that ∀2𝑚𝑒 ∈
#»

𝑏 , 𝑢 ∈ #»

𝑏′ . force 𝑒 ∗→ 𝑢. Because force 𝑒 ∗→ 𝑢 reduces
to a value 𝑢, 𝑢 must be a strong value and

#»

𝑏′ must therefore also be a strong value.
Then by lemma lemma 5, we have that force { #»

𝑏 } ∗→ force { #»

𝑏′ }. By transi-
tivity, we now only still have to prove that force { #»

𝑏′ } ∗→ { #»

𝑏′ }. Which follows
trivially by force under an empty context, because { #»

𝑏′ } is a strong value. □

4.4.5 Completeness

Lemma 6 (eval_le). If we have 𝑒 𝑛↦→uf 𝑣 , then for any𝑚 ≥ 𝑛, we will also have
𝑒

𝑚↦→uf 𝑣 .

Lemma 7 (eval_step_ctx). For some context 𝐸 that must be strict if uf is true,
𝑒 →base 𝑒

′ and 𝐸 [𝑒′] 𝑛↦→uf 𝑣
′′ implies that there exists an amount of fuel𝑚 such that

𝐸 [𝑒] 𝑚↦→uf 𝑣
′′.

Lemma 8 (eval_step). 𝑒1 → 𝑒2 and 𝑒2
𝑛↦→ 𝑣3 implies that there exists an amount of

fuel𝑚 such that 𝑒1
𝑚↦→ 𝑣3.

Proof. The only rule that could have been applied to get 𝑒1 → 𝑒2 is ctx. So there
must exist some weak context 𝐸 and expressions 𝑒′1 and 𝑒′2 such that 𝑒1 = 𝐸 [𝑒′1]
and 𝑒2 = 𝐸 [𝑒2′]. Furthermore, we must also have that 𝑒′1 →base 𝑒

′
2. Then we are

done by trivially applying lemma 7. □

43

Theorem 2 (eval_complete). For every expression 𝑒 and value 𝑣 ′, we have that
𝑒
∗→ 𝑣 implies that there exists an amount of fuel 𝑛 such that 𝑒 𝑛↦→ 𝑣 ′.

Proof by induction on the length of the derivation 𝑒 ∗→ 𝑣 ′. Base case: 𝑒 = 𝑣 ′. Then
we have that 𝑣 ′ 1↦→ 𝑣 ′ because the interpreter returns values verbatim when uf is
false. Inductive case: 𝑒 → 𝑒′ 𝑛→ 𝑣 ′. We have the following IH: ∀𝑒 𝑣 ′. 𝑒 𝑛→ 𝑣 ′ =⇒
∃𝑚. 𝑒

𝑚↦→ 𝑣 ′. We need to prove that there exists some amount of fuel 𝑘 such that
𝑒

𝑘↦→ 𝑒′. By the IH applied on 𝑒′ 𝑛→ 𝑣 ′ there must be some amount of fuel𝑚 such
that 𝑒′ 𝑚↦→ 𝑣 ′. Then by lemma 8 applied with 𝑒 → 𝑒′ and 𝑒′

𝑚↦→ 𝑣 ′ we have that
there must exist some amount of fuel 𝑘 such that 𝑒 𝑘↦→ 𝑣 ′, so we are done. □

44

Chapter 5

Related work

In section 5.1, we discuss what problems exist with previous Nix semantics and
how Mininix differs from these. Following that, we discuss what features Mininix
is missing in comparison to the official Nix interpreter [14] in section section 5.2.
In section section 5.3, we discuss alternatives for the ad-hoc capture avoidance/-
substitution mechanism that we use inMininix, particularly looking into De Bruijn
indices [9]. Finally, we discuss some non-academic work on Nix in section 5.4.

5.1 Previous Nix semantics

The semantics forMininix, as described in section 3.3, are largely based on previous
work by Dolstra. Two papers and one dissertation are especially relevant: Dolstra’s
dissertation [11] is the first to describe reduction rules for the Nix language. Dolstra
and Löh [13] introduces NixOS and quickly covers the Nix language in lesser detail
but with slightly different syntax and reduction rules than Dolstra’s disseration.
Finally, Dolstra [10] discusses maximal laziness, a property of the Nix interpreter.
This paper also glances over the semantics of the Nix language, but does not
expand on the semantics of the language beyond his dissertation.

In this section, we will first discuss the limitations of the semantics as described
in these works (section 5.1.1). Then, we will talk about the differences between
the semantics we describe and these earlier works, and how our semantics solves
the issues of these earlier semantics (section 5.1.2).

5.1.1 Limitations of the previous semantics

Other than the fact that the Nix expression language has evolved over the years
since these previous works have been published, there are a few particular short-
comings what we would like to point out.

Mixed big-step and small-step reductions. The previous works [11, 13, 10]
make use of mixed big-step and small-step reductions in rules, where the conse-

45

quent uses a single-step reduction, but assumptions use big-step reductions. Take
the following rules, respectively taken verbatim from [11] and [13]:

Select:
𝑒
∗↦→ {as} ∧ ⟨𝑛 = 𝑒′⟩ ∈ as

𝑒.𝑛 ↦→ 𝑒′
𝑒 →∗ { #»

𝑏 } 𝑥 = 𝑒′ ∈ #»

𝑏

𝑒.𝑥 → 𝑒′
(select)

Although this is not wrong in any respect, it does make the semantics a bit harder
to work with, other than being unconventional.

The closedness of terms. Dolstra [11, Lemma 1, p. 85] states that “[e]very term
to which a semantic rule is applied during evaluation is closed.” The base case
states that it trivially holds since “the parser checks that these terms are closed
and abors with an error otherwise.”

