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Abstract

In cryptography implementation contexts certain compiler optimizations can
be undesirable. It is possible for various versions of the Clang compiler, using
varying optimization levels, to turn constant-time source code into variable-
time binaries. By testing various cryptographic implementations with a tool
called TIMECOP we produce some interesting results. Most notably that
Clang versions 17+ produce variable-time binaries with optimization level
-O3 enabled where older versions did not. Additionally, -Os optimization
leads to variable-time binaries also on older versions of Clang. We also
show that a NTRU Prime primitive called sntrup761, which is currently part
of the default configuration for OpenSSH, is vulnerable to this undesired
optimization behaviour.
Keywords: Constant-time, compiler, optimization, side-channel, timing
attack
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Chapter 1

Introduction

Many programs used in everyday life depend on the various cryptography
schemes created by the cybersecurity community. A lot of effort goes into
proving these schemes are theoretically secure, in as far as that is possible.
However, what works in theory sometimes breaks down when it comes to
implementation. Side-channel attacks are a type of attack with which at-
tackers can learn information about the keys and other secrets used in a
scheme, not because the scheme itself is weak but because the implementa-
tion or the hardware it runs on leaks information that can be used.

One specific type of side-channel attack is called a timing attack. When a
cryptography implementation is vulnerable to a timing attack, that means
that an attacker could recover secret information by measuring the execu-
tion time of the implementation.

To prevent these timing attacks, cryptography implementations are written
following the so-called “constant-time” programming paradigm. This way
of programming decouples the execution time from the secret information.
However, some projects include general-purpose compilers as intermediaries,
where constant-time source code is compiled to produce binaries. This thesis
explores the risk of such a compiler behaving in unexpected ways. Specifi-
cally when the compiler optimizes away the programmer’s effort of making
their source code constant-time, instead producing a variable-time binary.

Previous works have shown that this behaviour can occur. In this thesis,
we test various versions of the LLVM Clang compiler using TIMECOP to
show how this undesirable behaviour has progressed over time. All tests are
executed with two different optimization levels and also with no optimiza-
tion as a control. The tests that pass without optimization but fail with
optimization are of interest. The main goal is to see if there is a correlation
between the compiler version and the number of failures. As well as see if
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there are any notable implementations of cryptographic schemes that would
be affected by this undesirable optimization behaviour.

First, we give an overview of the previous work that has been done on
this problem to show that this behaviour is possible at all and to introduce
the various existing methods and tools that have been developed to counter
timing attacks in general. Next, we look at the methods used in this thesis
and how the results were processed. Then we present the results and show
how they were further utilized. Finally there is a discussion on the findings
and a summarized conclusion.

We conclude that there is correlation that the newer the compiler version
is, the more constant-time violations there are. These violations could open
the way for timing attacks on the cryptographic implementations and sub-
sequently on software that uses those implementations. To further demon-
strate the risk, we show that some of the code that failed our tests is part
of the NTRU Prime project which is currently used as a default for key
exchange in OpenSSH.
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Chapter 2

Related Work

Below we dig into some of the work that has already been done on the topic
of timing attacks. Starting with a look what causes timing attacks to be
possible and some examples of timing attacks in practice to show why they
are relevant and pose a threat. We then elaborate on the research that has
been done to detect and prevent timing attacks. Finally we highlight some
of issues with detecting an preventing timing attacks since the discovery of
the Spectre family of attacks.

Timing attacks

A 1996 paper by Kocher [20] was the first to highlight timing attacks as a
significant threat. Mainly due to the potential of recovering full secret keys
from the Diffie-Hellman, RSA and DSS implementations that were in use at
that time.
Since that first publication timing attacks have become a well researched
topic. The constant-time programming paradigm has become a standard to
reduce their effect and over time, papers have been written highlighting the
problem from different angles.

The cause of timing attacks

Whether or not a timing attack is possible depends on the implementation.
Below we list some of the common underlying reasons why timing attacks
could be possible for a given implementation.

In branching code, often one branch takes longer to execute than the other.
If secret data decides which branch gets executed then, by measuring the
execution time, information can be gained about that secret data.

Variable-time processor instructions are another clear cause. Multiplica-
tion and division instructions are common causes of timing attacks due to

4



their often non constant-time implementation under the hood.

Finally indexing based on secret data regularly leads to timing attacks. As
Bernstein wrote in his 2005 paper on cache-timing attacks on AES: “Using
secret data as an array index is a recipe for disaster” [7]. When using secret
data as an index, the CPU tries to load the data from cache, sometimes this
hits, meaning the data was found in the cache, and sometimes it misses,
in which case it needs to be fetched from RAM which takes longer. The
address used in the lookup is secret itself because it is calculated using the
secret data. Cache timing-attacks make use of these facts. By using various
techniques, for example FLUSH+RELOAD [24], attackers prepare the cache
in certain ways and keep track of cache usage to determine the value of the
secret data.

Examples of timing attacks

There are many papers that show timing attacks in practice. Both in hard-
ware and software. They serve to highlight the significance and potential
threat that timing attacks pose.

In a paper by Kaufmann et al. [18] a constant-time implementation of El-
liptic Curve Diffie Hellman (ECDH) Curve25519 was compiled with MSVC
2015. The resulting binary relied on a windows run-time library which con-
tained a variable-time multiplication. This then caused the binary to be
vulnerable to a timing attack. In the paper they go on to give an exam-
ple of how, by measuring the execution time, they can recover the secret key.

A paper by Pereida et al. [21] describes how a cache-timing attack could
be used to recover the secret key from the OpenSSL’s DSA implementation,
affecting both TLS and SSH which make use of OpenSSL.
Another paper by Yarom et al. [25] attacks OpenSSL’s RSA implementation.
They demonstrate how to recover a RSA private key by using a cache-timing
attack called CacheBleed.

A 2005 paper by Brumley and Boneh [9] demonstrates that it is possible
to perform timing attacks remotely. They demonstrate how to recover a
private key from OpenSSL’s RSA implementation between two processes on
the same machine, between two virtual machines and over network.

