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Abstract

In the context of symmetric encryption, primitives are usually evaluated in a single-user
setting. The security bounds found by these evaluations often degrade in a multi-user setting.
To prevent this degradation, Giacon, Kiltz and Poettering propose giving a primitive a new
input to distinguish between users within the context of hybrid encryption (PKC 2018). In
this work, where we refer to this new input as a lock, we investigate how these locks work in
a broader context by looking at the generic composition of authenticated encryption. We do
this by first formalizing authenticated encryption using locks and then looking at different
compositions following insights from Namprempre, Rogaway and Shrimpton (Eurocrypt
2014). We investigate three generic composition methods using locks and conclude that all
three are secure.
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1 Introduction

To be able to safely send a message between two parties, this message needs to be encrypted. For
this encryption, a secret shared key is needed. Whenever multiple messages are sent, a new key
should be used for every message to ensure forward secrecy of messages. As establishing a new
key can be expensive, public-key encryption uses a long-term key to generate ephemeral keys.
Public-key encryption is typically implemented using a hybrid paradigm: To encrypt a message,
an ephemeral key is generated from the long-term key using a randomized key encapsulation
mechanism (KEM). This key is then used to encrypt the message using a deterministic data
encapsulation mechanism (DEM). Both the KEM and DEM output their respective ciphertexts,
which are then concatenated to form the public-key encryption ciphertext.

Classical analysis of DEMs considers a single user. Therefore, the security bounds of these
analyses do not always transfer to the real world where one can have millions of users. To make
sure the security bounds are also good when there are many users, one can use larger ephemeral
keys. Although using these larger keys for DEMs is generally safer, expanding the size of the
key might not always be a viable option. This can be due to limitations in computing power
or memory, as well as security primitives having fixed key sizes. As an alternative solution to
key expansion in a multi-user setting, Giacon, Kiltz and Poettering, henceforth GKP, propose
augmentation using locks [1] (originally called tags, but renamed to locks here to avoid over-
loaded terms). This augmentation gives the security primitive a lock as an additional input
field to distinguish multiple users using the same key. The augmentation can improve security
in a multi-user setting, without the need to expand the key. After defining this augmentation,
GKP apply the augmentation to a DEM and a MAC function, to create an augmented DEM
(ADEM) and an augmented MAC (AMAC). These two primitives are combined afterwards to
construct an authenticated encryption primitive which is proven secure whenever the ADEM
and AMAC are secure. When constructing this authenticated encryption primitive, the generic
encrypt-then-MAC composition from Bellare and Namprempre [2] is used.

Although the ADEM+AMAC composition given by GKP is secure, it is not clearly defined
as an authenticated encryption primitive. As a result, its security is evaluated as a DEM, in-
stead of as an authenticated encryption primitive. Additionally, we should note that the generic
composition of authenticated encryption has, since the original study of Bellare and Namprem-
pre, been revised by Namprempre, Rogaway and Shrimpton [3], which we henceforth call NRS.
In this revision, the generic composition using a MAC function and a deterministic encryption
primitive is more thoroughly investigated. The original study found only the encrypt-then-MAC
composition to be secure. NRS shine light on the fact that the security of the generic composi-
tions depends on the kind of encryption primitives used, as well as the desired end result. Hence,
the composition should be re-evaluated if the context changes. To continue, they evaluate all
possible generic compositions using a nonce-based encryption primitive and a MAC function.
When using these to construct nonce-based authentication, three composition methods called
encrypt-and-MAC, encrypt-then-MAC and MAC-then-encrypt are proven to be secure whenever
the underlying primitives are secure.

In this thesis, the generic composition of authenticated encryption using locks is more thor-
oughly investigated. This investigation will lead to a better understanding of the security of
locks, and in which context it is a viable solution to security degradation in a multi-user setting.
Additionally, we will define a specification of the lock-based authenticated encryption primitives,
which. This specification, combined with three different generic compositions that we prove se-
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cure, will be a first step towards using the locks outside the context of hybrid encryption. We
formally compare the constructions and the notation from NRS and GKP (Section 3). To eval-
uate generic composition using locks, we define a new cryptographic primitive which we analyze
in a multi-user setting (Section 4). Using the knowledge from NRS, three generic compositions
(encrypt-and-MAC, encrypt-then-MAC and MAC-then-encrypt) of this primitive are considered,
all using a lock-based encryption primitive and a lock-based MAC function (Section 5). We prove
these three compositions to be secure, whenever the underlying primitives are secure (Section
6). Afterwards, some use cases of the new primitive are discussed (Section 7).

2 Preliminaries

In this section, we will explain several concepts important to the rest of our work, as well as
some general notation.

2.1 General Notation

Unless otherwise stated, strings are assumed to be binary and the set of all strings is {0, 1}∗.
The length of x is written as |x|, the concatenation of x and y as x ∥ y, a being the result of

b as a ← b, and taking a uniform random sampling from set z and assigning it to x as x
$←− z.

We write N for the number of users and allow a single type of error message written as ⊥. Any
tuple containing ⊥ will be ⊥ as well. We define the following spaces, all of them being subsets
of the set of all strings: nonempty key space K, lock space L, nonce space N , message space
M, ciphertext space C, tag space T , and associated data space A. Unless stated otherwise,M
contains at least two strings, and if M or A contains a string of length x, it must contain all
strings of length x. There are no further constraints on these spaces.

2.2 Authenticated Encryption

Two different security requirements are data privacy, the insurance that data cannot be viewed
by an unauthorized party, and data integrity, the insurance that data has not been modified by
an unauthorized party. Authenticated encryption combines both of these security requirements
into one and ensures both data privacy and integrity. A basic authenticated encryption scheme
consists of an encryption call and a decryption call. The encryption call takes a message and
a key to a self-authenticating ciphertext while the decryption call takes a self-authenticating
ciphertext and a key to a message. Some authenticated encryption schemes allow an additional
input AD, short for associated data. The associated data is specifically required to not have data
privacy but does require data integrity. When an authenticated encryption scheme supports AD,
it is called an AEAD scheme.

2.3 Message Authentication

Message authentication can be done using a message authentication code, MAC for short. A
basic MAC function takes a message and key and outputs a tag that authenticates the message.
Some MAC functions also have a verification call that takes in a message, key and tag and
outputs either true or false. A MAC function can have different security requirements. It is
said to be PRF secure when it is infeasible to distinguish the output tag from the result of a
pseudo-random function that takes all possible message-key pairs to the tag space. A MAC is
said to be unforgeable when it is infeasible to create a valid message-tag pair without knowledge
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of the secret key. A PRF secure MAC is also unforgeable, given the tag space is big enough,
while an unforgeable MAC is not necessarily PRF secure.

2.4 Nonces and Locks

A basic deterministic encryption scheme takes a message and key as input and outputs a ci-
phertext. Using this encryption scheme, a message encrypted under the same key leads to the
same ciphertext. Both GKP (Giacon, Kiltz and Poettering) and NRS (Namprempre, Rogaway
and Shrimpton) resolve this by giving the encryption scheme an additional argument. GKP use
locks while NRS use nonces. Although nonces and locks look similar, their purpose and exact
working differ leading to different use cases. Most notably, nonces are only useful when one user
is allowed to encrypt multiple messages while locks are only useful when there are multiple users.

Nonces Using a basic deterministic encryption scheme, a message encrypted twice by the
same user using the same key results in the same ciphertext. This can leak information about
the message, which can be prevented by using a nonce. A nonce is a number that is assumed to
only be used once per user to encrypt a message. Whenever a message is encrypted twice with
the same key, but with two different nonces, the resulting ciphertexts should be indistinguishable
from two ciphertexts corresponding to two different messages. As a result, it is infeasible for an
adversary to guess if a message has been sent multiple times. When evaluating the security, the
adversary is usually allowed to let a user decrypt multiple messages with a single nonce. Nonces
are only used when a user uses its key multiple times, as otherwise a message will never be
encrypted by the same user twice.

Locks Using a basic deterministic encryption scheme, a message encrypted by two users that
have the same key results in the same ciphertext. This can leak information about the secret
keys used, which can be prevented by using locks. Whereas nonces are bound to the message,
locks are bound to the user. Each user has one lock, provided the users have one key each, and
will encrypt all their messages using that lock. Whenever a message is encrypted twice with
the same key, but with two different locks, the resulting ciphertexts should be indistinguishable
from two ciphertexts corresponding to two different messages. As a result, it is infeasible for
an adversary to see when two users have a key collision unless locks collide as well. To prevent
collisions in locks, we assume locks to be globally unique. The adversary is usually only allowed
to let a user decrypt messages with the correct lock. Locks are only used in a multi-user setting,
as key collision is impossible when there is only one user.

2.5 Security Notions

The security of a cryptographic construction can be modeled as a distinguishing advantage.
When doing this, different security notions are formed based on what one distinguishes on. To
understand NRS and GKP as well as how they differ, it is important to understand which security
notions they use. All the relevant notions are written below.

Active, Passive or Authenticated Encryption Security can be modeled against a passive
or an active attacker. A passive attacker can only read the messages while an active attacker can
also alter the messages. A passive attacker can be modeled using a chosen plaintext attack, CPA
for short. In this model, the adversary can choose the plaintext that is encrypted, but not the
ciphertext that is decrypted. An active attacker can be modeled using a chosen ciphertext attack,
CCA for short. In this model, the adversary can choose the plaintext that is encrypted, as well



Bachelor Thesis Page 4

as the ciphertext that is decrypted. A Stricter version of the CCA model is the Authenticated
Encryption model, AE for short. This model combines CCA with the requirement that the
adversary can not forge a valid ciphertext. Shorthand notations for the three are IND-CPA, IND-
CCA, and IND-AE respectively. IND-CCA implies IND-CPA, but not the other way around.
Similarly, IND-AE implies IND-CCA, but not the other way around. Both GKP and NRS
model the underlying encryption primitive using IND-CPA. They differ in how they model the
authenticated encryption primitive, GKP uses IND-CCA for this while NRS uses IND-AE.

$ or Left-or-right Left-or-right-indistinguishablility refers to a situation where the adversary
gives two messages and in return receives a ciphertext. To break the security, the adversary has
to guess which of the two messages corresponds to the ciphertext. $-indistinguishability refers
to a situation where the adversary is given access to either the real construction or to a lazily
sampled random function $. This random function returns a random string with the same length
as the ciphertext would have. To break the security, the adversary has to guess which of the
two it has access to. As long as the length of the ciphertext only depends on the length of the
message, not its content, IND-$ implies IND-LOR, but not the other way around. IND-$ is used
by GKP and IND-LOR is used by NRS.

Both the power of the adversary and the indistinguishability are separate dimensions that can
be combined into six different notions. For example, IND-$-CCA refers to a situation where the
adversary has to distinguish between the real construction, or a random function while being
able to choose both the plaintext that is encrypted and the ciphertext that is decrypted.

Game Based Security Notions These security notions can be written in a game-based
format, using pseudocode instead of text. As an example, the IND-$-CPA game of a nonce-
based encryption scheme can be found in Figure 1. A challenge bit b is given to the game, in
this case, b signals whether we are in the real or the ideal world. The adversary guesses this bit
and returns b′, signaling its guess for b. In addition, the adversary can have access to oracles
which represent queries to users. In our example, there is only the encryption oracle that takes
a nonce and a message. Using game-based notation, one can write out all the limitations clearly.
For example, the limitation that nonces cannot be reused is modeled by lines 0, 5 and 6. Lines
8 and 9 model how the random function $ behaves. Although these limitations could be written
out in text-based format as well, writing it out in a game-based format can make the security
notion, as well as the security proofs, more comprehensible and precise.