Although this sounds appealing, this cannot be correct. Take the Nix program
〈with (let x = x; in x); y〉. It is not possible for the parser to statically analyze
whether y will be bound at y or not; this requires evaluation of 〈let x = x; in
x〉, which loops. Similarly, this program would evaluate to 2: 〈let foo = { y =

2; }; in with foo; y〉. But one would not expect a parser to perform any kind
of evaluation here to validate that y is bound at y.

One could also very well argue that a term such as 〈let foo = { y = 2; };

in with foo; y〉 should be considered open, because 〈let y = 1; in let foo =

{ y = 2; }; in with foo; y〉 evaluates to 1. However, then the base case still
does not hold: any program with variables not bound by let bindings or functions,
but possibly bound by inclusion constructs, would always be rejected. This would
make the inclusion construct practically unusable.

Reduction of and substitution in inclusions. Dolstra [11, Sec. 4.3.3] discusses
the substitution function for the Nix language, but mentions no specific case for
the inclusion construct. Instead, Dolstra remarks that the substitution function is
recursively applied to all subexpressions for all cases not specifically mentioned.
Following this logic, we could assume that we have

subst(subs,with 𝑒1; 𝑒2) = with subst(subs, 𝑒1); subst(subs, 𝑒2)
Having this substitution function, the program 〈with { x = 1; }; with { x =

2; }; x〉 returns 1. We could say that ‘later’ with statements do not shadow
‘earlier’ with statements.

However, the official Nix interpreter [14] now interprets this program differ-
ently. Instead, the output of this program has become 2. Hence, we can state
that ‘later’ with statements have priority over ‘earlier’ with statements. Our se-
mantics follow the official Nix interpreter. We overcome this by using so-called
placeholders, which we explain in section 3.3.4.

Furthermore, with silently proceeds after evaluating its argument if it is not
an attribute set, so the program 〈with null; 1〉 will work and return 1. In the
previous semantics, there was no rule for this behavior. We have added the with-
no-attrset rule.

46

Infinite derivation trees. In Dolstra [11], let bindings look very different to
those in Dolstra and Löh [13]. In Dolstra [11], let bindings look like 〈let { x =

3; body = x; }〉 (where the result is body with x made available, therefore giving
3). In Dolstra and Löh [13], let bindings used the same syntax as those in modern
Nix. Now, bindings looked more standard: 〈let { x = 3; }; in x〉 (gives 3).

Although the Rec/rec rules hardly differ between Dolstra [11] and Dolstra and
Löh [13], there is a notable difference in the Let/let rule between the two. The
latter still uses a recursive attribute set as a proxy, but now dynamically selects an
attribute 𝑥 to place the body of the let-in statement in. Note that this can allow
the creation of infinite derivation trees for expressions such as 〈let y = with {

z = 1; }; z; in y〉 (when selecting z for this dynamic attribute 𝑥).

Ambiguous equality. Dolstra [11, Sec. 4.3.4, p. 78] does not state much about
equality other than that it is defined ‘syntactically’. Furthermore, in relation to the
maximal sharing feature of the ATerm library, it also states that “[I]f two terms are
syntactically equal, then they occupy the same location in memory. This means
that a shallow pointer equality test is sufficient to perform a deep syntactic equality
test” [11, Sec. 4.4, p. 81]. It remains unclear whether this syntactic equality test
is modulo 𝛼-conversion for simple lambda abstractions, i.e., whether the terms
〈x: x〉 and 〈y: y〉 should be considered equal or not. Modern Nix seems to be
more clear on this matter, but also has its warts, as we saw in section 2.5.

5.1.2 Differences with our semantics

First, let us cover two main aspects in which our semantics differ from the previous
works:

Terms marked as closed, placeholders Where Dolstra [11] makes use of terms
marked as closed as an optimization for substitution, we use terms marked
as closed in combination with placeholders to control substitutions. We
explain why this is necessary in section 3.3.4. We discuss ways that these
may be avoided in section 5.3.

Distinct recursive and non-recursive binders Compared to Dolstra [11] and
Dolstra and Löh [13], this is more of an aesthetic rather than a functional
choice. Dolstra identifies only one type of binding, but partitions recursive
attribute sets (rec {

#»

𝑏 }) into two sets of binders: rec {
#»

𝑏1/
#»

𝑏2}. The first set
of binders

#»

𝑏1 contains recursive binders, and the second set of binders
#»

𝑏2
contains non-recursive binders introduced by inherit.

We retain this distinction, but do not partition binders in recursive attribute
sets. Instead, binders can be plain and non-recursive (𝑥 ≔ 𝑒) or recur-
sive (𝑥 ≔𝑟 𝑒). Although not strictly necessary anymore to introduce non-
recursive bindings in recursive attribute sets, we do retain the inherit
construct in Mininix for clarity.

47

Reduction rules. The semantics for Mininix are largely based on the semantics
as described by Dolstra [11] and Dolstra and Löh [13]. Instead of mixed big-
and small-step semantics, theMininix semantics are strict small-step operational
semantics with evaluation contexts [16].

Like Dolstra [11], we have a call-by-name semantics that only reduces at the
top level of a term. In the context of functions, the semantics also reduce to weak
head normal form [22, Sec. 11.3.1]. Although the semantics for Mininix are not
deterministic, they are strongly confluent [6, Definition 2.7.3]. For the proof on
strong confluence, we refer to appendix A.