Preventing timing attacks

Obviously timing attacks are not desirable, so a lot of research has been done
on how to detect and prevent them. Most aim to provide developers with
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new tools to detect the weaknesses and new languages and compilers that
help to prevent them. Although many developers are aware of the threat
that timing attacks pose, it turns out that the number of developers that
actually make use of the tools available, is lower than desirable [17]. The
main causes seem to be that these tools are hard to use, lack integration
with existing workflows and that the outputs of such tools can be hard to
interpret.

Detection

The existence of timing attacks has been known for a long time now. As
such, there do exist a lot of tools for detecting them.
A paper by Fourne et al. [16] provides a nice overview of the various tools for
verifying constant-time behaviour. It also lists whether these tools provide
any guarantees and a rating of their usability. As highlighted in the paper,
the main problem with many of the tools is that the testing process is rather
involved. Using them often requires adjustments to the existing code and
knowledge about how to correctly set up and use the tools. Below you can
see a subset of the tools from this list and a simple description of how they
work.

TIMECOP is a dynamic analysis tool that works by ‘poisoning’ the secret
data. This poisoning basically marks the secret data as uninitialized in the
eyes of the Valgrind memory checker. Valgrind can then be used to check
for variable-time behaviour as it will report whether that uninitialized data
is being used to perform any conditional branching or indexing.

Binsec-rel [13] [14] can be used to test binaries for variable-time execution. It
works by combining various ‘state-of-the-art techniques such as binary-level
formal methods, symbolic execution, abstract interpretation, SMT solving
and fuzzing’.

Dude-CT [22] is a tool that helps automate timing for various inputs and
then uses statistics to determine whether the function is constant-time or
not.

Pitchfork [15] is a symbolic analysis tool. It is able to test LLVM bitcode for
constant-time execution. To use it the developer needs to write a wrapper
for the function they want to test in rust.

Prevention

One way to try to prevent the generation of variable-time binaries is by using
a compiler that is guaranteed to preserve constant-time execution even after
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optimization. A paper by Barthe et al. [6] provided mathematical proofs of
correctness in Coq which were then applied to modify CompCert [4], which
is a compiler fully verified with Coq. The modifications lead to a version of
CompCert proven to preserve constant-time execution when compiling and
optimizing constant-time C code.

Another way to solve this problem is to make a new language entirely. These
types of languages are called DSLs or Domain-Specific Languages. Below
are two examples of such languages.

Jasmin [1] is a programming language created with security and speed in
mind. Its included compiler has been fully verified using Coq, which then
gives guarantees about whether the compiled binaries will be constant-time,
even after optimization.
Jasmin is built in a way to allow both low-level control as well as high-level
abstractions while keeping the resulting binaries constant-time.
In some subsequent papers [2] [3] Jasmin is used to produce safe binaries
with high performance.
That Jasmins compiler preserves constant-time behaviour was also proven
in a paper by Barthe et al. [5].

In a similar spirit Cauligi et al. [12] developed a special language called FaCT
which they describe as ‘a high-level, strongly-typed C-like DSL(Domain-
Specific Language)’. Instead of the lower-level approach that Jasmin takes,
FaCT is higher level which allows it to ‘automatically apply the recipes that
developers have hitherto applied by hand’ that make up constant-time C
code.

Other DSL’s and interesting work include Vale [8] for ‘formally verified high-
performance assembly’, HACL* [26] (made with Low*) which is a ‘verified
portable C cryptographic library’ and CT-wasm [23] which is an extension
of Web-Assembly that helps with writing constant-time cryptography im-
plementations for the web.

Spectre

Although writing cryptographic implementations in a constant-time way
definitely helps to prevent timing attacks, it is not perfect. Since the Spec-
tre [19] family of attacks, one can no longer fully rely on the fundamen-
tal assumptions that formed the backbone of constant-time programming.
‘The decade-old constant-time recipes are no longer enough’ [10]. ‘Spectre
attacks—and speculative execution in general—violate our typical assump-
tions and abstractions and have proven particularly challenging to reason
about and defend against’ [11]. Even now, work is still being done on build-
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ing mitigations, on hardware and software level, and writing patches to
prevent Spectre attacks and other micro-architectural attacks that exploit
speculative execution.
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Chapter 3

Methodology

The compilers

In this paper we look specifically at the behavior of x86 64 Clang versions on
Debian. Other compilers and versions were not taken into account yet due
to the long testing times; however the same methodology could be applied
with a different compiler like gcc or other compiler versions.
We test the versions of Clang mentioned below. All of these versions are
relatively new with 15.0.0 being released in September 2022 and 18.1.1 most
recently in March 2024. These versions were chosen as they give a good
indication of how fast security-relevant compiler behaviour can change. We
test the most recent versions as they likely use the newest high-level opti-
mizations which could produce the unwanted optimization behaviour we are
looking for.

Clang versions

18.1.1

17.0.6

17.0.2

16.0.4

16.0.0

15.0.6

15.0.0

The following three sets of compilation flags were used.

-march=native -g -fomit-frame-pointer -fwrapv -Qunused-arguments -fPIC -fPIE

-march=native -g -O3 -fomit-frame-pointer -fwrapv -Qunused-arguments -fPIC -fPIE

-march=native -g -Os -fomit-frame-pointer -fwrapv -Qunused-arguments -fPIC -fPIE

Most of these flags come from default flags that SUPERCOP uses for Clang
compilation. The flags added that are of interest are:
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• -O3: optimizes for speed as much as is possible while staying C stan-
dard compliant.

• -Os: optimizes to make the storage size of the binary as small as
possible.

• -g: adds debugging symbols, this allows TIMECOP to refer to specific
program lines in its fails.

After a SUPERCOP update in 2024, the ‘-lgmp’ flag is also needed to com-
pile everything correctly. Some tests were done before and some after this
change. Refer to the raw data in the github listed in the appendix to see
exactly with which flags each result was obtained.