2.6 Security Proofs of Generic Composition

To prove the security of a generic composition we can use a security reduction. To define a
reduction we bind the advantage on the generic composition in terms of the advantages on
the underlying primitives. This can be done by proving that, if we can break the security of
the generic composition, then we can use this to break the security of one of the underlying
primitives as well. After proving this, we can conclude that the composition is secure, as long as
the underlying primitives are secure. A security reduction is said to be loose when it is linear in
the amount of users and tight when it is constant.
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3 NRS and GKP in Detail

In this section, we explain the parts of the papers from GKP and NRS that are important to our
work. Afterwards, a comparison is made between the two. Some notations will be different from
the original papers for improved consistency. What are called tags by GKP, we will call locks
instead to avoid confusion with the output of MAC functions. Similarly, we call the output of
the AMAC the tag, instead of the ciphertext. The security notions from NRS are converted to
a game-based format using insights from Cremers et al. [4] to better match the notation from
GKP and be more adaptable to a multi-user setting. These security games are only explained
briefly in this section, a more in-depth explanation of the relevant constructions can be found in
Section 4.2.

3.1 NRS

Three generic ways to compose an authenticated encryption scheme are discussed in a paper
written by Bellare and Namprempre [2]: encrypt-then-MAC, encrypt-and-MAC and MAC-then-
encrypt. In that paper, encrypt-then-MAC is considered the only secure composition when
using probabilistic encryption as a building block. NRS note that the type of encryption scheme
used, as well as the desired end result influences which compositions are secure. Consequently,
the result from Bellare en Namprempre is only applicable when using probabilistic encryption.
Afterward, all generic compositions are defined using a nonce-based encryption scheme, nA for
short, and a PRF secure MAC function to create a nonce-based authenticated encryption scheme,
nAE for short. With these primitives, they find all three earlier named compositions to be secure.
Note that NRS include Associated Data (AD) in the authenticated encryption primitive. Below
we describe the primitives, their security, and the compositions more in depth.

3.1.1 Primitives

nE A nonce-based encryption scheme is defined by a triple Π = (K,E,D). Deterministic
encryption algorithm E takes three inputs (k, n,m) and outputs a value c, the length of c only
depends on the lengths of k, n and m. If, and only if, (k, n,m) is not in K ×N ×M, c will be
⊥. Decryption algorithm D takes three inputs (k, n, c) and outputs a value m. Both E and D
are required to satisfy correctness (if E(k, n,m) = c ̸= ⊥, then D(k, n, c) = m) and tidiness (if
D(k, n, c) = m ̸= ⊥, then E(k, n,m) = c).

nE security The security of a nE is defined as

AdvnE
Π ,A = Pr[nE-IND-$-CPA0

A = 0]− Pr[nE-IND-$-CPA1
A = 0]

where nE-IND-$-CPA is in Figure 1. Set U keeps track of all used nonces as the adversary is not
allowed to repeat nonces.

MAC A MAC is defined by an algorithm F that takes a key k in K and a string m and outputs
either a n-bit tag t or ⊥. The domain of F is the set X such that F(k,m) ̸= ⊥ is in X, this
domain may not depend on k.

MAC security NRS require the MAC to be PRF secure. The security is defined as

AdvMAC
F,A = Pr[MAC-PRF0

A = 0]− Pr[MAC-PRF1
A = 0]

where MAC-PRF is in Figure 2. In this game, the set U keeps track of the used messages to
prevent the adversary from trivially winning the security game.
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Game nE-IND-$-CPAb
A

0 : U ← ∅

1 : k
$←− K

2 : b′ ← A

3 : return b′

Oracle Oenc(n,m)

5 : if n ∈ U : return ⊥
6 : U ← U ∪ {n}
7 : c← E(k, n,m)

8 : if b = 1 ∧ c ̸= ⊥ :

9 : c
$←− {0, 1}|c|

10 : return c

Figure 1: nE-IND-$-CPA game, A has access to oracle Oenc.

Game MAC-PRFb
A

0 : U ← ∅

1 : k
$←− K

2 : b′ ← A

3 : return b′

Oracle Omac(m)

4 : if m ∈ U : return ⊥
5 : U ← U ∪ {m}
6 : t← F(k,m)

7 : if b = 1 ∧ t ̸= ⊥ :

8 : t
$←− {0, 1}|t|

9 : return t

Figure 2: MAC-PRF, A has access to oracle Omac and U is the set of used messages.

nAE A nonce-based authenticated encryption scheme is defined by a triple Π = (K,E,D).
Deterministic encryption algorithm E takes four inputs (k, n, a,m) and outputs a value c, the
length of c only depends on the lengths of k, n, a and m. If, and only if, (k, n, a,m) is not in
K×N ×A×M, c will be ⊥. Decryption algorithm D takes four inputs (k, n, a, c) and outputs
a value m. Both E and D are required to satisfy correctness (if E(k, n, a,m) = c ̸= ⊥, then
D(k, n, a, c) = m) and tidiness (if D(k, n, a, c) = m ̸= ⊥, then E(k, n, a,m) = c).

nAE security The security of a nAE is defined as

AdvnAE
Π ,A = Pr[nAE-IND-$-AE

0
A = 0]− Pr[nAE-IND-$-AE

1
A = 0]

where nAE-IND-$-AE is in Figure 3. The adversary is not allowed to repeat nonces on encryption.
Set U keeps track of all used nonces. Following the translation of IND-$-AE to a security game
for AE from Cremers et al. [4], denotes a variable that is irrelevant and set Q keeps track of
all query results to prevent trivial wins.

3.1.2 Composition

NRS define 20 different schemes that compose an nAE from an nE and a MAC function. They
define a composition to be secure if there is a tight reduction from breaking the nAE-security
of the scheme to breaking the nE-security and the PRF security of the underlying primitives.
Three different schemes, named N1, N2 and N3, were proven to be secure. Noteworthy is
that these relate to encrypt-and-MAC, encrypt-then-MAC and MAC-then-encrypt, respectively.
Additionally, they propose a scheme N4, for which they can not prove it secure, nor find a
counterexample to prove it is insecure. However, this case has since been proven to be insecure
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Game nAE-IND-$-AEb
A

0 : U ← ∅
1 : Q← ∅

2 : k
$←− K

3 : b′ ← A

4 : return b′

Oracle Oenc(n, a,m)

6 : if n ∈ U : return ⊥
7 : U ← U ∪ {n}
8 : if (n, a,m, ) ∈ Q : return ⊥
9 : c← E(k, n, a,m)

10 : if b = 1 ∧ c ̸= ⊥ :

11 : c
$←− {0, 1}|c|

12 : Q← Q ∪ {(n, a,m, c)}
13 : return c

Oracle Odec(n, a, c)

14 : if b = 1 : return ⊥
15 : if (n, a, , c) ∈ Q : return ⊥
16 : m← D(k, n, a, c)

17 : Q← Q ∪ {(n, a,m, c)}
18 : return m

Figure 3: nAE-IND-$-AE game, A has access to oracles Oenc and Odec.

as well [5] so is not considered here. All four schemes can be viewed in Figure 6 of the original
paper by NRS.

3.2 GKP

GKP discuss the concept of augmentation using locks to prevent security degradation in a multi-
user setting. They start by showing how some data encapsulation mechanisms are vulnerable to
both a passive multi-instance distinguishing attack and a key recovery attack. These vulnerabil-
ities lead to the degradation of the security bounds found in analyses considering only a single
user. As an alternative solution to expanding the key size, they define augmentation using locks.
When augmenting with a lock, you introduce a new input value which is assumed to be unique
per user. Unlike the key, the lock is not secret. They show how you can augment both a DEM
and a MAC to get an ADEM and AMAC respectively. Afterward, they combine these two to
construct an ADEM that is safe against active attackers. Below we describe the primitives, their
security, and their composition more in-depth.

3.2.1 Primitives

ADEM An ADEM scheme is defined by a tuple (A.enc,A.dec). Deterministic algorithm A.enc
takes a key k in K, a lock l in L and a message m in M and outputs a ciphertext c in C.
Deterministic algorithm A.dec takes a k in K, a lock l in L and a ciphertext c in C and outputs
a message m in M or ⊥ to indicate rejection. The correctness requirement is that for every
combination of k, l and m we have A.dec(k, l,A.enc(k, l,m)) = m. We will consider both CPA
and CCA security separately for this scheme.

ADEM security The security of an ADEM, is defined as

Advl-ind-lor
ADEM,A,N = Pr[L-IND-LOR0

A,N = 0]− Pr[L-IND-LOR1
A,N = 0]

where L-IND-LOR is in Figure 4. Every user is only allowed one encryption query as enforced
by lines 3, 6 and 11. Locks may not repeat between users as enforced by lines 0, 7, 8 and 9.
Decryption queries are only allowed after the given user made an encryption as enforced by lines
3, 11 and 13. Line 14 prevents trivial distinctions. Note that the figure includes a decryption
oracle. When considering the CPA security of an ADEM, the adversary is not allowed to use
this oracle.
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Game L-IND-LORb
A,N

0 : L← ∅
1 : for j ∈ [1..N ] :

2 : kj
$←− K

3 : Cj ← ∅
4 : b′ ← A

5 : return b′

Oracle Oenc(j, l,m0,m1)

6 : if Cj ̸= ∅ : return ⊥
7 : if l ∈ L : return ⊥
8 : L← L ∪ {l}
9 : lj ← l

10 : c← A.enc’(kj , lj ,mb)

11 : Cj ← Cj ∪ {c}
12 : return c

Oracle Odec(j,c)

13 : if Cj = ∅ : return ⊥
14 : if c ∈ Cj : return ⊥
15 : m← A.dec’(kj , lj , c)

16 : return m

Figure 4: L-IND-LOR, A has access to oracles Oenc and Odec. The locks in lines 10 and 15 are
the same. The corresponding game can be found in Figure 9 from GKP

Game L-MIOT-UFA,N

0 : forged← 0

1 : L← ∅
2 : for j ∈ [1..N ] :

3 : kj
$←− K

4 : Tj ← ∅
5 : run A

6 : return forged

Oracle Omac(j, l,m)

7 : if Tj ̸= ∅ : return ⊥
8 : if l ∈ L : return ⊥
9 : L← L ∪ {l}

10 : lj ← l

11 : t← M.mac(kj , lj ,m)

12 : Tj ← Tj ∪ {(m, t)}
13 : return t

Oracle Ovrf(j,m, t)

14 : if Tj = ∅ : return ⊥
15 : if (m, t) ∈ Tj : return ⊥
16 : if M.vrf(kj , lj ,m, t) :

17 : forged← 1

18 : return true

19 : else : return false

Figure 5: L-MIOT-UF game, A has access to oracles Omac and Ovrf. The locks in lines 11 and
16 are the same. The corresponding game can be found in Figure 15 of GKP.

AMAC An AMAC scheme is defined by a tuple (M.mac,M.vrf). Deterministic algorithm
M.mac takes a key k in K, a lock l in L, and a message m in M and outputs a tag t in T .
Deterministic algorithm M.vrf takes a key k in K, a lock l in L, a message m inM and a tag t
in T and returns either true or false. The correctness requirement is that for every combination
of k, l and m, all corresponding t ←M.mac(k, l,m) gives M.vrf(k, l,m, t) = true.