Now, let us look at a few rules where there are interesting differences between
our semantics and the previous works:

let. In contrast to both Dolstra [11] and Dolstra and Löh [13], our let rule is
simpler. It is practically a contraction of the let, rec and select rules from
Dolstra and Löh [13].

with. As previously discussed in section 2.3, the inclusion construct (with state-
ment) has behavior in modern Nix that does not match with the semantics
and substitution function described by Dolstra [11].

Our with does not differ much from Dolstra’s With rule [11], except that
all substitution terms provided to the parallel substitution function are
wrapped in ‘placeholders’. In short, this allows later with statements to
override substitutions performed by earlier with statements. We discuss
these placeholders in greater detail in section 3.3.4.

We also describe the with-no-attrset rule. The modern Nix interpreter
also accepts with statements where the left-hand side does not evaluate to
an attribute set; in this case, the right-hand side is simply evaluated and
returned without any substitution being performed.

apply-attrset. Compared to Dolstra [11], our semantics allows default values
inside the pattern to refer to each other. This is done so that we align with the
semantics of modern Nix. Compared to Dolstra and Löh [13], our matching
relation also has support for default values.

op-has-attr-no-attrset. We introduce the op-has-attr-no-attrset rule for
the sake of compatibility. Based on observed behavior from the modern Nix
interpreter, we have concluded that attribute set membership checks also
function if the left-hand side is not an attribute set—the result will simply
be false.

Matching. This relation is based on the matching relation given by Dolstra and
Löh [13, Fig. 7]. The relation has been extended to support default values similarly
to the 𝛽-Reduce’ rule from Dolstra [11, Sec. 4.3.4], but with support for mutual
recursion under the default values, as possible in modern Nix.

48

rec {

hello = "hello";

x = {

hello = "hallo!";

${null} = 1; # no binding will be created
};

${"has" + hello} = x ? ${hello};
}.hashello # true

Listing 11: Dynamic attributes in the Nix language.

5.2 Missing features

The primary features of the Nix language that we do not support are dynamic
attribute names and derivations. Although we do support attribute paths in selec-
tions, we do not support these on the right-hand side of the attribute membership
check operator 〈𝑒 ? 𝑥〉. Other than that, we also lack support for more or less
trivial features: lists, floating-point numbers, file system paths, and imports.

Fully compatible equality. We discussed the issues with equality in Nix in
section 2.5 and section 5.1.1. Our implementation of equality, encoded in the
expreq function (see fig. 3.8), does recurse into attribute sets, but does not share
the pointer equality quirk that Nix has.

Derivations. These are arguably the most essential feature of Nix; they form
the core of the build system. We would have been able to include analogues of
Dolstra’s Derivation and Derivation! rules [11, Sec. 4.3.4, p. 80]. However, these
rules do little more than delay the execution of the primitive operation instantiate.
Implementing instantiate would have been unrealistic due to its sheer complexity.
To illustrate: the most certainly dated description of instantiate by Dolstra [11, Fig.
5.6] shows that it interacts with the file system and the Nix store.

Of course, it would have been trivial to have instantiate as a constant, being
part of the set of values in Mininix (section 3.1). We do not believe that doing this
would have created any additional value.

Dynamic attributes. Modern Nix allows dynamically naming attributes. For
an example, see listing 11.

Although from observed behavior it seems that dynamic attributes (with inter-
polated names) are not available in other bindings, we do already now see that
reduction of the names of attribute set members may get complex.

Interpolation of attribute names is not allowed in formal parameters of func-
tions, and is also forbidden in let bindings. (Although in let bindings, the most
simple case ${"test"} seems to be allowed).

49

5.3 Bindings and substitution

Bindings in Mininix can be quite complex. There are four sources of bindings:
functions, let-in statements, recursive attribute sets and inclusions. Of these four,
inclusion also has lower ‘priority’ than the others. In this thesis, we have used an
ad-hoc mechanism using terms marked as closed and placeholders to deal with
this complexity.

A lot of research has already been done on the topic of bindings. The well-
known De Bruijn indices [9] are specifically interesting for us: they may allow
us to simplify our substitution mechanism, and elide mechanism such as terms
marked as closed. But De Bruijn’s work can not be applied onMininix directly: De
Bruijn [9] makes use of the simple λ-calculus, where only the lambda abstraction
introduces bindings. In Mininix, there are four constructs that introduce bindings.

Therefore, before we can make use of De Bruijn indices, we must transform
the program into a simpler form (or a more restricted language). Specifically, we
must simplify programs so that only simple functions still introduce bindings.

In this section, we quickly discuss how we could transform Mininix programs
so that we may be able to apply De Bruijn indices. We also discuss how explicit
substitution [1] relates to our work.

Simplifying let expressions. Peyton Jones [22, Sec. 6.2] provides intuition
for how recursive let expressions can be simplified to the ordinary λ-calculus.
However, Peyton Jones’s transformations depend on two things that Mininix does
not have:

• pattern matching inside recursive let bindings and

• a distinct kind of non-recursive let construct, in which pattern matching is
also supported.

One may argue thatMininix does have pattern-matching functions, and that these
could be used for the purpose of pattern-matching like in Petyon Jones’ let bindings.
However, as we will see later, we express pattern-matching functions in terms of
let bindings; having circular dependencies here would not work.