SUPERCOP & TIMECOP

TIMECOP as mentioned in the related works is a dynamic analysis tool for
finding constant-time violations. It is the main tool constant-time verifica-
tion tool used in this paper. Since its release, TIMECOP has been merged
into the SUPERCOP suite.
SUPERCOP is a tool that is normally used to benchmark implementations
of various cryptographic primitives. However, It is possible to run the full
SUPERCOP suite with TIMECOP enabled, this way each implementation
can be tested automatically with the compiler configuration the user pro-
vides.
See the appendix for a direct link to the TIMECOP and SUPERCOP web-
site.

After downloading SUPERCOP we edit okcompilers/c to have only the lines
for the desired versions and flags and remove all other entries from okcom-
pilers/cpp and okcompilers/rs.
When adding the compiler entries to SUPERCOP, the Clang versions must
be referenced with an absolute path or it will not work correctly. For exam-
ple, after adjusting the exact path, the following could work correctly as an
entry in okcompilers/c for SUPERCOP:

/home/user/clang/17.0.6/bin/clang-17 -march=native -g -fomit-frame-pointer

-fwrapv -Qunused-arguments -fPIC -fPIE -lgmp

Runing the tests

To replicate the results in this paper, execute:

env TIMECOP=1 ./do-part used
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This makes SUPERCOP only run tests on the ‘subroutine’ implementations
that are used in other implementations, saving a lot of time. A full run of
the SUPERCOP suite with only one compiler entry could take up to 2 days
according to the official site. For comparing various Clang versions like in
this paper this would be unnecessarily long.

Some notes

SUPERCOP did not run well when in a Docker container or VM, part of
the issue seemed to be that it requires kernel access for some of its measure-
ments. I was hoping to speed up testing by using virtualization but in the
end SUPERCOP was most reliable when running directly on the host OS.
It did work in WSL2 on Windows but it was slower.

SUPERCOP allows for some interesting parallelization to reduce test time
by running the tests on multiple cores instead of just one. However, this
did not seem to work with TIMECOP. When used SUPERCOP only runs
the benchmarks without running TIMECOP. So be sure to not use SUPER-
COP’s ‘data’ programs, but only the ‘do’ or ‘do-part’ programs.

The combination of the above makes running the tests very slow. For a
single Clang version with the 3 flag variations it took about a full day on a
laptop with an AMD Ryzen 7 5800H. Take this into account when planning
extensive testing. I ran some subsets of the version and flag combinations
simultaneously on different laptops to speed up the process, since only the
TIMECOP results would be relevant and not the benchmarks.

Result collection

After completion of the tests, a data file will be generated in the ‘bench’
folder of SUPERCOP. This file contains in plain text all the results of the
tests. The TIMECOP results are mixed in with the benchmark results. Also,
each compiler configuration entry will be done in order before continuing to
the next test. This makes it a bit hard to read and draw conclusions from
the output.
To aid in the extracting of the interesting results I wrote some simple Python
scripts. These can be found on the GitHub repository listed in the appendix.
One generates a system of folders where each output of a TIMECOP test
is listed separately by Clang version and flag. The other simply extracts all
the TIMECOP fails, which can then be piped to a csv file.
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Chapter 4

Results

After running all the tests and parsing the resulting data, we obtain the
following results.

Clang version Timecop pass Timecop error Timecop fail

18.1.1 1615 20 30

17.0.6 1615 20 30

17.0.2 1609 20 30

16.0.4 1616 21 28

16.0.0 1616 21 28

15.0.6 1624 21 20

15.0.0 1624 21 20

Table 4.1: TIMECOP Pass/Error/Fail

Small note: 6 tests have been left out from the results of version 17.0.2
above.
These are the following:

• crypto hash/blake512/sse2: O3 and Os

• crypto hash/blake512/sse2s: O3 and Os

• crypto hash/blake512/ssse3: O3 and Os

These tests were manually skipped as SUPERCOP had frozen while running
them.
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TIMECOP fails by optimization

The table below shows how many TIMECOP fails were caused by each flag
and in which version:

Clang version O3 Os No optimization

18.1.1 26 4 0

17.0.6 26 4 0

17.0.2 26 4 0

16.0.4 24 4 0

16.0.0 24 4 0

15.0.6 18 2 0

15.0.0 18 2 0

Table 4.2: TIMECOP fails by flag

List of failing subroutine implementations

Below are the names of the ‘used’ subroutine implementations that failed
any TIMECOP tests, which category they belonged to and how many times
they failed on TIMECOP:

Catagory Subroutine Implementation Fails

crypto core invhrss701 ref 10

crypto core rainbowcalsecret amd64 21

crypto core rainbowcalsecret ref 21

crypto core wforcesntrup ref 42

crypto core wforcesntrup ref2 42

crypto core wforcesntrup simpler 30

crypto scalarmult curve25519 ref 10

crypto scalarmult kummer ref 5

crypto scalarmult kummer ref5u 5

Table 4.3: TIMECOP fails by implementation
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TIMECOP output & source code

For each entry below, it is listed which implementation failed under which
flags. If there are multiple ‘versions’ of the same implementation then these
are also listed.

invhrss701

The ‘ref’ implementation failed TIMECOP.
Flag ‘Os’ failed on all Clang versions:

1 ==4433== Use of uninitialised value of size 8

2 ==4433== at 0x10AD27: cmov (core.c:69)

3 ==4433== by 0x10AD27: crypto_core_invhrss701_ref_constbranchindex

(???:141)

4 ==4433== by 0x109437: test (try.c:106)

5 ==4433== by 0x109FE1: main (try-anything.c:345)

6 ==4433== Uninitialised value was created by a client request

7 ==4433== at 0x109E9F: poison (try-anything.c:281)

8 ==4433== by 0x1093FA: test (try.c:103)

9 ==4433== by 0x109FE1: main (try-anything.c:345)

Flag ‘O3’ failed on 17.0.2, 17.0.6 and 18.1.1:

1 ==32707== Conditional jump or move depends on uninitialised value(s)

2 ==32707== at 0x10D0E0: cmov (core.c:69)

3 ==32707== by 0x10D0E0: crypto_core_invhrss701_ref_constbranchindex

(???:141)

4 ==32707== by 0x10947B: test (try.c:106)

5 ==32707== by 0x10A73E: main (try-anything.c:345)

6 ==32707== Uninitialised value was created by a stack allocation

7 ==32707== at 0x10B061: crypto_core_invhrss701_ref_constbranchindex (core

.c:73)

The ‘cmov’ function mentioned in the output looks like follows.
According to TIMECOP line 6 caused the fail.