AMAC security The security of an AMAC is defined as

AdvL-MIOT-UF
AMAC,A,N = Pr[L-MIOT-UFA,N = 1]

where L-MIOT-UF is in Figure 5. Every user is only allowed one MAC query as enforced by lines
4, 7 and 12. Locks may not repeat between users as enforced by lines 1, 8, 9 and 10. Verification
queries are only allowed after the user makes a MAC query as enforced by lines 4, 12 and 14.
Line 15 prevents trivial distinctions.

Definitional Differences GKP do not require M to contain at least two strings, and to
contain all strings of length x if it contains a string of length x. Additionally, K is required to
be finite but not required to be non-empty.
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Proc A.enc(k, l,m)

0 : (kdem, kmac)← k

1 : c′ ← A.enc′(kdem, l,m)

2 : t← M.mac(kmac, l, c
′)

3 : c← (c′, t)

4 : return c

Proc A.dec(k, l, c)

5 : (kdem, kmac)← k

6 : (c′, t)← c

7 : if M.vrf(kmac, l, c
′, t) :

8 : m← A.dec′(kdem, l, c′)

9 : return m

10 : else : return ⊥

Figure 6: A.enc and A.dec algorithms, the algorithms calls can be found in Figure 16 of GKP.
A.enc′ and A.dec′ refer to the A.enc and A.dec from the CPA-secure ADEM

3.2.2 Composition

GKP construct an ADEM scheme that is CCA secure, using an ADEM scheme that is CPA
secure and an AMAC scheme. Their composition follows the encrypt-then-MAC method from
Bellare and Namprempre [2] and is thus similar to composition N2 from NRS. The algorithms
A.enc and A.dec that form the CCA-secure ADEM are in Figure 6. Note that in this figure,
A.enc′ and A.dec′ refer to the A.enc and A.dec from the underlying CPA-secure ADEM. They
define the composition to be secure as there is a tight reduction from breaking the CCA security
of the ADEM to breaking the CPA security of the underlying ADEM or the AMAC security of
the underlying AMAC.

3.3 Comparison of GKP and NRS

In this section, we will highlight how GKP and NRS differ, as well as why.

Context and Aim Historically, a single user that reuses a single key is considered in a sym-
metric context, NRS follow this trend as they wrote in this context. In contrast, GKP wrote in
the context of hybrid encryption, a context that considers multiple users that use their encryption
key once. Apart from this difference in context, there is also a different aim. While NRS aim to
generalize the generic nAE composition, GKP aim to find a single composition that can be used
for hybrid encryption. Most notably, this results in NRS evaluating 20 possible compositions
while GKP evaluate one. Additionally, NRS incorporate AD while GKP do not.

Security Notion The security notions from both papers also reflect the differences in contexts.
NRS write the security notions in a IND-$-AE fashion, common in symmetric cryptography.
Conversely, GKP write them in an IND-LOR-CPA fashion, common in Hybrid encryption. As a
result, the MAC primitives of the two papers have different security requirements. NRS require
the tag to be indistinguishable from a random string while GKP require the tag to be unforgeable.
Additionally, NRS models a situation in which the adversary can not forge a valid cythertext
while GKP does not. Furthermore, because of the different settings, NRS consider nonces while
GKP consider locks.

4 Lock-based Authenticated Encryption

To evaluate the security of generic composition using locks, we define a new security primitive:
the lock-based Authenticated Encryption scheme, or lAE scheme for short. This lAE is similar



Bachelor Thesis Page 10

Game lAE-IND-$-AEb
A,N

0 : L← ∅
1 : for j ∈ [1..N ] :

2 : kj
$←− K

3 : Cj ← ⊥
4 : b′ ← A

5 : return b′

Oracle Oenc(j, l,m)

6 : if Cj ̸= ⊥ : return ⊥
7 : if l ∈ L : return ⊥
8 : L← L ∪ {l}
9 : lj ← l

10 : c← AE.enc(kj , lj ,m)

11 : if b = 1 ∧ c ̸= ⊥ :

12 : c
$←− {0, 1}|c|

13 : Cj ← c

14 : return c

Oracle Odec(j, c)

15 : if Cj = ⊥ : return ⊥
16 : if c = Cj : return ⊥
17 : m← AE.dec(kj , lj , c)

18 : if b = 1 : m← ⊥
19 : return m

Figure 7: lAE-IND-$-AE game, adversary has access to oracles Oenc and Odec.

to the nAE from NRS, but it uses locks instead of nonces. Another difference is that it does not
use associated data (AD). We will evaluate the security in a multi-user setting where encryption
keys are used once.

4.1 lAE

A lAE scheme is defined by a tuple (AE.enc,AE.dec). Deterministic algorithm AE.enc takes
three inputs (k, l,m) and outputs a value cin c, where the length of c only depends on the
lengths of k, l and m. If, and only if, (k, l,m) is not in K × L ×M, c will be ⊥. Deterministic
algorithm AE.dec takes three inputs (k, l, c) and outputs a value m. Both AE.enc and AE.dec
are required to satisfy correctness (if AE.enc(k, l,m) = c ̸= ⊥, then AE.dec(k, l, c) = m) and
tidiness (if AE.dec(k, l, c) = m ̸= ⊥, then AE.enc(k, l,m) = c).

4.2 lAE Security Model

The security of the lAE is defined as

AdvlAE
A,N = Pr[lAE-IND-$-AE

0
A,N = 0]− Pr[lAE-IND-$-AE

1
A,N = 0]

where lAE-IND-$-AE is in Figure 7. We consider multiple users who use their keys once. Con-
sequently, the user is only allowed one encryption query. We allow decryption queries of a user
only after an encryption has been made. On decryption, we use a function that always returns
⊥. This is to model that the adversary can not forge a valid ciphertext. The idea behind the
resulting security game is explained below.

Multiple users Line 1 loops over all the users to initialize them with a random key in line
2 and an invalid ciphertext in line 3. Whenever the adversary calls one of the oracles Oenc or
Odec, it has to specify user j.

Locks Line 0 initializes the set of all used locks to the empty set. Locks are not allowed to
repeat, if the lock is in the set of used locks we return ⊥ on line 7. If this check passes, we add
the lock to the sets of used locks in line 8 and bind it to the user in line 9. Note that locks may
be added to the set of used locks even if they are never used to encrypt a valid message.
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One-time use keys The variable Cj is used to prevent multiple encryptions per user. We do
not use set notation, as we can never have multiple ciphertexts related to one user. In line 3, we
set Cj to be undefined, if the ciphertext is defined in line 6, we return ⊥. In line 13, the newly
computed ciphertext is bound to Cj . If the encryption is invalid, Cj will stay undefined, this
leads to the adversary being able to call Oenc twice on a single user. This will however not give
the adversary an advantage as the values for which AE.enc returns ⊥ are known. If the user has
made no valid encryption yet and thus Cj is undefined, decryption is not allowed and we return
⊥ on line 15.

Preventing trivial distinctions Line 16 prevents trivial distinctions. If the ciphertext given
to Odec is allowed to be the same as the ciphertext returned by Oenc, it would be trivial to
distinguish the real and ideal world. This is because, when presented with this ciphertext, the
user would return ⊥ in the ideal world while it would return the original message in the real
world. To prevent this trivial distinction, the user returns ⊥ in the real world as well when
presented with the ciphertext it computed.

Encryption and decryption If the given arguments are valid, and we are in the real world,
line 10 encrypts the message, and line 17 decrypts the message.

Implementation of $ On encryption, whenever AE returns ⊥, the random function should
return ⊥ as well. Therefore, the random function is only called if b = 1 and AE.enc does not
return ⊥. If this check in line 11 passes, the random function lazily samples a string uniformly
at random with the length of the ciphertext. This random string is bound to the ciphertext in
line 12. On decryption, the ideal world always returns ⊥.

5 Composition

In this section, we discuss how we can construct a safe lAE. Similarly to GKP and NRS we will
look at compositions combining a deterministic encryption primitive and MAC primitive. First,
we write down the definitions of these two primitives, then we will look at how we can combine
the two and which security bounds we can expect.

5.1 Used Primitives

lE A lock-based encryption scheme, lE for short, is defined by a tuple (E.enc,E.dec). Deter-
ministic algorithm E.enc takes three inputs (k, l,m) and outputs a value cin c, the length of c
only depends on the lengths of k, l and m. If, and only if, (k, l,m) is not in K×L×M, c will be
⊥. Deterministic algorithm E.dec takes three inputs (k, l, c) and outputs a value m. Both E.enc
and E.dec are required to satisfy correctness (if E.enc(k, l,m) = c ̸= ⊥, then E.dec(k, l, c) = m)
and tidiness (if E.dec(k, l, c) = m ̸= ⊥, then E.enc(k, l,m) = c).

lE security The security of a lE is defined as

AdvlE
A,N = Pr[lE-IND-$-CPA0

A,N = 0]− Pr[lE-IND-$-CPA1
A,N = 0]

where lE-IND-$-CPA is in Figure 8. The user is only allowed one encryption query and decryption
queries are only allowed after the encryption. Locks may not repeat between users.
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Game lE-IND-$-CPAb
A,N

0 : L← ∅
1 : for j ∈ [1..N ] :

2 : kj
$←− K

3 : Cj ← ⊥
4 : b′ ← A

5 : return b′

Oracle Oenc(j, l,m)

6 : if Cj ̸= ⊥ : return ⊥
7 : if l ∈ L : return ⊥
8 : L← L ∪ {l}
9 : lj ← l

10 : c← E.enc(kj , lj ,m)

11 : if b = 1 ∧ c ̸= ⊥ :

12 : c
$←− {0, 1}|c|

13 : Cj ← c

14 : return c

Figure 8: lE-IND-$-CPA game, A has access to oracle Oenc.

lMAC A lock-based MAC is defined by a deterministic algorithm M.mac that takes a fixed
length k in K, a fixed length l in L and a variable-length message m inM and outputs either a
n-bit length string in T we call tag t, or ⊥. If, and only if, (k, l,m) is not in K × L×M, t will
be ⊥. The tag space T consists of all valid tags.

lMAC security The security of a lock bases, PRF secure MAC is defined as

AdvlMAC
F,A,N = Pr[lMAC-PRF0

A,N = 0]− Pr[lMAC-PRF1
A,N = 0]

where lMAC-PRF is in Figure 9. Every user is only allowed one MAC query and verification
queries are only allowed after the MAC query. Locks may not repeat between users. In contrast
to the MAC-PRF from NRS, a verification oracle is needed as we only allow one Omac query
per user. In the real world, Ovrf will check similar constraints as the Odec from Figure 7. If an
Omac query has been made for the given user, and the given message-tag pair is not the result
of this query, then the pair is verified. In the ideal world, uniformly random function tag is used
instead of the lMAC. To define this function we write Func(K×L×M, T ) to denote the set of
all functions from key space K, lock space L and message spaceM to tag space T . We need to
define this function specifically as we want the tags resulting from computations in oracle Ovrf
to match with those in oracle Omac. When the input of tag is outside its domain, it will return
⊥.

5.2 Composition

Following NRS, three ways to construct this lAE are of interest, namely, the ones related to
schemes N1, N2 and N3. All three schemes, adjusted to our setting, are in Figure 10. NRS
consider 17 more schemes but as none of them has proven to be secure we will not consider those
in this work. The AE.enc and AE.dec calls corresponding to N1, N2 and N3 are in Figure 11,
12 and 13 respectively.