Nevertheless, we can work around this limitation by using non-recursive
attribute sets and selection. Although we do not have a distinct non-recursive let
construct, we can trivially reduce a let expression with non-recursive bindings:

let 𝑥1 ≔ 𝑒1; . . . ;𝑥𝑛 ≔ 𝑒𝑛 in 𝑑 ≡ (𝑥1 : (. . . (𝑥𝑛 : 𝑑) 𝑒𝑛) . . .) 𝑒1

We can also split let expressions that have both recursive and non-recursive
bindings:

let 𝑥1 ≔ 𝑒1; . . . ;𝑥𝑛 ≔ 𝑒𝑛 ;
𝑥𝑛+1 ≔𝑟 𝑒𝑛+1; . . . ;𝑦𝑛+𝑚 ≔𝑟 𝑒𝑛+𝑚

in 𝑑

≡
let 𝑥1 ≔ 𝑒1; . . . ;𝑥𝑛 ≔ 𝑒𝑛

in let 𝑥𝑛+1 ≔𝑟 𝑒𝑛+1; . . . ;𝑦𝑛+𝑚 ≔𝑟 𝑒𝑛+𝑚

in 𝑑

50

Now we only have let expressions with solely recursive bindings left to simplify.
These require somemore lifting, as we do not have pattern matching in let bindings.

let 𝑥1 ≔𝑟 𝑒1; . . . ;𝑥𝑛 ≔𝑟 𝑒𝑛

in 𝑑
≡

let 𝑦 ≔ Y (𝑦 : let 𝑥1 ≔ 𝑦.𝑥1; . . . ;𝑥𝑛 ≔ 𝑦.𝑥𝑛

in { 𝑥1 ≔ 𝑒1; . . . ;𝑥𝑛 ≔ 𝑒𝑛 });
in let 𝑥1 ≔ 𝑦.𝑥1; . . . ;𝑥𝑛 ≔ 𝑦.𝑥𝑛 in 𝑑

Note that we here also make use of 𝑦, which is not matched on the left-hand side.
This 𝑦 may not be in 𝑥1, . . . , 𝑥𝑛 and may also not occur in 𝑒1, . . . , 𝑒𝑛 nor in 𝑑 . We
also make use of the fixed point combinator Y ≡ 𝑓 : (𝑥 : 𝑓 (𝑥 𝑥)) (𝑥 : 𝑓 (𝑥 𝑥)) [7,
Corollary 6.1.3].

Now that we have defined how let expression should be simplified, we can go
on to differentMininix constructs that also require simplification.

Recursive attribute sets. These are now quite simple.

rec { 𝑥1 ≔ 𝑒1; . . . ;𝑥𝑛 ≔ 𝑒𝑛 ;
𝑥𝑛+1 ≔𝑟 𝑒𝑛+1; . . . ;𝑦𝑛+𝑚 ≔𝑟 𝑒𝑛+𝑚 }

≡
let 𝑥1 ≔ 𝑒1; . . . ;𝑥𝑛 ≔ 𝑒𝑛 ;

𝑥𝑛+1 ≔𝑟 𝑒𝑛+1; . . . ;𝑦𝑛+𝑚 ≔𝑟 𝑒𝑛+𝑚

in { 𝑥1 ≔ 𝑥1; . . . ;𝑥𝑛 ≔ 𝑥𝑛 +𝑚 }

Pattern-matching functions. There are two kinds of pattern-matching func-
tions: those that are strict and those that are not. A pattern-matching function
that is strict requires the domain of the passed attribute set to be a subset of the set
attributes it matches against. For the non-strict case, we can define the following
simplification:

{ 𝑥1, . . . , 𝑥𝑛,
𝑥𝑛+1 ? 𝑒𝑛+1,
. . . ,

𝑥𝑛+𝑚 ? 𝑒𝑛+𝑚,
. . . } : 𝑑

≡

𝑦 : let 𝑥1 ≔ 𝑦.𝑥1; . . . ;𝑥𝑛 ≔ 𝑦.𝑥𝑛 ;
𝑥𝑛+1 ≔𝑟 𝑦.𝑥𝑛+1 or 𝑒𝑛+1
. . .

𝑥𝑛+𝑚 ≔𝑟 𝑦.𝑥𝑛+1 or 𝑒𝑛+𝑚
in 𝑒

Here, the underlined dots indicate that the pattern is not strict, just like in sec-
tion 2.2.

The strict case is more difficult, because we need to perform the subset check
that we described before. Because we have no mechanism of deleting attributes in
Mininix, this becomes extra tricky. One may think that an equality check between
the set of successfully matched attributes and the provided set would suffice, but
Mininix only really defines equality on strong values. So this will also not function
for terms with redexes.

Instead, we have to concede and assume thatMininix also defines the minus
operator for attribute sets, removing attributes from the left-hand side which

51

are present in the attribute set on the right-hand side. This way, we can con-
struct a static set of attributes 𝑥1, . . . , 𝑥𝑛+𝑚 with only dummy values, e.g., { 𝑥1 ≔
null; . . . , 𝑥𝑚 ≔ null }. We can then derive the following simplification:

{ 𝑥1, . . . , 𝑥𝑛,
𝑥𝑛+1 ? 𝑒𝑛+1,
. . . ,

𝑥𝑛+𝑚 ? 𝑒𝑛+𝑚 } : 𝑑

≡

𝑦 : assert 𝑦 − { 𝑥1 ≔ null; . . . , 𝑥𝑚 ≔ null } = { };
let 𝑥1 ≔ 𝑦.𝑥1; . . . ;𝑥𝑛 ≔ 𝑦.𝑥𝑛 ;

𝑥𝑛+1 ≔𝑟 𝑦.𝑥𝑛+1 or 𝑒𝑛+1
. . .