1 static void cmov(unsigned char *r, const unsigned char *x, size_t len,

unsigned char b)

2 {

3 size_t i;

4 b = -b;

5 for(i=0;i<len;i++)

6 r[i] ^= b & (x[i] ^ r[i]);

7 }
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rainbowcalsecret

Both the ‘amd64’ and ‘ref’ implementations of the ‘363232’, ‘683248’ and
‘963664’ versions failed on TIMECOP.
Flag ‘O3’ failed on all Clang versions:

1 ==22257== Conditional jump or move depends on uninitialised value(s)

2 ==22257== at 0x10CB33: gf4v_mul_u32 (gf16.h:52)

3 ==22257== by 0x10CB33: gf16v_mul_u32 (gf16.h:129)

4 ==22257== by 0x10CB33: gf256v_mul_u32 (gf16.h:265)

5 ==22257== by 0x10CB33: _gf256v_madd_u32 (blas_u32.h:129)

6 ==22257== by 0x10DC18:

crypto_core_rainbowcalsecret683248_ref_constbranchindex

7 _batch_2trimat_madd_gf256(parallel_matrix_op.c:131)

8 ==22257== by 0x10B969: calculate_F_from_Q_impl (

rainbow_keypair_computation.c:243)

9 ==22257== by 0x10B969: _calculate_F_from_Q (???:406)

10 ==22257== by 0x10B969:

crypto_core_rainbowcalsecret683248_ref_constbranchindex (???:416)

11 ==22257== by 0x1094B2: test (try.c:106)

12 ==22257== by 0x10A802: main (try-anything.c:345)

13 ==22257== Uninitialised value was created by a client request

14 ==22257== at 0x10A628: poison (try-anything.c:281)

15 ==22257== by 0x109483: test (try.c:104)

16 ==22257== by 0x10A802: main (try-anything.c:345)

The ‘gf4v mul u32’ function mentioned in the output looks like follows.
According to TIMECOP line 10 is the cause of the fail.

1 static inline uint32_t gf4v_mul_2_u32(uint32_t a) {

2 uint32_t bit0 = a & 0x55555555;

3 uint32_t bit1 = a & 0xaaaaaaaa;

4 return (bit0 << 1) ^ bit1 ^ (bit1 >> 1);

5 }

6

7 static inline uint32_t gf4v_mul_u32(uint32_t a, uint8_t b) {

8 uint32_t bit0_b = ((uint32_t) 0) - ((uint32_t)(b & 1));

9 uint32_t bit1_b = ((uint32_t) 0) - ((uint32_t)((b >> 1) & 1));

10 return (a & bit0_b) ^ (bit1_b & gf4v_mul_2_u32(a));

11 }
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wforcentrup

The ‘ref’, ‘ref2’ and ‘simpler’ implementations of the ‘653’, ‘761’, ‘857’, ‘953’,
‘1013’ and ‘1277’ versions failed on TIMECOP.
Flag ‘O3’ failed on all Clang versions except for ‘simpler’ where it did not
fail for Clang ‘15.0.0’ and ‘15.0.6’:

1 ==29069== Conditional jump or move depends on uninitialised value(s)

2 ==29069== at 0x10B694:

crypto_core_wforcesntrup953_simpler_constbranchindex (wforce.c:24)

3 ==29069== by 0x109485: test (try.c:106)

4 ==29069== by 0x10ADF2: main (try-anything.c:345)

5 ==29069== Uninitialised value was created by a client request

6 ==29069== at 0x10AC18: poison (try-anything.c:281)

7 ==29069== by 0x109448: test (try.c:103)

8 ==29069== by 0x10ADF2: main (try-anything.c:345)

9 ==29069==

10 ==29069== Conditional jump or move depends on uninitialised value(s)

11 ==29069== at 0x10B734:

crypto_core_wforcesntrup953_simpler_constbranchindex (wforce.c:25)

12 ==29069== by 0x109485: test (try.c:106)

13 ==29069== by 0x10ADF2: main (try-anything.c:345)

14 ==29069== Uninitialised value was created by a client request

15 ==29069== at 0x10AC18: poison (try-anything.c:281)

16 ==29069== by 0x109448: test (try.c:103)

17 ==29069== by 0x10ADF2: main (try-anything.c:345)

The line from the wforce.c file mentioned looks like follows.
TIMECOP mentions line 10 and 11 are the cause of the fail.

1 /* out = in if bottom bits of in have weight w */

2 /* otherwise out = (1,1,...,1,0,0,...,0) */

3 int crypto_core(unsigned char *outbytes,const unsigned char *inbytes,const

unsigned char *kbytes,const unsigned char *cbytes)

4 {

5 small *out = (void *) outbytes;

6 const small *in = (const void *) inbytes;

7 int i,mask;

8

9 mask = Weightw_mask(in); /* 0 if weight w, else -1 */

10 for (i = 0;i < w;++i) out[i] = ((in[i]^1)&~mask)^1;

11 for (i = w;i < p;++i) out[i] = in[i]&~mask;

12 return 0;

13 }
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curve25519

The ‘ref’ implementation failed TIMECOP.
Flag ‘Os’ failed on all Clang versions:

1 ==20606== Use of uninitialised value of size 8

2 ==20606== at 0x10B9FC: freeze (smult.c:59)

3 ==20606== by 0x10B9FC: crypto_scalarmult_curve25519_ref_constbranchindex

(???:264)

4 ==20606== by 0x1094BE: test (try.c:126)

5 ==20606== by 0x10A969: main (try-anything.c:345)

Flag ‘O3’ failed on 17.0.2, 17.0.6 and 18.1.1:

1 ==19732== Conditional jump or move depends on uninitialised value(s)

2 ==19732== at 0x111035: freeze (smult.c:59)

3 ==19732== by 0x111035: crypto_scalarmult_curve25519_ref_constbranchindex

(???:264)

4 ==19732== by 0x1094F8: test (try.c:126)

5 ==19732== by 0x10AFFE: main (try-anything.c:345)

The ‘freeze’ function mentioned in the output looks like follows.
According to TIMECOP line 10 is the cause of the fail.