5.3 Security Bounds

We define the composition secure if there is a tight reduction from breaking the lAE-security of
the scheme to breaking the lE-security or the lMAC security of the underlying primitives. More
specifically, define it to be secure if we prove the following theorem:
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Game lMAC-PRFb
A,N

0 : L← ∅
1 : if b = 1 :

2 : tag
$←− Func(K × L×M, T )

3 : for j ∈ [1..N ] :

4 : kj
$←− K

5 : Tj ← ⊥
6 : b′ ← A

7 : return b′

Oracle Omac(j, l,m)

8 : if Tj ̸= ⊥ : return ⊥
9 : if l ∈ L : return ⊥

10 : L← L ∪ {l}
11 : lj ← l

12 : t← M.mac(kj , lj ,m)

13 : if b = 1 ∧ t ̸= ⊥ :

14 : t← tag(kj , lj ,m)

15 : Tj ← (m, t)

16 : return t

Oracle Ovrf(j,m, t)

15 : if Tj = ⊥ : return ⊥
16 : if (m, t) = Tj : return ⊥
17 : t′ ← M.mac(kj , lj ,m)

18 : if b = 1 :

19 : t′ ← tag(kj , lj ,m)

20 : if t = t′

21 : return true

22 : return false

Figure 9: lMAC-PRF game, A has access to oracle Omac.

Figure 10: Adjusted N schemes from NRS

AE.enc(k, l,m)

0 : (k1, k2)← k

1 : c′ ← E.enc(k1, l,m)

2 : t← M.mac(k2, l,m)

3 : c← (c′, t)

4 : return c

AE.dec(k, l, c)

5 : (k1, k2)← k

6 : (c′, t)← c

7 : m← E.dec(k1, l, c′)

8 : t′ ← M.mac(k2, l,m)

9 : if t ̸= t′ : m← ⊥
10 : return m

Figure 11: AE.enc an AE.dec based on N1
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AE.enc(k, l,m)

0 : (k1, k2)← k

1 : c′ ← E.enc(k1, l,m)

2 : t← M.mac(k2, l, c′)

3 : c← (c′, t)

4 : return c

AE.dec(k, l, c)

5 : (k1, k2)← k

6 : (c′, t)← c

7 : m← E.dec(k1, l, c′)

8 : t′ ← M.mac(k2, l, c′)

9 : if t ̸= t′ : m← ⊥
10 : return m

Figure 12: AE.enc an AE.dec based on N2

AE.enc(k, l,m)

0 : (k1, k2)← k

1 : t← M.mac(k2, l,m)

2 : m′ ← m∥t
3 : c← E.enc(k1, l,m′)

4 : return c

AE.dec(k, l, c)

5 : (k1, k2)← k

6 : m′ ← E.dec(k1, l, c)

7 : (m, t)← m′

8 : t′ ← M.mac(k2, l,m)

9 : if t ̸= t′ : m← ⊥
10 : return m

Figure 13: AE.enc an AE.dec based on N3

Theorem 1. Let lAE be constructed from lMAC and lE as described in Figure 11, 12 or 13. Let
ciphertext space C from the lE be a subset of message spaceM from the lMAC and let lMAC and
lE have a shared lock space. Then, for any number of users N and any lAE adversary A that
poses at most Qe many Oenc queries, and at most Qd many Odec queries, there exist a lMAC
adversary B and a lE adversary C such that:

AdvlAE
A,N ≤ AdvlMAC

B,N +AdvlE
C,N +

Qd

2n
,

where n is the output length of the lMAC in bits. The running time of B is at most that of A
plus the time required to run Qe many E.enc encapsulations and Qd many E.dec decapsulations.
The running time of C is at most that of A. Additionally, B makes at most Qe many Omac
queries and at most Qd many Ovrf queries and C makes at most Qe many Oenc queries.

Within this theorem, both Qe and Qd refer to the total queries the adversary is allowed to make,
not the queries per user. As a result, Qe is limited by N .

6 Security proof

To prove Theorem 1, we prove it separately for N1, N2 and N3. In this section, the full proof of
case N1 can be found, as well as the main differences between the three cases. The full proof of
cases N2 and N3 can be found in Appendix A.

N1 First, we repeat Theorem 1 specifically for N1:
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Theorem 2. Let lAE be constructed from lMAC and lE as described in Figure 11. Let ciphertext
space C from the lE be a subset of message space M from the lMAC and let lMAC and lE have
a shared lock space. Then, for any number of users N and any lAE adversary A that poses at
most Qe many Oenc queries, and at most Qd many Odec queries, there exist a lMAC adversary
B and a lE adversary C such that:

AdvlAE
A,N ≤ AdvlMAC

B,N +AdvlE
C,N +

Qd

2n
,

where n is the output length of the lMAC in bits. The running time of B is at most that of A
plus the time required to run Qe many E.enc encapsulations and Qd many E.dec decapsulations.
The running time of C is at most that of A. Additionally, B makes at most Qe many Omac
queries and at most Qd many Ovrf queries and C makes at most Qe many Oenc queries.

Within this theorem, both Qe and Qd refer to the total queries the adversary is allowed to make,
not the queries per user. As a result, Qe is limited by N .

Proof. To prove this theorem, we start by defining game lAE-N1 in Figure 14. This game is the
game lAE-IND-$-AE (Figure 7), with AE.enc and AE.dec substituted with the N1 algorithms
found in Figure 11.

Game lAE-N1bA,N

0 : L← ∅
1 : for j ∈ [1..N ] :

2 : kj
$←− K

3 : Cj ← ⊥
4 : b′ ← A

5 : return b′

Oracle Oenc(j, l,m)

6 : if Cj ̸= ⊥ : return ⊥
7 : if l ∈ L : return ⊥
8 : L← L ∪ {l}
9 : lj ← l

10 : (k1, k2)← kj

11 : c′ ← E.enc(k1, lj ,m)

12 : t← M.mac(k2, lj ,m)

13 : c← (c′, t)

14 : if b = 1 ∧ c ̸= ⊥ :

15 : c
$←− {0, 1}|c|

16 : Cj ← c

17 : return c

Oracle Odec(j, c)

18 : if Cj = ⊥ : return ⊥
19 : if c = Cj : return ⊥
20 : (k1, k2)← kj

21 : (c′, t)← c

22 : m← E.dec(k1, lj , c
′)

23 : t′ ← M.mac(k2, lj ,m)

24 : if t ̸= t′ : m← ⊥
25 : if b = 1 : m← ⊥
26 : return m

Figure 14: lAE-N1 game, adversary has access to oracles Oenc and Odec.

By definition, this gives us

AdvlAE
A,N = Pr[lAE-N10A,N = 0]− Pr[lAE-N11A,N = 0].

Next, we define game N1-switch-1 in Figure 15. The only difference between this game and
game lAE-N10 is the fact that N1-switch-1 uses the uniformly random function tag, instead of
the lMAC. To define this function we write Func(K×L×M, T ) to denote the set of all functions
from the key space of the MAC K, the shared lock space L and message space M to the tag
space T . We define this function specifically as we want the tags resulting from computations in
oracle Oenc to match with those in oracle Odec. When the input of tag is outside its domain, it
will return ⊥.
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Game N1-switch-1A,N

0 : L← ∅

1 : tag
$←− Func(Kmac × L×M, T )

2 : for j ∈ [1..N ] :

3 : kj
$←− K

4 : Cj ← ⊥
5 : b′ ← A

6 : return b′

Oracle Oenc(j, l,m)

7 : if Cj ̸= ⊥ : return ⊥
8 : if l ∈ L : return ⊥
9 : L← L ∪ {l}

10 : lj ← l

11 : (k1, k2)← kj

12 : c′ ← E.enc(k1, lj ,m)

13 : t← tag(k2, lj ,m)

14 : c← (c′, t)

15 : Cj ← c

16 : return c

Oracle Odec(j, c)

17 : if Cj = ⊥ : return ⊥
18 : if c = Cj : return ⊥
19 : (k1, k2)← kj

20 : (c′, t)← c

21 : m← E.dec(k1, lj , c
′)

22 : t′ ← tag(k2, lj ,m)

23 : if t ̸= t′ : m← ⊥
24 : return m

Figure 15: N1-switch-1, adversary has access to oracles Oenc and Odec. Key space Kmac is the
key space from M.mac. Lines 13 and 22 are different compared to lAE-N10, additionally, lines
14, 15 and 25 from lAE-N1 are removed.

Using this game, we expand the probability:

AdvlAE
A,N = Pr[lAE-N10A,N = 0]− Pr[N1-switch-1A,N = 0]

+ Pr[N1-switch-1A,N = 0]− Pr[lAE-N11A,N = 0].

Next, we can rewrite Pr[lAE-N1A,N = 0]− Pr[N1-switch-1A,N = 0] into a lMAC advantage. To
do so, we define adversary B against lMAC in Figure 16. This adversary is playing the game
lMAC-PRF (Figure 9), and has access to A.

Adverary B

0 : L← ∅
1 : for j ∈ [1..N ] :

2 : kj
$←− Kenc

3 : Cj ← ⊥
4 : b′ ← run A

5 : return b′

if A calls Oracle Oenc(j, l,m)

6 : if Cj ̸= ⊥ : return ⊥
7 : if l ∈ L : return ⊥
8 : L← L ∪ {l}
9 : lj ← l

10 : c′ ← E.enc(kj , lj ,m)

11 : t← Omac(j, lj ,m)

12 : c← (c′, t)

13 : Cj ← c

14 : return c

if A calls Oracle Odec(j, c)

15 : if Cj = ⊥ : return ⊥
16 : if c = Cj : return ⊥
17 : (c′, t)← c

18 : m← E.dec(kj , lj , c
′)

19 : passed← Ovrf(j,m, t′)

20 : if ¬passed : m← ⊥
21 : return m

Figure 16: Adversary B has access to A and oracles Omac and Ovrf. Key space Kenc is the key
space from E.enc.

The runtime of B is that of A. For every Oenc query A makes, B computes E.enc once and calls
Omac once. For every Odec query A makes, B computes E.dec once and calls Ovrf once. Note
that, alternatively, B could return 0 if passed is true to avoid having to do E.dec computations.
To increase consistency with the other two cases, these computations are still made. We can see



Bachelor Thesis Page 17

that Pr[lMAC-PRF0
B,N = 0] = Pr[lAE-N10A,N = 0] as B perfectly simulates game lAE-N10 when

its own b is 0. In addition, Pr[lMAC-PRF1
B,N = 0] = Pr[N1-switch-1A,N = 0] as B perfectly

simulates game N1-switch-1 whenever its own b is 1. As a result, we can rewrite our advantage
to:

AdvlAE
A,N = Pr[lAE-N10A,N = 0]− Pr[N1-switch-1A,N = 0]

+ Pr[N1-switch-1A,N = 0]− Pr[lAE-N11A,N = 0]

= Pr[lMAC-PRF0
B,N = 0]− Pr[lMAC-PRF1

B,N = 0]

+ Pr[N1-switch-1A,N = 0]− Pr[lAE-N11A,N = 0]

= AdvlMAC
B,N + Pr[N1-switch-1A,N = 0]− Pr[lAE-N11A,N = 0].