𝑥𝑛+𝑚 ≔𝑟 𝑦.𝑥𝑛+1 or 𝑒𝑛+𝑚
in 𝑒

Inclusions. We cannot simplify inclusions. They have a different priority than
bindings generated by functions. Because we cannot always statically analyze what
bindings an inclusion expression will generate, we in general can not make use of
De Bruijn indices in combination with this feature. But there is a workaround: sep-
arating substitution logic for inclusions and the logic for all ‘normal’ mechanisms.

Split substitution logic. As we discussed before, we can statically convert most
constructs that insert bindings to simple functions. Still, inclusions remain and
cannot be ported to use De Bruijn indices due to their dynamic nature.

Luckily however, we have that inclusions are weaker than the formal parame-
ters that simple functions bind. This means that we can statically analyze which
terms are guaranteed to be bound by simple functions, and which will not be. So
we can have two universes, as it were:

• the universe of simple functions, where we make use of De Bruijn indices,
and

• the universe of inclusions, where bindings are dynamically generated and
where we use names.

Explicit substitutions. Abadi et al. [1] define the λσ-calculus: an extension of
the λ-calculus where substitutions are not a meta-operation, but instead are a true
part of the language. They also make use of De Bruijn notation [9], and therefore it
should not be difficult to adapt our language to also include explicit substitutions.

However, other than for the purposes of optimization in interpreter implemen-
tations and ease of reasoning, there does not seem to be an immediate benefit to
using these. Nevertheless, a mechanism like that of explicit substitutions may be
interesting for inclusions.

Currently, we make use of placeholders to allow ‘later’ inclusions to shadow
‘earlier’ inclusions. By instead using a variant of explicit substitutions where we
use names in place of De Bruijn indices, we may be able to elide placeholders.

In this variant, we may not process substitutions until the variable with a
pending substitution is a top-level redex. Furthermore, we might strip pending

52

substitutions from matching variables when performing substitution for an inclu-
sion.

Closing thoughts on bindings and substitutions. De Bruijn indices [9] are
an interesting way to deal with bindings inMininix. By using these, we may be
able to get rid of terms marked as closed. However, inclusions still remain difficult,
although the ideas from explicit substitution [1] may help. We describe future
work in the next chapter.

5.4 Non-academic work on Nix

In the introduction, we already mentioned the existence of Tvix [3] and HNix
[27]. These are full reimplementations of Nix that also attempt to fully implement
the Nix language. However, besides these, there are other efforts around the Nix
language as well. Suggestions have been made about how Nix could adopt a type
system [25], but do not seem to have gained traction in the last years. Interestingly
enough, there are other initiatives such as the Nickel language [21] that seem to
position itself as a successor to Nix with static typing. Integration with Nix also
seems planned, but unfinished as of yet.

53

Chapter 6

Conclusions

In this thesis, we have defined a smaller version of the Nix expression language,
Mininix, based on earlier work by Dolstra et al. [11, 13, 10]. We have mechanized
these semantics with the Coq proof assistant. Furthermore, we have created an
interpreter, also mechanized in Coq, that is formally verified to have the behavior
as prescribed by our formal definition of the semantics of Mininix.

6.1 Future work

This work lays the groundwork for a well-specified Nix language, for which all
behaviors are completely and formally described. However, there is still work to
be done.

6.1.1 Running the official test suite

The official Nix interpreter [14] has a test suite that consists of many expressions
and their expected outputs. Doing this successfully does require a few key parts:
(1) an elaborator that facilitates the translation from Nix toMininix, and (2) a more
compatible Mininix that supports more features from the Nix language.

6.1.2 Missing features

As mentioned in section 5.2, there are still features of the Nix language that are
missing from Mininix. To reach parity with the Nix language in terms of core
features, more work would be required to see if features such as dynamic attributes
could be included.

Although it might be tempting to say that derivation should be investigated,
we may have to concede that this also muddies the separation between the Nix
package manager itself and the Nix expression language.

Builtins. Although we have already laid some groundwork, our prelude (sec-
tion 3.2, fig. 3.3) is very small. The actual Nix language has many builtins, which for

54

example allow mapping over the values of an attribute set (mapAttrs) and strictly
evaluating some expression before returning another (deepSeq). Investigating how
the latter relates to our force and maximal laziness and term sharing [10] may
also be relevant.

Equality quirks. Despite the peculiarity of the equality of functions in the
Nix language (as in section 2.5), it may be interesting to see if it is possible to
reasonably match the behavior of the Nix interpreter when comparing functions.

Null-terminated byte strings. Our current string type is a sequence of ASCII
characters. The official Nix interpreter, being programmed in C++, makes use
of the string template from the C++ standard library. This makes it so that Nix
considers any null-terminated string of bytes as a valid string. If we would indeed
want to aim for full compatibility, we should also make strings in the language
behave in exactly the same way.

6.1.3 More conventional substitutions

In section 5.3, we have discussed how we may be able to replace our ad-hoc
binding system with terms marked as closed and placeholders with something
more conventional based onDe Bruijn indices [9] and possibly explicit substitutions
[1].

However, everything that we have discussed so far remains conjecture. Study-
ing if it is indeed possible to properly apply these two systemsmay be an interesting
first step; seeing how different systems of handling bindings relate to each other in
the context of a stripped down version of Mininix would certainly be interesting.

6.1.4 A core calculus

Mininix is not exactly minimal. It still contains some features which one may not
consider ‘core features’. Providing a core calculus for Nix is also not what this
thesis intended to do; nevertheless, it could be very interesting to define a core
calculus for Nix, which the Nix language can then be expressed in terms of, and
researching if such a calculus would any value in the first place.