1 static void freeze(unsigned int a[32])

2 {

3 unsigned int aorig[32];

4 unsigned int j;

5 unsigned int negative;

6

7 for (j = 0;j < 32;++j) aorig[j] = a[j];

8 add(a,a,minusp);

9 negative = -((a[31] >> 7) & 1);

10 for (j = 0;j < 32;++j) a[j] ^= negative & (aorig[j] ^ a[j]);

11 }
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kummer

The ‘ref’ and ‘ref5u’ implementation failed TIMECOP.
Flag ‘Os’ failed on Clang versions 16.0.0, 16.0.4, 17.0.2, 17.0.6 and 18.1.1:

1 ==28739== Conditional jump or move depends on uninitialised value(s)

2 ==28739== at 0x10B5CC: cswap4x (smult.c:12)

3 ==28739== by 0x10B5CC: crypto_scalarmult_kummer_ref5u_constbranchindex

(???:115)

4 ==28739== by 0x1094BE: test (try.c:126)

5 ==28739== by 0x10AA59: main (try-anything.c:345)

6 ==28739== Uninitialised value was created by a client request

7 ==28739== at 0x10A911: poison (try-anything.c:281)

8 ==28739== by 0x1094AB: test (try.c:125)

9 ==28739== by 0x10AA59: main (try-anything.c:345)

The ‘cswap4x’ function mentioned in the output looks like follows.
According to TIMECOP line 8 causes the fail.

1 static void cswap4x(gfe *x, gfe *y, int b)

2 {

3 crypto_uint32 db = -b;

4 crypto_int32 t;

5 int i,j;

6 for(i=0;i<4;i++)

7 for(j=0;j<5;j++) {

8 t = x[i].v[j] ^ y[i].v[j];

9 t &= db;

10 x[i].v[j] ^= t;

11 y[i].v[j] ^= t;

12 }

13 }

Checking the assembly

To further confirm our suspicions we can try to compare the generated as-
sembly with and without optimization. Here we can use a website called
Godbolt to help view the assembly. Some of the code need to be merged
and modified a bit to load it into Godbolt correctly, see the GitHub in the
appendix for the code used.

invhrss701

Below is a fragment of assembly which represents the CMOV function from
Invhrss compiled with O3.

1 testb $2, %r14b

2 vmovdqa %ymm7, 64(%rsp) # 32-byte Spill

3 je .LBB0_30

4 leaq 96(%rsp), %rdi

5 leaq 1504(%rsp), %rsi

6 movl $1402, %edx # imm = 0x57A
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7 vzeroupper

8 callq memcpy@PLT

This conditional jump and subsequent call to memcpy when compared to
the CMOV assembly code generated without optimization (see appendix 1)
could explain the TIMECOP failure.

rainbowcalsecret

For rainbowcalsecret I did not manage to find the failing segment in the
optimized assembly as the assembly was too complicated for me to under-
stand.

wforcentrup

wforcentrup had two lines that failed TIMECOP. Looking at a fragment from
the optimized assembly (see appendix 2 and 3), we see that a compare on line
1 and conditional jump on line 2 potentially skips a bunch of instructions.
The jump instruction at the end of the assembly also seems to skip a for
loop.
Later in the assembly line 1 and line 2 occur again, which as expected again
skips a for loop. Matching the two lines that TIMECOP marked as the
cause of failure due to conditional jumps.

curve25519

curve25519 had one line that failed TIMECOP. The ‘freeze’ function that
failed comes after the ’mult’ function. At the end of the mult function the
function ‘squeeze’ is called. This call can be seen on line 2 of the optimized
assembly (see appendix 5), so we know this is the correct spot in the as-
sembly. In the optimized assembly we can see a conditional jump on line 18
which is most likely the cause of the TIMECOP failure.

kummer

kummer had one line that failed TIMECOP. Although I managed to compile
the source code with Godbolt, I did not figure out why it would have failed
on TIMECOP. For reference both the optimized and non optimized assembly
has been included (see appendix 6 and 7).

Propagation

Now that we have shown that these subroutine implementations are affected
by the optimization behaviour of the compiler, we can look into where these
are used.
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Using the fragments that failed in TIMECOP we can make some regex
strings with which we can search the SUPERCOP suite for other implemen-
tations that might be vulnerable without needing to test the entire suite.

invhrss701 regex

1 for *\([^=]*=[^;]*;[^<>]*[<|>][^;]*;[^)]*\) *\r?\n? *[^\[]*\[[^\]]*\]

*\^= *[^&]*& *\([^\[]*\[[^\]]*\] *\^ *[^\[]*\[[^\]]*\] *\)

wforcesntrup regex

1 for *\([^=]*=[^;]*;[^<>]*[<|>][^;]*;[^)]*\)[^=]*\[[^\]]*\] *= *\( *\(

*[^)]*\) *& *[~|!] *[^\)]*\)\^[^;];

Most of the matches do not share the same vulnerabilities as the original
subroutine implementations we tested, but there was one of interest.

sntrup761

sntrup761, also known as Streamlined NTRU Prime, is based on wforcesntrup
and shares some of its code. Using Clang 17.0.6 with O3 it produces the
following TIMECOP failure.