To expand our advantage again, we define game N1-switch-2 in Figure 17. Apart from the Odec
query, this game is equivalent to the first switch game. Although, the Odec oracle from N1-
switch-2 always returns ⊥, it is written down more elaborately to include the event bad. This
event is added to support a well-known proof tactic [6]. When expanded again, our advantage
becomes:

AdvlAE
A,N = AdvlMAC

B,N + Pr[N1-switch-1A,N = 0]− Pr[N1-switch-2A,N = 0]

+ Pr[N1-switch-2A,N = 0]− Pr[lAE-N11A,N = 0].

Game N1-switch-2A,N

0 : L← ∅

1 : tag
$←− Func(Kmac × L×M, T )

2 : for j ∈ [1..N ] :

3 : kj
$←− K

4 : Cj ← ⊥
5 : b′ ← A

6 : return b′

Oracle Oenc(j, l,m)

7 : if Cj ̸= ⊥ : return ⊥
8 : if l ∈ L : return ⊥
9 : L← L ∪ {l}

10 : lj ← l

11 : (k1, k2)← kj

12 : c′ ← E.enc(k1, lj ,m)

13 : t← tag(k2, lj ,m)

14 : c← (c′, t)

15 : Cj ← c

16 : return c

Oracle Odec(j, c)

17 : if Cj = ⊥ : return ⊥
18 : if c = Cj : return ⊥
19 : (k1, k2)← kj

20 : (c′, t)← c

21 : m← E.dec(k1, lj , c
′)

22 : t′ ← tag(k2, lj ,m)

23 : if t ̸= t′ : m← ⊥
24 : else :

25 : bad← true

26 : m← ⊥
27 : return m

Figure 17: N1-switch-2 game, adversary has access to oracles Oenc and Odec. Key space Kmac

is the key space from M.mac. Lines 24-26 are different compared to N1-switch-1.

As N1-switch-1 and N1-switch-2 are so called identical-until-bad [6], meaning they are equivalent
as long as the event bad is not set to true, we know:

Pr[N1-switch-1A,N = 0]− Pr[N1-switch-2A,N = 0] ≤ Pr[bad = true].

As bad is set to true if, and only if, t=t′, we can state Pr[bad = true] = Pr[t = t′]. The
adversary needs to provide tag t and ciphertext c′, where ciphertext c′ leads to a message m
that is used as input to the tag function. The provided tag-ciphertext pair may not be the result
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of the encryption query corresponding to the provided user. Combined with the tidiness of the
encryption, it is ensured that, for any sensible adversarial query, the message m cannot be the
message that is encrypted for the provided user. This is because if m would be the encrypted
message, the correct tag cannot be provided and thus no information can be gained with the
query. Consequently, t and t′ are only equal when the adversary can guess the output of tag for
a message that is not encrypted for the provided user. The function tag is uniformly random
so, with every fresh ciphertext, the probability that the guessed t is equal to the correct t′ is 1

2n .

Summed over at most Qd Odec queries we get Pr[t = t′] = Pr[bad = true] ≤ Qd

2n and thus, we

can use Pr[N2-switch-1A,N = 0]− Pr[N1-switch-2A,N = 0] ≤ Pr[bad = true] ≤ Qd

2n to obtain:

AdvlAE
A,N ≤ AdvlMAC

B,N + Pr[N1-switch-2A,N = 0]− Pr[lAE-N21A,N = 0] +
Qd

2n
.

We define game N1-switch-3 in Figure 18 to expand our advantage one last time. Switch game 3
is equivalent to switch game 2 but always returns lazily sampled random bits when the outcome
of E.enc is valid. It might seem like there is a difference as t can no longer become ⊥. This is not
the case as, due to the chosen input spaces of tag, tag can only return ⊥ whenever c′ is already
⊥. As a result, tag will never influence whether or not c on line 12 is ⊥. We also simplify Odec
as we no longer need the event bad. We use this game to expand our advantage to:

AdvlAE
A,N ≤ AdvlMAC

B,N + Pr[N1-switch-2A,N = 0]− Pr[N1-switch-3A,N = 0]

+ Pr[N1-switch-3A,N = 0]− Pr[lAE-N11A,N = 0] +
Qd

2n
.

Game N1-switch-3A,N

0 : L← ∅
1 : for j ∈ [1..N ] :

2 : kj
$←− Kenc

3 : Cj ← ⊥
4 : b′ ← A

5 : return b′

Oracle Oenc(j, l,m)

6 : if Cj ̸= ⊥ : return ⊥
7 : if l ∈ L : return ⊥
8 : L← L ∪ {l}
9 : lj ← l

10 : c′ ← E.enc(kj, lj ,m)

11 : t
$←− {0, 1}n

12 : c← (c′, t)

13 : if c ̸= ⊥ :

14 : c
$←− {0, 1}|c|

15 : Cj ← c

16 : return c

Oracle Odec(j, c)

18 : return ⊥

Figure 18: N1-switch-3 game, adversary has access to oracles Oenc and Odec. Key space Kenc

is the key space from E.enc. Lines 14 and 15 are different compared to N1-switch-2, and Odec
is simplified.

Pr[N1-switch-3A,N = 0] and Pr[lAE-N11A,N = 0] are equivalent by definition, giving:

AdvlAE
A,N ≤ AdvlMAC

B,N + Pr[N1-switch-2A,N = 0]− Pr[N1-switch-3A,N = 0] +
Qd

2n
.
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Next, we can rewrite Pr[N1-switch-2A,N = 0]− Pr[N1-switch-3A,N = 0] into a lE advantage. To
do so, we define adversary C against lE in Figure 19. This adversary is playing game lE-IND-$-
CPA (Figure 8), and has access to A.

Adverary C

0 : L← ∅
1 : for j ∈ [1..N ] :

2 : Cj ← ⊥
3 : b′ ← run A

4 : return b′

if A calls Oracle Oenc(j, l,m)

5 : if Cj ̸= ⊥ : return ⊥
6 : if l ∈ L : return ⊥
7 : L← L ∪ {l}
8 : lj ← l

9 : c′ ← Oenc(j, lj ,m)

10 : t
$←− {0, 1}n

11 : c← (c′, t)

12 : Cj ← c

13 : return c

if A calls Oracle Odec(j, c)

14 : return ⊥

Figure 19: Adversary C has access to A and oracle Oenc. Note the Oenc in line 9 refers to the
encryption oracle Oenc that C has access to, not the oracle Oenc A has access to.

The runtime of C is that of A. For every Oenc query A makes, C makes one Oenc query. We
can see that Pr[N1-switch-2A,N = 0] = Pr[lE-IND-$-CPA0

C,N = 0] as C perfectly simulates N1-
switch-2 when its own b is 0. When its own b is 1, C perfectly simulates N1-switch-3 giving
Pr[N1-switch-3A,N = 0] = Pr[lE-IND-$-CPA1

C,N = 0]. This leads us to:

AdvlAE
A,N ≤ AdvlMAC

B,N + Pr[N1-switch-2A,N = 0]− Pr[N1-switch-3A,N = 0] +
Qd

2n

≤ AdvlMAC
B,N + Pr[lE-IND-$-CPA0

C,N = 0]− Pr[lE-IND-$-CPA1
C,N = 0] +

Qd

2n

≤ AdvlMAC
B,N +AdvlE

C,N +
Qd

2n
.

Thus proving:

AdvlAE
A,N ≤ AdvlMAC

B,N +AdvlE
C,N +

Qd

2n
.

N2 and N3 Structurally, the proofs of all three cases are identical. For each case, the games
used in the proof, as well as the adversaries, are adjusted to the AE.enc and AE.dec corresponding
to the N-scheme. As a result, they differ in the three lines generating c and in the three lines
generating t’. As an example, the games lAE-N1 in Figure 14, lAE-N2 in Figure 20 and lAE-N3
in Figure 26 only differ on lines 11 to 13 and lines 21 to 23. In addition, the input spaces to some
functions are different to facilitate this change. The argument leading to Pr[bad = true] ≤ Qd

2n

is different for the three cases as the tags are generated differently. To highlight this difference,
the argument is put in between horizontal bars in the proofs for N2 and N3. The full proofs of
these two cases are in Appendix A.
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7 Use Cases

In this section, we will look at some use cases for the lAE. The most prominent use case is hybrid
encryption as the idea of locks originated in this setting. In addition to this, the primitive might
be useful whenever a new key is generated often as this will increase the number of ephemeral
keys used and hence the chance of ephemeral key collisions. Below, we describe how the lAE can
be used as a building block for hybrid encryption. We also give some direction on how it might
be used in different settings.

7.1 Hybrid Encryption

To implement public-key encryption, a hybrid paradigm first, formalized by Cramer and Shoup
[7], is typically followed: To encrypt a message, an ephemeral key is generated using a randomized
key encapsulation mechanism (KEM). This key is then used to encrypt the message using a
deterministic data encapsulation mechanism (DEM). Both the KEM and DEM output their own
ciphertexts, which are concatenated to form the public-key encryption ciphertext. The benefits
of hybrid encryption are a separation of both primitives, as well as the possibility of variable-
length messages, which can be lacking in other public-key encryption paradigms. GKP show us
how the lAE can be used in hybrid encryption. The KEM, as usual, generates an ephemeral key
and encapsulates this key to create the first part of the ciphertext. Afterward, the lAE uses this
encapsulation as a lock, together with the ephemeral key and the message, to instantiate the
DEM. GKP prove this construction to be secure whenever locks do not repeat. Our lAE does
not need to be altered in order to be used in this setting as the ephemeral key is only used once.

7.2 Other Use Cases

Whenever an authenticated encryption primitive has many users that use a key only once, using
our lAE may decrease the degradation of security bounds. Even when the primitive uses the same
key multiple times, using lAE may still decrease the degradation of security bounds whenever the
key is changed often. One example of such a use case is the Messaging Layer Security protocol
[8]. Generating a new key is necessary in this protocol whenever a member enters or leaves the
group to ensure only current group members can read messages. In addition to this, new keys
may be generated more often, depending on the implementation of the protocol. In cases like
this, where the key is used multiple times, the lAE primitive most likely needs to be slightly
altered. Section 9 describes this alteration further.

8 Related Work

As mentioned before, the generic composition of authenticated encryption was first studied by
Bellare and Namprempre [2]. The three most common composition modes encrypt-and-MAC,
encrypt-then-MAC and MAC-then-encrypt were introduced and evaluated using a probabilistic
encryption block. They find generic construction to be secure when using the encrypt-then-MAC
method. NRS further investigated these modes of composition and state that the type of en-
cryption primitive used, as well as the required end result, influences which compositions are
secure. They investigated ways to compose a nonce-based authenticated encryption scheme. Us-
ing IV-based encryption and a PRF secure MAC, 8 schemes are proven secure. Using nonce-based
encryption and a PRF secure MAC, 3 schemes, related to encrypt-and-MAC, encrypt-then-MAC
and MAC-then-encrypt, are proven secure.
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The study of symmetric cryptographic primitives is usually done in a single-user setting, where
one user who uses one key is considered. In reality, most systems have multiple users using their
own keys. To account for this, the notion of multi-user security, where one considers multiple
users all generating their own keys, was first introduced by Bellare, Boldyreva and Micali [9].
Security bounds found in a single-user setting often degrade in a multi-user setting as noted by
Biham [10]. He finds that, in a multi-user setting, the strength of a cipher can not exceed the
square root of the key size. To compensate for this degradation, one can expand the size of the
key. This might not always be an option and therefore, GKP introduce locks as an alternative
to key expansion. They show how ephemeral key collisions in a multi-user setting can lead to
insecurities, as well as how one can augment security primitives with locks to prevent these in-
securities. Afterwards, a composition of an augmented MAC and an augmented DEM is shown
which is suitable for hybrid encryption.