In section 5.3, we already discussed how a few constructs in Mininix could
statically be rewritten to the λ-calculus, albeit with quite some effort. This potential
core calculus could then omit features such as let bindings and instead focus on
those constructs that are not (trivially) λ-definable. It may be a good idea to
make this language more expressive with regard to attribute sets, so that built-in
functions can be expressed in terms of the language itself.

6.1.5 A better interpreter

The Mininix interpreter we define is as simple as possible. However, this is at the
expense of two things: efficiency and distinguishing non-termination from failure.

55

Extending this interpreter so that it can report different types of errors would be a
good first step; making it more efficient would certainly not be bad, as this also
poses interesting technical challenges.

Dolstra [11] describes the Nix interpreter as being maximally lazy, i.e., im-
plementing aggressive term sharing and caching. What effects this has on the
semantics of the language, if any, might be worth looking into. Furthermore, it
may be interesting to see if we can also formally prove such a maximally lazy
interpreter to be sound and complete with respect to the semantics that we define.

Acknowledgements

I’d like to thank Robbert, my supervisor, for the weekly meetings and
laughs we had, and for the thorough feedback that you provided. Doing this
thesis, I felt challenged and learned more than I would have imagined. Your
motivation and commitment is inspiring; I’m very glad to have had you as
my supervisor!

Of course, I’d also like to thank Herman, my second assessor, for taking
the time to evaluate this thesis.

Special thanks go to Jochem and Philipp, who took the time to read
through parts of my thesis and to correct my mistakes.

Last but not least, I’d like to thank my parents, friends and familiy for
their support during my studies, and especially for their support during this
final period.

56

Bibliography

[1] Martin Abadi et al. “Explicit substitutions”. In: Journal of Functional Pro-
gramming 1.4 (Oct. 1991), pp. 375–416. issn: 0956-7968, 1469-7653. doi:
10.1017/S0956796800000186. url: https://www.cambridge.org/core/
product/identifier/S0956796800000186/type/journal_article (visited
on 2024-05-29).

[2] Vincent Ambo. Tvix Status - September ’22. TVL’s blog. Sept. 12, 2022. url:
https://tvl.fyi/blog/tvix-status-september-22 (visited on 2024-06-24).

[3] Vincent Ambo et al. Tvix - A new implementation of Nix. Version (tag) r/7651;
commit 04ac1c995. Mar. 5, 2024. url: https://tvix.dev/ (visited on 2024-
03-07).

[4] Nada Amin and Tiark Rompf. “Type soundness proofs with definitional
interpreters”. In: ACM SIGPLAN Notices 52.1 (Jan. 1, 2017), pp. 666–679. issn:
0362-1340. doi: 10.1145/3093333.3009866. url: https://dl.acm.org/doi/
10.1145/3093333.3009866 (visited on 2024-06-13).

[5] Andrew W. Appel and Xavier Leroy. “Efficient Extensional Binary Tries”.
In: Journal of Automated Reasoning 67 (Jan. 12, 2023), Article number 8. doi:
10.1007/s10817-022-09655-x. url: https://inria.hal.science/hal-
03372247 (visited on 2024-06-11).

[6] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge;
New York: Cambridge University Press, 1998. 301 pp. isbn: 978-0-521-45520-
6.

[7] Henk Barendregt. The lambda calculus: its syntax and semantics. Rev. ed.
Studies in logic and the foundations of mathematics vol. 103. Amsterdam:
North-Holland, 1984. 621 pp. isbn: 0-444-86748-3.

[8] Rutger Broekhoff. Coq Formalization for Mininix. Zenodo, June 27, 2024. doi:
10.5281/zenodo.12208115. url: https://zenodo.org/records/12208115
(visited on 2024-06-27).

[9] Nicolaas Govert de Bruijn. “Lambda calculus notation with nameless dum-
mies, a tool for automatic formula manipulation, with application to the
Church-Rosser theorem”. In: Indagationes Mathematicae (Proceedings) 75.5
(Jan. 1, 1972), pp. 381–392. issn: 1385-7258. doi: 10.1016/1385-7258(72)

57

https://doi.org/10.1017/S0956796800000186
https://www.cambridge.org/core/product/identifier/S0956796800000186/type/journal_article
https://www.cambridge.org/core/product/identifier/S0956796800000186/type/journal_article
https://tvl.fyi/blog/tvix-status-september-22
https://tvix.dev/
https://doi.org/10.1145/3093333.3009866
https://dl.acm.org/doi/10.1145/3093333.3009866
https://dl.acm.org/doi/10.1145/3093333.3009866
https://doi.org/10.1007/s10817-022-09655-x
https://inria.hal.science/hal-03372247
https://inria.hal.science/hal-03372247
https://doi.org/10.5281/zenodo.12208115
https://zenodo.org/records/12208115
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0

90034-0. url: https://www.sciencedirect.com/science/article/pii/
1385725872900340 (visited on 2024-05-28).

[10] Eelco Dolstra. “Maximal Laziness: An Efficient Interpretation Technique for
Purely Functional DSLs”. In: Electronic Notes in Theoretical Computer Science.
Proceedings of the 8th Workshop on Language Descriptions, Tools and
Applications (LDTA 2008) 238.5 (Oct. 10, 2009), pp. 81–99. issn: 1571-0661.
doi: 10.1016/j.entcs.2009.09.042. url: https://www.sciencedirect.
com/science/article/pii/S157106610900396X (visited on 2024-02-29).

[11] Eelco Dolstra. “The purely functional software deployment model”. PhD
thesis. Utrecht, The Netherlands: Utrecht University, Jan. 18, 2006. isbn:
9789039341308. url: https://dspace.library.uu.nl/handle/1874/7540
(visited on 2024-02-28).