1 ==15973== Conditional jump or move depends on uninitialised value(s)

2 ==15973== at 0x116AD1: Decrypt (kem.c:405)

3 ==15973== by 0x116AD1: ZDecrypt (???:713)

4 ==15973== by 0x116AD1: Decap (???:874)

5 ==15973== by 0x116AD1: crypto_kem_sntrup761_ref_constbranchindex_dec

(???:899)

6 ==15973== by 0x10B33D: main (try-anything.c:357)

7 ==15973== Uninitialised value was created by a client request

8 ==15973== at 0x10B218: poison (try-anything.c:281)

9 ==15973== by 0x10B218: randombytes_callback (try-anything.c:312)

10 ==15973== by 0x10D75F: urandom32 (kem.c:330)

11 ==15973== by 0x10D75F: Short_random (???:343)

12 ==15973== by 0x10D75F: KeyGen (???:375)

13 ==15973== by 0x10D75F: ZKeyGen (???:688)

14 ==15973== by 0x10D75F: KEM_KeyGen (???:825)

15 ==15973== by 0x10D75F: crypto_kem_sntrup761_ref_constbranchindex_keypair

(???:887)

16 ==15973== by 0x109423: predoit (try.c:104)

17 ==15973== by 0x10B303: main (try-anything.c:351)

sntrup761 is a Key Encapsulation Mechanism (KEM) that facilitates key es-
tablishment between clients. NTRU Prime which sntrup761 is a part of is a
lattice-based cryptography system and is currently a candidate in the third-
round of NIST’s Post-Quantum Cryptography Standardization Project. Its
post-quantum nature makes it interesting to integrate into existing code
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bases. OpenSSH is an example of a project that has already integrated it
and even currently uses it as the default in a hybrid scheme with x25519 (the
previous default). The 9.0 release notes (see appendix for a link) mention
this choice was made with the development of quantum computers in mind,
as a way to prevent ‘capture now, decrypt later’ attacks.

Inspecting OpenSSH

The OpenSSH project contains a file called ‘sntrup761.c’. This is a copy of
the ‘ref’ implementation of sntrup761, as it is in SUPERCOP, with some
minor adjustments and some currently unused functions.
The NTRU Prime software page (see appendix for link) mentions that the
‘ref’ and ‘factored’ implementations in SUPERCOP are the official reference
and optimized implementations, so it makes sense that the version included
in OpenSSH was taken from SUPERCOP.
There is also a script ‘sntrup761.sh’ that aids in integrating the SUPERCOP
version of sntrup761 into OpenSSH.
Although compiling OpenSSH with a newer version of Clang went smoothly,
I was unsuccessful in actually testing it with TIMECOP to see if it gave
constant-time violations. It either produced no information or gave an un-
reasonably large number of constant-time violations.
Instead we can test sntrup761 within SUPERCOP but with the compilation
flags that are used in OpenSSH to give an indication of whether there is a
risk at all.
sntrup761 is normally compiled with the following flags in OpenSSH.

1 -g -O2 -pipe -Wunknown-warning-option -Qunused-arguments -Wall -Wextra -

Wpointer-arith -Wuninitialized -Wsign-compare -Wformat-security -

Wsizeof-pointer-memaccess -Wno-pointer-sign -Wno-unused-parameter -Wno-

unused-result -Wmisleading-indentation -Wbitwise-instead-of-logical -

fno-strict-aliasing -D_FORTIFY_SOURCE=2 -ftrapv -ftrivial-auto-var-init

=zero -mretpoline -fno-builtin-memset -fstack-protector-strong -fPIE

However, SUPERCOP did not compile correctly with the ‘-ftrapv’ flag set.
We also need to remove the warning flags otherwise SUPERCOP would not
work due to the filename length limit on Linux.
Finally we add ‘-march=native’ and ‘-lgmp’ to get SUPERCOP to compile
everything without errors.
So the final flags used for this test were:

1 -march=native -g -O2 -pipe -Qunused-arguments -fno-strict-aliasing -

D_FORTIFY_SOURCE=2 -ftrivial-auto-var-init=zero -mretpoline -fno-

builtin-memset -fstack-protector-strong -fPIE -lgmp

Even with the lowered optimization level used in OpenSSH the ‘ref’ and
‘compact’ implementations still failed, the ‘avx’ and ‘factored’ implementa-
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tions did not.
The ‘compact’ TIMECOP fail looks like this.

1 ==280055== Conditional jump or move depends on uninitialised value(s)

2 ==280055== at 0x126504: Decrypt (kem.c:332)

3 ==280055== by 0x126504: ZDecrypt (???:409)

4 ==280055== by 0x126504: crypto_kem_sntrup761_compact_constbranchindex_dec

(???:468)

5 ==280055== by 0x109791: test (try.c:158)

6 ==280055== by 0x10B69F: main (try-anything.c:345)

7 ==280055== Uninitialised value was created by a stack allocation

8 ==280055== at 0x11F02A: crypto_kem_sntrup761_compact_constbranchindex_dec (

kem.c:461)

9 ==280055==

10 ==280055== Conditional jump or move depends on uninitialised value(s)

11 ==280055== at 0x126738: Decrypt (kem.c:333)

12 ==280055== by 0x126738: ZDecrypt (???:409)

13 ==280055== by 0x126738: crypto_kem_sntrup761_compact_constbranchindex_dec

(???:468)

14 ==280055== by 0x109791: test (try.c:158)

15 ==280055== by 0x10B69F: main (try-anything.c:345)

16 ==280055== Uninitialised value was created by a stack allocation

17 ==280055== at 0x11F02A: crypto_kem_sntrup761_compact_constbranchindex_dec (

kem.c:461)

And the ‘ref’ implementation which is used in OpenSSH failed like this.