Next, we will discuss some work relating to the generic construction of lAE, open problems
relating to this work can be found in Section 9. As an alternative to generic composition, au-
thenticated encryption can also be composed non-generically. In this fashion, Rogaway, Bellare
and Black propose OCB as a non-generic authenticated encryption construction [11]. OCB is
highly parallelizable and is cheaper in computation compared to generic construction. In the
basic form, it cannot take in associated data but an extension has been given to allow for this.
It is proven secure whenever the underlying block cipher is secure. Likewise, McGrew and Viega
propose Galois/Counter Mode, GCM, as a non-generic authenticated encryption construction
[12]. It is a highly efficient mode of operation, also due to its parallelizability. GCM incorporates
counter mode using an even-length block cipher and supports the usage of associated data. In
addition to authenticated encryption, it can also be used as a standalone MAC function. In a
multi-user setting, some attempts to improve bounds were made based on randomization (for
example randomized GCM [13]). However, it still suffered from a high key collision probability
when the number of users grew large. Many more non-generic authenticated encryption schemes
exist, but OCB and GCM are the most widely used ones.

Although OCB and GCM are most widely used, more and more new schemes are based on the
sponge construction, first introduced by Bertoni et al [14]. To construct authenticated encryption
from a sponge, Bertoni et al. [15] first introduced the duplex construction and implemented it
using a sponge. Authenticated encryption schemes like SpongeWrap [15], introduced in the same
paper introducing the duplex, and Ascon, first introduced by Dobraunig et al. [16], are based on
this duplex construction. Both of these modes allow associated data and have similar advantages
and limitations. Compared to more traditional block ciphers, like OCB and GCM, that use a
block cipher, sponge-based authenticated encryption only requires a permutation. They are also
more efficient compared to generic construction as they do not require the tag and ciphertext
to be computed separately. As a limitation, both constructions cannot be fully parallelized. To
improve the security of sponge-based authenticated encryption in a multi-user setting, different
initialization methods can be used. A comprehensive overview of the security implications of
these different methods is given by Dobraunig and Mennink [17].

A similar construction to locks, called “id”, is used to construct a sponge-based PRF [18] and
to construct a PRF out of a permutation [19]. Just like the lock, this id is bound to the user to
prevent degradation of security bounds due to user key collisions. The first construction assumes
the id to be unique while the second allows the id to be shared between multiple users. The
security bounds of both constructions are proven to have little degradation in a multi-user setting
when the underlying primitives are ideal.
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9 Conclusion

In this thesis, we studied the security of generic composition of authenticated encryption using
locks. To do this, we first defined a new security primitive, named lock-based authenticated
encryption. Three different ways in which we can compose this new primitive using a lock-based
encryption primitive and a lock-based MAC function were considered, namely encrypt-and-MAC,
encrypt-then-MAC and MAC-then-encrypt. All three of these compositions were proven secure,
whenever the underlying primitives are secure. Additionally, we explored some use cases of our
new primitive. Most specifically, we explained how lock-based authenticated encryption can
be used to instantiate a DEM in hybrid encryption. The results of this work have some open
problems we will discuss below. Wherever possible we will also give directions on what needs to
be done in order to investigate these problems further.

Other N schemes NRS find 20 possible N-schemes, of which 3 are proven secure. In this
thesis, only the N-schemes that are alterations of the ones proven secure by NRS were evaluated.
To more thoroughly investigate the security of generic lAE compositions, the other N-schemes
should also be proven secure or insecure. Without incorporating AD, only 10 out of 20 possible
N-schemes remain. This is because the amount of possible generic compositions gets bigger if
the authenticated encryption scheme has more inputs. Three of these 10 schemes were proven
secure in this work, leaving 7 schemes to be evaluated.

Adding associated Data In this work, the lAE construction was only evaluated without
associated data (AD). To incorporate AD, a slight modification should be made to the definition
of the lAE. With AD added, there will be 20 possible N-schemes, three of which will relate
to the secure schemes from NRS. When evaluating the security, these three schemes should be
prioritized as they have the highest likelihood of being secure. For a more rigorous analysis, all
20 schemes should be considered.

Evaluating lAE with multiple uses The evaluation of the lAE construction was limited to
a key that is used once. A more in-depth analysis could evaluate the construction in a setting
where a key can be used multiple (but still limited) times. To maintain security, one would likely
need to alter the lAE definition to also incorporate nonces. As the scheme will then have an
additional input, a new set of possible compositions should be generated and evaluated.

Augmenting non-generic AE constructions with locks We found adaptation using locks
to be secure for the generic composition of authenticated encryption. As a next step, one could
look at whether non-generic AE constructions can be augmented with locks. When looking
at the examples mentioned in Section 8, the augmented versions will most likely have lower
computational cost when compared to generic composition. When proven secure, this will lead
to more efficient instantiations of the lAE.

Instantiating the lE and lMAC We discussed how an lAe can be constructed from an lE and
a lMAC. Further research could investigate how these two building blocks can be implemented.
The two id-based PRF functions discussed in Section 8 might be used as an lE. In this case,
the lock value might be used as the id as the concepts are very similar. Furthermore, a nonce-
based encryption primitive or nonce-based MAC function might be leveraged as an lE or a lMAC
respectively. In this case, the lock value might be used as a nonce because we assume globally
unique locks that are used only once.
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A Proof of N2 and N3

In this appendix, the full proof of case N2 and N3 can be found.

N2 First, we repeat Theorem 1 specifically for N2:

Theorem 3. Let lAE be constructed from lMAC and lE as described in Figure 12. Let ciphertext
space C from the lE be a subset of message space M from the lMAC and let lMAC and lE have
a shared lock space. Then, for any number of users N and any lAE adversary A that poses at
most Qe many Oenc queries, and at most Qd many Odec queries, there exist a lMAC adversary
B and a lE adversary C such that:

AdvlAE
A,N ≤ AdvlMAC

B,N +AdvlE
C,N +

Qd

2n
,

where n is the output length of the lMAC in bits. The running time of B is at most that of A
plus the time required to run Qe many E.enc encapsulations and Qd many E.dec decapsulations.
The running time of C is at most that of A. Additionally, B makes at most Qe many Omac
queries and at most Qd many Ovrf queries and C makes at most Qe many Oenc queries.

Within this theorem, both Qe and Qd refer to the total queries the adversary is allowed to make,
not the queries per user. As a result, Qe is limited by N .

Proof. To prove this theorem, we start by defining game lAE-N2 in Figure 20. This game is the
game lAE-IND-$-AE (Figure 7), with AE.enc and AE.dec substituted with the N2 algorithms
found in Figure 12.
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Game lAE-N2bA,N

0 : L← ∅
1 : for j ∈ [1..N ] :

2 : kj
$←− K

3 : Cj ← ⊥
4 : b′ ← A

5 : return b′

Oracle Oenc(j, l,m)

6 : if Cj ̸= ⊥ : return ⊥
7 : if l ∈ L : return ⊥
8 : L← L ∪ {l}
9 : lj ← l

10 : (k1, k2)← kj

11 : c′ ← E.enc(k1, lj ,m)

12 : t← M.mac(k2, lj , c
′)

13 : c← (c′, t)

14 : if b = 1 ∧ c ̸= ⊥ :

15 : c
$←− {0, 1}|c|

16 : Cj ← c

17 : return c

Oracle Odec(j, c)

18 : if Cj = ⊥ : return ⊥
19 : if c = Cj : return ⊥
20 : (k1, k2)← kj

21 : (c′, t)← c

22 : m← E.dec(k1, lj , c
′)

23 : t′ ← M.mac(k2, lj , c
′)

24 : if t ̸= t′ : m← ⊥
25 : if b = 1 : m← ⊥
26 : return m

Figure 20: lAE-N2 game, adversary has access to oracles Oenc and Odec.

By definition, this gives us

AdvlAE
A,N = Pr[lAE-N20A,N = 0]− Pr[lAE-N21A,N = 0].

Next we define game N2-switch-1 in Figure 21. The only difference between this game and game
lAE-N20 is the fact that N2-switch-1 uses the uniformly random function tag, instead of the
lMAC. To define this function we write Func(K × L × C, T ) to denote the set of all functions
from the key space of the MAC K, the shared lock space L and ciphertext space from E.enc
C to the tag space T . We define this function specifically as we want the tags resulting from
computations in oracle Oenc to match with those in oracle Odec. When the input of tag is
outside its domain, it will return ⊥.

Game N2-switch-1A,N

0 : L← ∅

1 : tag
$←− Func(Kmac × L× C, T )

2 : for j ∈ [1..N ] :

3 : kj
$←− K

4 : Cj ← ⊥
5 : b′ ← A

6 : return b′

Oracle Oenc(j, l,m)

7 : if Cj ̸= ⊥ : return ⊥
8 : if l ∈ L : return ⊥
9 : L← L ∪ {l}

10 : lj ← l

11 : (k1, k2)← kj

12 : c′ ← E.enc(k1, lj ,m)

13 : t← tag(k2, lj , c
′)

14 : c← (c′, t)

15 : Cj ← c

16 : return c

Oracle Odec(j, c)

17 : if Cj = ⊥ : return ⊥
18 : if c = Cj : return ⊥
19 : (k1, k2)← kj

20 : (c′, t)← c

21 : m← E.dec(k1, lj , c
′)

22 : t′ ← tag(k2, lj , c
′)

23 : if t ̸= t′ : m← ⊥
24 : return m

Figure 21: N2-switch-1, adversary has access to oracles Oenc and Odec. Key space Kmac is the
key space from M.mac. Lines 13 and 22 are different compared to lAE-N20, additionally lines
14, 15 and 25 from lAE-N2 are removed.
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Using this game, we expand the probability:

AdvlAE
A,N = Pr[lAE-N20A,N = 0]− Pr[N2-switch-1A,N = 0]

+ Pr[N2-switch-1A,N = 0]− Pr[lAE-N21A,N = 0].

Next, we can rewrite Pr[lAE-N2A,N = 0] − Pr[N2-switch-1A,N = 0] into a lMAC advantage.
To do so, we define adversary B against lMAC in Figure 22. This adversary is playing game
lMAC-PRF (Figure 9), and has access to A.

Adverary B

0 : L← ∅
1 : for j ∈ [1..N ] :

2 : kj
$←− Kenc

3 : Cj ← ⊥
4 : b′ ← run A

5 : return b′

if A calls Oracle Oenc(j, l,m)

6 : if Cj ̸= ⊥ : return ⊥
7 : if l ∈ L : return ⊥
8 : L← L ∪ {l}
9 : lj ← l

10 : c′ ← E.enc(kj , lj ,m)

11 : t← Omac(j, lj , c
′)

12 : c← (c′, t)

13 : Cj ← c

14 : return c

if A calls Oracle Odec(j, c)

15 : if Cj = ⊥ : return ⊥
16 : if c = Cj : return ⊥
17 : (c′, t)← c

18 : m← E.dec(kj , lj , c
′)

19 : passed← Ovrf(j, c′, t′)

20 : if ¬passed : m← ⊥
21 : return m

Figure 22: Adversary B has access to A and oracles Omac and Ovrf. Key space Kenc is the key
space from E.enc.