[12] Eelco Dolstra, Merijn de Jonge, and Eelco Visser. “Nix: A Safe and {Policy-
Free} System for Software Deployment”. In: 18th Large Installation System
Administration Conference (LISA 04). 2004. url: https://www.usenix.org/
conference/lisa- 04/nix- safe- and- policy- free- system- software-

deployment (visited on 2024-02-07).

[13] Eelco Dolstra and Andres Löh. “NixOS: a purely functional Linux distri-
bution”. In: Proceedings of the 13th ACM SIGPLAN international conference
on Functional programming. ICFP ’08. New York, NY, USA: Association for
Computing Machinery, Sept. 20, 2008, pp. 367–378. isbn: 978-1-59593-919-7.
doi: 10.1145/1411204.1411255. url: https://dl.acm.org/doi/10.1145/
1411204.1411255 (visited on 2024-02-07).

[14] Eelco Dolstra and The Nix contributors. Nix. Version (tag) 2.22.1; commit
293d593. May 9, 2024. url: https://github.com/NixOS/nix (visited on
2024-06-24).

[15] Eelco Dolstra and The Nix contributors. Nix Reference Manual. url: https:
//nix.dev/manual/nix/2.22/nix-2.22.html (visited on 2024-06-24).

[16] Matthias Felleisen and Robert Hieb. “The revised report on the syntactic the-
ories of sequential control and state”. In: Theoretical Computer Science 103.2
(Sept. 14, 1992), pp. 235–271. issn: 0304-3975. doi: 10.1016/0304-3975(92)
90014-7. url: https://www.sciencedirect.com/science/article/pii/
0304397592900147 (visited on 2024-06-10).

[17] Jules Jacobs. Functional Evaluation Contexts. Sept. 22, 2021. url: https :
//julesjacobs.com/notes/functionalctxs/functionalctxs.pdf (visited
on 2024-04-25).

[18] Robbert Krebbers. Efficient, Extensional, and Generic Finite Maps in Coq-std++.
July 29, 2023. url: https://coq-workshop.gitlab.io/2023/abstracts/
coq2023_finmap-stdpp.pdf (visited on 2024-03-14).

58

https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://doi.org/10.1016/j.entcs.2009.09.042
https://www.sciencedirect.com/science/article/pii/S157106610900396X
https://www.sciencedirect.com/science/article/pii/S157106610900396X
https://dspace.library.uu.nl/handle/1874/7540
https://www.usenix.org/conference/lisa-04/nix-safe-and-policy-free-system-software-deployment
https://www.usenix.org/conference/lisa-04/nix-safe-and-policy-free-system-software-deployment
https://www.usenix.org/conference/lisa-04/nix-safe-and-policy-free-system-software-deployment
https://doi.org/10.1145/1411204.1411255
https://dl.acm.org/doi/10.1145/1411204.1411255
https://dl.acm.org/doi/10.1145/1411204.1411255
https://github.com/NixOS/nix
https://nix.dev/manual/nix/2.22/nix-2.22.html
https://nix.dev/manual/nix/2.22/nix-2.22.html
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/0304-3975(92)90014-7
https://www.sciencedirect.com/science/article/pii/0304397592900147
https://www.sciencedirect.com/science/article/pii/0304397592900147
https://julesjacobs.com/notes/functionalctxs/functionalctxs.pdf
https://julesjacobs.com/notes/functionalctxs/functionalctxs.pdf
https://coq-workshop.gitlab.io/2023/abstracts/coq2023_finmap-stdpp.pdf
https://coq-workshop.gitlab.io/2023/abstracts/coq2023_finmap-stdpp.pdf

[19] Ramana Kumar et al. “CakeML: a verified implementation of ML”. In: SIG-
PLAN Not. 49.1 (Jan. 8, 2014), pp. 179–191. issn: 0362-1340. doi: 10.1145/
2578855.2535841. url: https://doi.org/10.1145/2578855.2535841 (vis-
ited on 2024-06-28).

[20] Xavier Leroy. “Formal verification of a realistic compiler”. In: Commun.
ACM 52.7 (July 1, 2009), pp. 107–115. issn: 0001-0782. doi: 10.1145/1538788.
1538814. url: https://doi.org/10.1145/1538788.1538814 (visited on
2024-06-28).

[21] Nickel. Version 1.7.0. Modus Create LLC, June 11, 2024. url: https://nickel-
lang.org/ (visited on 2024-06-28).

[22] Simon L. Peyton Jones. The implementation of functional programming lan-
guages. Prentice-Hall international series in computer science. Englewood
Cliffs, NJ: Prentice/Hill International, 1987. xviii, 445. isbn: 978-0-13-453333-
9 978-0-13-453325-4. url: http://www.zentralblatt-math.org/zmath/en/
search/?an=0712.68017 (visited on 2024-02-28).

[23] The Coq Development Team. The Coq Proof Assistant. Version 8.19. Zenodo,
June 10, 2024. doi: 10.5281/zenodo.11551307. url: https://zenodo.org/
records/11551307 (visited on 2024-06-12).

[24] The std++ developers and contributors. Coq-std++: An extended "Standard
Library" for Coq. Version 1.10.0; commit eb2afa52. Apr. 12, 2024. url: https:
//gitlab.mpi-sws.org/iris/stdpp/.

[25] Hufschmitt Théophane. “A type-system for Nix”. NixCon 2017 (Unter-
föhring, Germany). Oct. 28, 2017. url: http://nixcon2017.org/schedule.
nixcon2017.org/system/event_attachments/attachments/000/000/003/

original/main.pdf (visited on 2024-06-28).