1 ==280426== Conditional jump or move depends on uninitialised value(s)

2 ==280426== at 0x117A21: Decrypt (kem.c:405)

3 ==280426== by 0x117A21: ZDecrypt (???:713)

4 ==280426== by 0x117A21: Decap (???:874)

5 ==280426== by 0x117A21: crypto_kem_sntrup761_ref_constbranchindex_dec

(???:899)

6 ==280426== by 0x109791: test (try.c:158)

7 ==280426== by 0x10B69F: main (try-anything.c:345)

8 ==280426== Uninitialised value was created by a stack allocation

9 ==280426== at 0x11516A: crypto_kem_sntrup761_ref_constbranchindex_dec (kem.c

:898)

10 ==280426==

11 ==280426== Conditional jump or move depends on uninitialised value(s)

12 ==280426== at 0x117AA8: Decrypt (kem.c:406)

13 ==280426== by 0x117AA8: ZDecrypt (???:713)

14 ==280426== by 0x117AA8: Decap (???:874)

15 ==280426== by 0x117AA8: crypto_kem_sntrup761_ref_constbranchindex_dec

(???:899)

16 ==280426== by 0x109791: test (try.c:158)

17 ==280426== by 0x10B69F: main (try-anything.c:345)

18 ==280426== Uninitialised value was created by a stack allocation

19 ==280426== at 0x11516A: crypto_kem_sntrup761_ref_constbranchindex_dec (kem.c

:898)

The two lines that failed still match with what we found originally in
sntrup761 and wforcesntrup761.
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Discussion

The code snippets that failed TIMECOP and caused the undesirable be-
haviour in the compiler do not look particularly odd, they seem to follow
the constant time programming paradigm as expected. By looking at the
results of Table 4.2, where all the tests that were compiled without opti-
mization passed, we can also conclude that the source code was written in
a constant-time way. Compiling without optimization should have yielded
at least some TIMECOP fails if the code was not constant-time, but that
does not appear to be the case.

In the case of both the ‘O3’ flag and the ‘Os’ flag, it seems that the op-
timizations did turn constant-time source code into variable-time binaries.
Potentially introducing timing attacks as a weakness.
This confirms that standard compiler optimizations like in Clang have a real-
istic chance of causing constant-time source code to be turned into variable-
time binaries.

Looking further into the results in Table 4.1, it seems that the more re-
cent the version of Clang, the more TIMECOP failures there are.
A speculative explanation for this effect would be that over time more ‘in-
telligent’ optimizations were added to the compilers. Where older versions
of the compiler might take the constant-time source code at face value,
later iterations of the compiler perhaps mistake the round-about methods
of constant-time programming as inefficiency, instead optimizing away the
constant-time programming techniques and reintroducing branching, unsafe
index accesses and variable-time instructions.

As we have shown with NTRU Prime’s sntrup761 and OpenSSH, this be-
haviour does pose a risk. Basic building blocks are worked into schemes
which in turn become part of larger projects and systems. Whether or not
a system is safe then hinges on whether the developers and maintainers in
this chain continue to verify that their compiled programs are secure. Even
if no changes to the code have been made, as simply using a newer compiler
version could reveal weaknesses that were not there before. This highlights
that extra care needs to be taken when integrating and compiling cryp-
tographic implementations written in C. A project’s default configuration
might already be enough to open up avenues of attack when using newer
compiler versions.
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Chapter 5

Conclusions

We’ve shown that the optimizations performed by Clang do indeed have the
chance of turning constant-time source code into variable-time binaries and
that with newer versions of Clang (17+) the chance of this happening is
higher.
We also demonstrated that the reference implementation of sntrup761 from
the NTRU Prime project, which has been integrated into OpenSSH, could
be vulnerable to this behaviour when compiling with Clang 17.0.6. Fortu-
nately, there is a wide ecosystem of tools available to developers to detect
constant-time violations and special languages that prevent this situation
entirely. Nevertheless, thepossibility of optimizations weakening security is
something that should be kept in mind, especially when using C in cryptog-
raphy contexts.

Future work

Using the method described in this paper more cryptographic implementa-
tions that are not a part of the ‘used’ subroutines section in SUPERCOP
could be tested. Mainly so there are more examples available of this un-
wanted optimization behaviour.
The tests could also be repeated with other compilers and a wider range
of compiler versions to confirm if this pattern of newer compilers producing
more constant-time failures after optimization persists.

More research can be done towards determining the exact cause of this
undesirable behaviour. Specifically which optimizations, that are a part of
the optimization levels, cause the behaviour.

Finally it would be interesting to verify whether OpenSSH is truly vulner-
able to a timing attack when compiled with a newer Clang version (17+),
using OpenSSH’s default optimization level of O2.
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Appendix A

Appendix

The raw test output data, Python parsing scripts and other data related
can be viewed at:
https://github.com/vdankbaar/Bachelor-Thesis

The TIMECOP tool can be found at:
https://www.post-apocalyptic-crypto.org/timecop/.

The SUPERCOP tool can be found at:
https://bench.cr.yp.to/supercop.html.

Some Godbolt instances:
invhrss701: https://godbolt.org/z/3ce61qxK9
wforcentrup: https://godbolt.org/z/GY8o7EnsP
curve25519: https://godbolt.org/z/fEvTPo6Gv
kummer: https://godbolt.org/z/avzrM15sr
If the links are down, the source files I used can be found in the thesis
GitHub repo.