The runtime of B is that of A. For every Oenc query A makes, B computes E.enc once and calls
Omac once. For every Odec query A makes, B computes E.dec once and calls Ovrf once. Note
that, alternatively, B could return 0 if passed is true to avoid having to do E.dec computations.
To increase consistency with the other two cases, these computations are still made. We can see
that Pr[lMAC-PRF0

B,N = 0] = Pr[lAE-N20A,N = 0] as B perfectly simulates game lAE-N20 when

its own b is 0. In addition, Pr[lMAC-PRF1
B,N = 0] = Pr[N2-switch-1A,N = 0] as B perfectly

simulates game N2-switch-1 whenever its own b is 1. As a result, we can rewrite our advantage
to:

AdvlAE
A,N = Pr[lAE-N20A,N = 0]− Pr[N2-switch-1A,N = 0]

+ Pr[N2-switch-1A,N = 0]− Pr[lAE-N21A,N = 0]

= Pr[lMAC-PRF0
B,N = 0]− Pr[lMAC-PRF1

B,N = 0]

+ Pr[N2-switch-1A,N = 0]− Pr[lAE-N21A,N = 0]

= AdvlMAC
B,N + Pr[N2-switch-1A,N = 0]− Pr[lAE-N21A,N = 0].

To expand our advantage again, we define game N2-switch-2 in Figure 23. Apart from the Odec
query, this game is equivalent to the first switch game. Although, the Odec oracle from N2-
switch-2 always returns ⊥, it is written down more elaborately to include the event bad. This
event is added to support a well-known proof tactic [6]. When expanded again, our advantage
becomes:

AdvlAE
A,N = AdvlMAC

B,N + Pr[N2-switch-1A,N = 0]− Pr[N2-switch-2A,N = 0]

+ Pr[N2-switch-2A,N = 0]− Pr[lAE-N21A,N = 0].
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Game N2-switch-2A,N

0 : L← ∅

1 : tag
$←− Func(Kmac × L× C, T )

2 : for j ∈ [1..N ] :

3 : kj
$←− K

4 : Cj ← ⊥
5 : b′ ← A

6 : return b′

Oracle Oenc(j, l,m)

7 : if Cj ̸= ⊥ : return ⊥
8 : if l ∈ L : return ⊥
9 : L← L ∪ {l}

10 : lj ← l

11 : (k1, k2)← kj

12 : c′ ← E.enc(k1, lj ,m)

13 : t← tag(k2, lj , c
′)

14 : c← (c′, t)

15 : Cj ← c

16 : return c

Oracle Odec(j, c)

17 : if Cj = ⊥ : return ⊥
18 : if c = Cj : return ⊥
19 : (k1, k2)← kj

20 : (c′, t)← c

21 : m← E.dec(k1, lj , c
′)

22 : t′ ← tag(k2, lj , c
′)

23 : if t ̸= t′ : m← ⊥
24 : else :

25 : bad← true

26 : m← ⊥
27 : return m

Figure 23: N2-switch-2 game, adversary has access to oracles Oenc and Odec. Key space Kmac

is the key space from M.mac. Line 24-26 are different compared to N2-switch-1.

As N2-switch-1 and N2-switch-2 are so called identical-until-bad [6], meaning they are equivalent
as long as the event bad is not set to true, we know:

Pr[N2-switch-1A,N = 0]− Pr[N2-switch-2A,N = 0] ≤ Pr[bad = true].

Between the thick lines is the technical difference of current proof with the one of N1 in Section 6

As bad is set to true if, and only if, t=t′, we can state Pr[bad = true] = Pr[t = t′]. The
adversary needs to provide tag t and ciphertext c′ for the tag function, where the provided
tag-ciphertext pair may not be the result of the encryption query corresponding to the pro-
vided user. Consequently, t and t′ are only equal when the adversary can guess the output
of tag for a ciphertext that is not encrypted for the provided user. The function tag is uni-
formly random so, with every fresh ciphertext, the probability that t and t′ are equal is 1

2n .

Summed over at most Qd Odec queries we get Pr[t = t′] = Pr[bad = true] ≤ Qd

2n and thus, we

can use Pr[N2-switch-1A,N = 0] − Pr[N2-switch-2A,N = 0] ≤ Pr[bad = true] ≤ Qd

2n to obtain:

AdvlAE
A,N ≤ AdvlMAC

B,N + Pr[N2-switch-2A,N = 0]− Pr[lAE-N21A,N = 0] +
Qd

2n
.

We define game N2-switch-3 in Figure 24 to expand our advantage one last time. Switch game 3
is equivalent to switch game 2 but always returns lazily sampled random bits when the outcome
of E.enc is valid. It might seem like there is a difference as t can no longer become ⊥. This is not
the case as, due to the chosen input spaces of tag, tag can only return ⊥ whenever c′ is already
⊥. As a result, tag will never influence wether or not c on line 12 is ⊥. We also simplify Odec
as we no longer need the event bad. We use this game to expand our advantage to:

AdvlAE
A,N ≤ AdvlMAC

B,N + Pr[N2-switch-2A,N = 0]− Pr[N2-switch-3A,N = 0]

+ Pr[N2-switch-3A,N = 0]− Pr[lAE-N21A,N = 0] +
Qd

2n
.



Bachelor Thesis Page 28

Game N2-switch-3A,N

0 : L← ∅
1 : for j ∈ [1..N ] :

2 : kj
$←− Kenc

3 : Cj ← ⊥
4 : b′ ← A

5 : return b′

Oracle Oenc(j, l,m)

6 : if Cj ̸= ⊥ : return ⊥
7 : if l ∈ L : return ⊥
8 : L← L ∪ {l}
9 : lj ← l

10 : c′ ← E.enc(kj, lj ,m)

11 : t
$←− {0, 1}n

12 : c← (c′, t)

13 : if c ̸= ⊥ :

14 : c
$←− {0, 1}|c|

15 : Cj ← c

16 : return c

Oracle Odec(j, c)

18 : return ⊥

Figure 24: N2-switch-3 game, adversary has access to oracles Oenc and Odec. Key space Kenc

is the key space from E.enc. Line 14 and 15 are different compared to N2-switch-2, and Odec is
simplified.

Pr[N2-switch-3A,N = 0] and Pr[lAE-N21A,N = 0] are equivalent by definition, giving:

AdvlAE
A,N ≤ AdvlMAC

B,N + Pr[N2-switch-2A,N = 0]− Pr[N2-switch-3A,N = 0] +
Qd

2n
.

Next, we can rewrite Pr[N2-switch-2A,N = 0]− Pr[N2-switch-3A,N = 0] into a lE advantage. To
do so, we define adversary C against lE in Figure 25. This adversary is playing game lE-IND-$-
CPA (Figure 8), and has access to A.

Adverary C

0 : L← ∅
1 : for j ∈ [1..N ] :

2 : Cj ← ⊥
3 : b′ ← run A

4 : return b′

if A calls Oracle Oenc(j, l,m)

5 : if Cj ̸= ⊥ : return ⊥
6 : if l ∈ L : return ⊥
7 : L← L ∪ {l}
8 : lj ← l

9 : c′ ← Oenc(j, lj ,m)

10 : t
$←− {0, 1}n

11 : c← (c′, t)

12 : Cj ← c

13 : return c

if A calls Oracle Odec(j, c)

14 : return ⊥

Figure 25: Adversary C has access to A and oracle Oenc. Note the Oenc in line 9 refers to the
encryption oracle Oenc that C has access to, not the oracle Oenc A has access to.

The runtime of C is that of A. For every Oenc query A makes, C makes one Oenc query. We
can see that Pr[N2-switch-2A,N = 0] = Pr[lE-IND-$-CPA0

C,N = 0] as C perfectly simulates N2-
switch-2 when its own b is 0. When its own b is 1, C perfectly simulates N2-switch-3 giving
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Pr[N2-switch-3A,N = 0] = Pr[lE-IND-$-CPA1
C,N = 0]. This leads to:

AdvlAE
A,N ≤ AdvlMAC

B,N + Pr[N2-switch-2A,N = 0]− Pr[N2-switch-3A,N = 0] +
Qd

2n

≤ AdvlMAC
B,N + Pr[lE-IND-$-CPA0

C,N = 0]− Pr[lE-IND-$-CPA1
C,N = 0] +

Qd

2n

≤ AdvlMAC
B,N +AdvlE

C,N +
Qd

2n
.

Thus proving:

AdvlAE
A,N ≤ AdvlMAC

B,N +AdvlE
C,N +

Qd

2n
.

N3 First, we repeat Theorem 1 specifically for N3:

Theorem 4. Let lAE be constructed from lMAC and lE as described in Figure 13. Let ciphertext
space C from the lE be a subset of message space M from the lMAC and let lMAC and lE have
a shared lock space. Then, for any number of users N and any lAE adversary A that poses at
most Qe many Oenc queries, and at most Qd many Odec queries, there exist a lMAC adversary
B and a lE adversary C such that:

AdvlAE
A,N ≤ AdvlMAC

B,N +AdvlE
C,N +

Qd

2n
,

where n is the output length of the lMAC in bits. The running time of B is at most that of A
plus the time required to run Qe many E.enc encapsulations and Qd many E.dec decapsulations.
The running time of C is at most that of A. Additionally, B makes at most Qe many Omac
queries and at most Qd many Ovrf queries and C makes at most Qe many Oenc queries.

Within this theorem, both Qe and Qd refer to the total queries the adversary is allowed to make,
not the queries per user. As a result, Qe is limited by N .

Proof. To prove this theorem, we start by defining game lAE-N3 in Figure 26. This game is the
game lAE-IND-$-AE (Figure 7), with AE.enc and AE.dec substituted with the N3 algorithms
found in Figure 13.
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Game lAE-N3bA,N

0 : L← ∅
1 : for j ∈ [1..N ] :

2 : kj
$←− K

3 : Cj ← ⊥
4 : b′ ← A

5 : return b′

Oracle Oenc(j, l,m)

6 : if Cj ̸= ⊥ : return ⊥
7 : if l ∈ L : return ⊥
8 : L← L ∪ {l}
9 : lj ← l

10 : (k1, k2)← kj

11 : t← M.mac(k2, lj ,m)

12 : m′ ← m∥t
13 : c← E.enc(k1, lj ,m

′)

14 : if b = 1 ∧ c ̸= ⊥ :

15 : c
$←− {0, 1}|c|

16 : Cj ← c

17 : return c

Oracle Odec(j, c)

18 : if Cj = ⊥ : return ⊥
19 : if c = Cj : return ⊥
20 : (k1, k2)← kj

21 : m′ ← E.dec(k1, lj , c)

22 : (m, t)← m′

23 : t′ ← M.mac(k2, lj ,m)

24 : if t ̸= t′ : m← ⊥
25 : if b = 1 : m← ⊥
26 : return m

Figure 26: lAE-N3 game, adversary has access to oracles Oenc and Odec.

By definition, this gives us

AdvlAE
A,N = Pr[lAE-N30A,N = 0]− Pr[lAE-N31A,N = 0].

Next we define game N3-switch-1 in Figure 27. The only difference between this game and game
lAE-N30 is the fact that N3-switch-1 uses the uniformly random function tag, instead of the
lMAC. To define this function we write Func(K × L ×M, T ) to denote the set of all functions
from the key space of the MAC K, the shared lock space L and the message spaceM to the tag
space T . We define this function specifically as we want the tags resulting from computations in
oracle Oenc to match with those in oracle Odec. When the input of tag is outside its domain, it
will return ⊥.