[26] Jörg Tjalheim and TheNixOSWiki contributors.Overview of the NixOS Linux
distribution. NixOS Wiki. June 1, 2024. url: https://nixos.wiki/index.
php?title=Overview_of_the_NixOS_Linux_distribution&oldid=13114

(visited on 2024-06-24).

[27] John Wiegley. HNix. June 23, 2024. url: https://github.com/haskell-
nix/hnix (visited on 2024-06-24).

59

https://doi.org/10.1145/2578855.2535841
https://doi.org/10.1145/2578855.2535841
https://doi.org/10.1145/2578855.2535841
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://nickel-lang.org/
https://nickel-lang.org/
http://www.zentralblatt-math.org/zmath/en/search/?an=0712.68017
http://www.zentralblatt-math.org/zmath/en/search/?an=0712.68017
https://doi.org/10.5281/zenodo.11551307
https://zenodo.org/records/11551307
https://zenodo.org/records/11551307
https://gitlab.mpi-sws.org/iris/stdpp/
https://gitlab.mpi-sws.org/iris/stdpp/
http://nixcon2017.org/schedule.nixcon2017.org/system/event_attachments/attachments/000/000/003/original/main.pdf
http://nixcon2017.org/schedule.nixcon2017.org/system/event_attachments/attachments/000/000/003/original/main.pdf
http://nixcon2017.org/schedule.nixcon2017.org/system/event_attachments/attachments/000/000/003/original/main.pdf
https://nixos.wiki/index.php?title=Overview_of_the_NixOS_Linux_distribution&oldid=13114
https://nixos.wiki/index.php?title=Overview_of_the_NixOS_Linux_distribution&oldid=13114
https://github.com/haskell-nix/hnix
https://github.com/haskell-nix/hnix

Appendix A

Confluence of Mininix

Mininix is strongly confluent. In this appendix, we give a quick sketch of how we
prove this property of the semantics.

We cannot prove determinism forMininix because reductions on attribute sets
under force are non-deterministic (see section 3.3.2). Instead, we derive a property
that is stronger than strong confluence. We prove that this property implies
strong confluence, and also formalize that strong confluence implies confluence.
For reference, we show the properties of determinism, strong confluence and
confluence in fig. A.1.

Before we start proving confluence, we first prove determinism where possible.

Lemma 9 (matches_deterministic). The matching relation
#»

𝑏 ∼𝑚 { #»

𝑏′𝑟 is deter-
ministic.

Lemma 10 (binop_deterministic). The binary operation relation 𝑢1J⊚K𝑢2−⊚→ 𝑣 is
deterministic.

Lemma 11 (base_step_deterministic). The base step relation 𝑒 →base 𝑒
′ is deter-

ministic.

𝑥

𝑦1 𝑦2

𝑥

𝑦1 𝑦2

𝑧

= ∗

𝑥

𝑦1 𝑦2

𝑧

∗ ∗

∗ ∗

Figure A.1: In left-to-right order: determinism, strong confluence [6, Fig 2.5], and
confluence [6, Fig 2.1].

60

Proof. Because there is no overlap between the rules, this only depends on the de-
terminism of the matching and binary operation reduction relations. By lemmas 9
and 10, we know that these are also deterministic. So we are done. □

Now, let us define a property about→ that is stronger than strong confluence.

Lemma 12 (step_strongly_confluent_aux). For some expressions 𝑐 and𝑑 , we have:

𝑑1 ← 𝑐 → 𝑑2 =⇒ 𝑑1 = 𝑑2 ∨ ∃𝑒. 𝑑1 → 𝑒 ← 𝑑2

Proof. This property intuitively makes sense. The only case in which 𝑑1 and 𝑑2 will
not be equal is when we choose to reduce different attributes under an attribute
set when under force, where the set contains at least two attributes.

Imagine that we have some attribute set with attributes x and y, where x is
reduced in 𝑑1 and y is reduced in 𝑑2. Then we can apply the same reduction that
was done to get 𝑑1 from 𝑐 on 𝑑2 to get some new term 𝑒 . We can do the same to 𝑑1
by applying the same reduction that was performed to get 𝑑2 from 𝑐 on it. This
gives us the same term 𝑒 . This works for all attribute sets with more than one
element, as only two distinct elements will be reduced; one by 𝑐 → 𝑑1 and one by
𝑐 → 𝑑2. □

Theorem 3 (step_strongly_confluent). The step relation 𝑒 → 𝑒′ is strongly con-
fluent.

Proof. This is now trivial by lemma 12. □

We also formalize that strong confluence implies confluence. We do this using
a sequence of implications. First, we formalize that strong confluence implies
semi-confluence [6, Def. 2.1.4, Lemma 2.7.4]. We follow this by formalizing that
semi-confluence implies the Church-Rosser property [6, Theorem 2.1.5]. Finally,
we have that the Church-Rosser property [6, Def. 2.1.3] is equivalent to confluence
[6, Theorem 2.1.5]; we do not have to formalize this as Coq-std++ already includes
a proof for this [24, confluent_alt].

61

	Introduction
	A tour of the Nix language
	Simple and composite values and expressions
	Functions and recursion
	Sources of bindings
	Functors
	Miscellaneous peculiarities

	Defining a simplified version of the Nix language
	Grammar
	The prelude
	Semantics

	Building a verified interpreter for Mininix
	Mechanizing shared components
	Mechanizing the semantics
	Writing an interpreter
	Verifying the interpreter

	Related work
	Previous Nix semantics
	Missing features
	Bindings and substitution
	Non-academic work on Nix

	Conclusions
	Future work

	Confluence of Mininix