Game N3-switch-1A,N

0 : L← ∅

1 : tag
$←− Func(Kmac × L×M, T )

2 : for j ∈ [1..N ] :

3 : kj
$←− K

4 : Cj ← ⊥
5 : b′ ← A

6 : return b′

Oracle Oenc(j, l,m)

7 : if Cj ̸= ⊥ : return ⊥
8 : if l ∈ L : return ⊥
9 : L← L ∪ {l}

10 : lj ← l

11 : (k1, k2)← kj

12 : t← tag(k2, lj ,m)

13 : m′ ← m∥t
14 : c← E.enc(k1, lj ,m

′)

15 : Cj ← c

16 : return c

Oracle Odec(j, c)

17 : if Cj = ⊥ : return ⊥
18 : if c = Cj : return ⊥
19 : (k1, k2)← kj

20 : m′ ← E.dec(k1, lj , c)

21 : (m, t)← m′

22 : t′ ← tag(k2, lj ,m)

23 : if t ̸= t′ : m← ⊥
24 : return m

Figure 27: N3-switch-1, adversary has access to oracles Oenc and Odec. Key space Kmac is the
key space from M.mac. Lines 12 and 22 are different compared to lAE-N30, additionally lines
14, 15 and 25 from lAE-N3 are removed.
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Using this game, we expand the probability:

AdvlAE
A,N = Pr[lAE-N30A,N = 0]− Pr[N3-switch-1A,N = 0]

+ Pr[N3-switch-1A,N = 0]− Pr[lAE-N31A,N = 0].

Next, we can rewrite Pr[lAE-N3A,N = 0] − Pr[N3-switch-1A,N = 0] into a lMAC advantage.
To do so, we define adversary B against lMAC in Figure 28. This adversary is playing game
lMAC-PRF (Figure 9), and has access to A.

Adverary B

0 : L← ∅
1 : for j ∈ [1..N ] :

2 : kj
$←− Kenc

3 : Cj ← ⊥
4 : b′ ← run A

5 : return b′

if A calls Oracle Oenc(j, l,m)

6 : if Cj ̸= ⊥ : return ⊥
7 : if l ∈ L : return ⊥
8 : L← L ∪ {l}
9 : lj ← l

10 : t← Omac(kj , lj ,m)

11 : m′ ← m∥t
12 : c← E.enc(kj , lj ,m

′)

13 : Cj ← c

14 : return c

if A calls Oracle Odec(j, c)

15 : if Cj = ⊥ : return ⊥
16 : if c = Cj : return ⊥
17 : m′ ← E.dec(k, lj , c)

18 : (m, t)← m′

19 : passed← Ovrf(j,m, t)

20 : if ¬passed : m← ⊥
21 : return m

Figure 28: Adversary B has access to A and oracles Omac and Ovrf. Key space Kenc is the key
space from E.enc.

The runtime of B is that of A. For every Oenc query A makes, B computes E.enc once and calls
Omac once. For every Odec query A makes, B computes E.dec once and calls Ovrf once. Note
that, alternatively, B could return 0 if passed is true to avoid having to do E.dec computations.
To increase consistency with the other two cases, these computations are still made. We can
see that Pr[lMAC-PRF0

B,N = 0] = Pr[lAE-N30A,N = 0] as B perfectly simulates game lAE-N30

= 0 when its own b is 0. In addition, Pr[lMAC-PRF1
B,N = 0] = Pr[N3-switch-1A,N = 0] as B

perfectly simulates game N3-switch-1 whenever its own b is 1. As a result, we can rewrite our
advantage to:

AdvlAE
A,N = Pr[lAE-N30A,N = 0]− Pr[N3-switch-1A,N = 0]

+ Pr[N3-switch-1A,N = 0]− Pr[lAE-N31A,N = 0]

= Pr[lMAC-PRF0
B,N = 0]− Pr[lMAC-PRF1

B,N = 0]

+ Pr[N3-switch-1A,N = 0]− Pr[lAE-N31A,N = 0]

= AdvlMAC
B,N + Pr[N3-switch-1A,N = 0]− Pr[lAE-N31A,N = 0].

To expand our advantage again, we define game N3-switch-2 in Figure 29. Apart from the Odec
query, this game is equivalent to the first switch game. Although, the Odec oracle from N3-
switch-2 always returns ⊥, it is written down more elaborately to include the event bad. This
event is added to support a well-known proof tactic [6]. When expanded again, our advantage
becomes:

AdvlAE
A,N = AdvlMAC

B,N + Pr[N3-switch-1A,N = 0]− Pr[N3-switch-2A,N = 0]

+ Pr[N3-switch-2A,N = 0]− Pr[lAE-N31A,N = 0].
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Game N3-switch-2A,N

0 : L← ∅

1 : tag
$←− Func(Kmac × L×M, T )

2 : for j ∈ [1..N ] :

3 : kj
$←− K

4 : Cj ← ⊥
5 : b′ ← A

6 : return b′

Oracle Oenc(j, l,m)

7 : if Cj ̸= ⊥ : return ⊥
8 : if l ∈ L : return ⊥
9 : L← L ∪ {l}

10 : lj ← l

11 : (k1, k2)← kj

12 : t← tag(k2, lj ,m)

13 : m′ ← m∥t
14 : c← E.enc(k1, lj ,m

′)

15 : Cj ← c

16 : return c

Oracle Odec(j, c)

17 : if Cj = ⊥ : return ⊥
18 : if c = Cj : return ⊥
19 : (k1, k2)← kj

20 : m′ ← E.dec(k1, lj , c)

21 : (m, t)← m′

22 : t′ ← tag(k2, lj ,m)

23 : if t ̸= t′ : m← ⊥
24 : else :

25 : bad← true

26 : m← ⊥
27 : return m

Figure 29: N3-switch-2 game, adversary has access to oracles Oenc and Odec. Key space Kmac

is the key space from M.mac. Line 24-26 are different compared to N3-switch-1.

As N3-switch-1 and N3-switch-2 are so called identical-until-bad [6], meaning they are equivalent
as long as the event bad is not set to true, we know:

Pr[N3-switch-1A,N = 0]− Pr[N3-switch-2A,N = 0] ≤ Pr[bad = true].

Between the thick lines is the technical difference of current proof with the one of N1 in Section 6

As bad is set to true if, and only if, t=t′, we can state Pr[bad = true] = Pr[t = t′]. The ad-
versary needs to provide a ciphertext c′ that leads to a message m that is used as input to
the tag function and a tag t. The provided ciphertext may not be the result of the encryption
query corresponding to the provided user, which also ensures the message-tag pair derived from
this ciphertext cannot be the message-tag pair that is encrypted for the provided user. Because
the function tag is uniformly random and the output needs to match with the newly obtained
message-tag pair, the probability that t and t′ are equal is 1

2n with every fresh Odec query.

Summed over at most Qd Odec queries we get Pr[t = t′] = Pr[bad = true] ≤ Qd

2n and thus, we

can use Pr[N3-switch-1A,N = 0] − Pr[N3-switch-2A,N = 0] ≤ Pr[bad = true] ≤ Qd

2n to obtain:

AdvlAE
A,N ≤ AdvlMAC

B,N + Pr[N3-switch-2A,N = 0]− Pr[lAE-N31A,N = 0] +
Qd

2n
.

We define game N3-switch-3 in Figure 30 to expand our advantage one last time. Switch game 3
is equivalent to switch game 2 but always returns lazily sampled random bits when the outcome
of E.enc is valid. It might seem like there is a difference as t can no longer become ⊥. This is not
the case as, due to the chosen input spaces of tag, tag can only return ⊥ whenever c′ is already
⊥. As a result, tag will never influence wether or not c on line 13 is ⊥. We also simplify Odec
as we no longer need the event bad. We use this game to expand our advantage to:

AdvlAE
A,N ≤ AdvlMAC

B,N + Pr[N3-switch-2A,N = 0]− Pr[N3-switch-3A,N = 0]

+ Pr[N3-switch-3A,N = 0]− Pr[lAE-N31A,N = 0] +
Qd

2n
.
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Game N3-switch-3A,N

0 : L← ∅
1 : for j ∈ [1..N ] :

2 : kj
$←− Kenc

3 : Cj ← ⊥
4 : b′ ← A

5 : return b′

Oracle Oenc(j, l,m)

6 : if Cj ̸= ⊥ : return ⊥
7 : if l ∈ L : return ⊥
8 : L← L ∪ {l}
9 : lj ← l

10 : t
$←− {0, 1}n

11 : m′ ← m∥t
12 : c← E.enc(kj , l,m

′)

13 : if c ̸= ⊥ :

14 : c
$←− {0, 1}|c|

15 : Cj ← c

16 : return c

Oracle Odec(j, c)

18 : return ⊥

Figure 30: N3-switch-3 game, adversary has access to oracles Oenc and Odec. Key space Kenc

is the key space from E.enc. Line 14 and 15 are different compared to N3-switch-2, and Odec is
simplified.

Pr[N3-switch-3A,N = 0] and Pr[lAE-N31A,N = 0] are equivalent by definition, giving:

AdvlAE
A,N ≤ AdvlMAC

B,N + Pr[N3-switch-2A,N = 0]− Pr[N3-switch-3A,N = 0] +
Qd

2n
.

Next, we can rewrite Pr[N3-switch-2A,N = 0]− Pr[N3-switch-3A,N = 0] into a lE advantage. To
do so, we define adversary C against lE in Figure 31. This adversary is playing game lE-IND-$-
CPA (Figure 8), and has access to A.

Adverary C

0 : L← ∅
1 : for j ∈ [1..N ] :

2 : Cj ← ⊥
3 : b′ ← run A

4 : return b′

if A calls Oracle Oenc(j, l,m)

5 : if Cj ̸= ⊥ : return ⊥
6 : if l ∈ L : return ⊥
7 : L← L ∪ {l}
8 : lj ← l

9 : t
$←− {0, 1}n

10 : m′ ← m∥t
11 : c← Oenc(j, l,m′)

12 : Cj ← c

13 : return c

if A calls Oracle Odec(j, c)

14 : return ⊥

Figure 31: Adversary C has access to A and oracle Oenc. Note the Oenc in line 11 refers to the
encryption oracle Oenc that C has access to, not the oracle Oenc A has access to.

The runtime of C is that of A. For every Oenc query A makes, C makes one Oenc query. We
can see that Pr[N3-switch-2A,N = 0] = Pr[lE-IND-$-CPA0

C,N = 0] as C perfectly simulates N3-
switch-2 when its own b is 0. When its own b is 1, C perfectly simulates N3-switch-3 giving
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Pr[N3-switch-3A,N = 0] = Pr[lE-IND-$-CPA1
C,N = 0]. This leads to:

AdvlAE
A,N ≤ AdvlMAC

B,N + Pr[N3-switch-2A,N = 0]− Pr[N3-switch-3A,N = 0] +
Qd

2n

≤ AdvlMAC
B,N + Pr[lE-IND-$-CPA0

C,N = 0]− Pr[lE-IND-$-CPA1
C,N = 0] +

Qd

2n

≤ AdvlMAC
B,N +AdvlE

C,N +
Qd

2n
.

Thus proving:

AdvlAE
A,N ≤ AdvlMAC

B,N +AdvlE
C,N +

Qd

2n
.
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