The OpenSSH repository can be found at:
https://github.com/openssh/openssh-portable

NTRU Prime page:
https://ntruprime.cr.yp.to/software.html

OpenSSH 9.0 Release notes:
https://www.openssh.com/txt/release-9.0
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1. invhrss701: CMOV (no optimization)

1 cmov: # @cmov

2 movb %cl, %al

3 movq %rdi, -8(%rsp)

4 movq %rsi, -16(%rsp)

5 movq %rdx, -24(%rsp)

6 movb %al, -25(%rsp)

7 movzbl -25(%rsp), %ecx

8 xorl %eax, %eax

9 subl %ecx, %eax

10 movb %al, -25(%rsp)

11 movq $0, -40(%rsp)

12 .LBB5_1: # =>This Inner Loop Header: Depth=1

13 movq -40(%rsp), %rax

14 cmpq -24(%rsp), %rax

15 jae .LBB5_4

16 movzbl -25(%rsp), %esi

17 movq -16(%rsp), %rax

18 movq -40(%rsp), %rcx

19 movzbl (%rax,%rcx), %eax

20 movq -8(%rsp), %rcx

21 movq -40(%rsp), %rdx

22 movzbl (%rcx,%rdx), %ecx

23 xorl %ecx, %eax

24 andl %eax, %esi

25 movq -8(%rsp), %rax

26 movq -40(%rsp), %rcx

27 movzbl (%rax,%rcx), %edx

28 xorl %esi, %edx

29 movb %dl, (%rax,%rcx)

30 movq -40(%rsp), %rax

31 addq $1, %rax

32 movq %rax, -40(%rsp)

33 jmp .LBB5_1

34 .LBB5_4:

35 retq

2. wforcentrup (no optimization)

1 .LBB0_1: # =>This Inner Loop Header: Depth=1

2 cmp dword ptr [rsp + 4], 286

3 jge .LBB0_4

4 mov rax, qword ptr [rsp + 8]

5 movsxd rcx, dword ptr [rsp + 4]

6 movsx eax, byte ptr [rax + rcx]

7 xor eax, 1

8 mov ecx, dword ptr [rsp]

9 xor ecx, -1

10 and eax, ecx

11 xor eax, 1

12 mov dl, al
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13 mov rax, qword ptr [rsp + 16]

14 movsxd rcx, dword ptr [rsp + 4]

15 mov byte ptr [rax + rcx], dl

16 mov eax, dword ptr [rsp + 4]

17 add eax, 1

18 mov dword ptr [rsp + 4], eax

19 jmp .LBB0_1

20 .LBB0_4:

21 mov dword ptr [rsp + 4], 286

22 .LBB0_5: # =>This Inner Loop Header: Depth=1

23 cmp dword ptr [rsp + 4], 761

24 jge .LBB0_8

25 mov rax, qword ptr [rsp + 8]

26 movsxd rcx, dword ptr [rsp + 4]

27 movsx eax, byte ptr [rax + rcx]

28 mov ecx, dword ptr [rsp]

29 xor ecx, -1

30 and eax, ecx

31 mov dl, al

32 mov rax, qword ptr [rsp + 16]

33 movsxd rcx, dword ptr [rsp + 4]

34 mov byte ptr [rax + rcx], dl

35 mov eax, dword ptr [rsp + 4]

36 add eax, 1

37 mov dword ptr [rsp + 4], eax

38 jmp .LBB0_5

39 .LBB0_8:

3. wforcentrup (optimization O3)

1 cmp eax, 286

2 jne .LBB0_18

3 mov rcx, rdi

4 sub rcx, rsi

5 cmp rcx, 63

6 jbe .LBB0_5

7 vmovups ymm0, ymmword ptr [rsi]

8 vmovups ymm1, ymmword ptr [rsi + 32]

9 vmovups ymmword ptr [rdi], ymm0

10 vmovups ymmword ptr [rdi + 32], ymm1

11 vmovups ymm0, ymmword ptr [rsi + 64]

12 vmovups ymm1, ymmword ptr [rsi + 96]

13 vmovups ymmword ptr [rdi + 64], ymm0

14 vmovups ymmword ptr [rdi + 96], ymm1

15 vmovups ymm0, ymmword ptr [rsi + 128]

16 vmovups ymm1, ymmword ptr [rsi + 160]

17 vmovups ymmword ptr [rdi + 128], ymm0

18 vmovups ymmword ptr [rdi + 160], ymm1

19 vmovdqu ymm0, ymmword ptr [rsi + 192]

20 vmovdqu ymm1, ymmword ptr [rsi + 224]

21 vmovdqu ymmword ptr [rdi + 192], ymm0

22 vmovdqu ymmword ptr [rdi + 224], ymm1

23 mov rdx, qword ptr [rsi + 256]
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24 mov qword ptr [rdi + 256], rdx

25 mov rdx, qword ptr [rsi + 264]

26 mov qword ptr [rdi + 264], rdx

27 mov rdx, qword ptr [rsi + 272]

28 mov qword ptr [rdi + 272], rdx

29 mov edx, 280

30 jmp .LBB0_6

31 .LBB0_18:

32 vpbroadcastb ymm0, byte ptr [rip + .LCPI0_2]

33 # ymm0 = [1,1,1,...1,1]

34 vmovdqu ymmword ptr [rdi + 254], ymm0

35 vmovdqu ymmword ptr [rdi + 224], ymm0

36 vmovdqu ymmword ptr [rdi + 192], ymm0

37 vmovdqu ymmword ptr [rdi + 160], ymm0

38 vmovdqu ymmword ptr [rdi + 128], ymm0

39 vmovdqu ymmword ptr [rdi + 96], ymm0

40 vmovdqu ymmword ptr [rdi + 64], ymm0

41 vmovdqu ymmword ptr [rdi + 32], ymm0

42 vmovdqu ymmword ptr [rdi], ymm0

43 jmp .LBB0_19

4. curve25519: freeze (no optimization)

1 freeze: # @freeze

2 sub rsp, 152

3 mov qword ptr [rsp + 144], rdi

4 mov dword ptr [rsp + 12], 0

5 .LBB4_1: # =>This Inner Loop Header: Depth=1

6 cmp dword ptr [rsp + 12], 32

7 jae .LBB4_4

8 mov rax, qword ptr [rsp + 144]

9 mov ecx, dword ptr [rsp + 12]

10 mov ecx, dword ptr [rax + 4*rcx]

11 mov eax, dword ptr [rsp + 12]

12 mov dword ptr [rsp + 4*rax + 16], ecx

13 mov eax, dword ptr [rsp + 12]

14 add eax, 1

15 mov dword ptr [rsp + 12], eax

16 jmp .LBB4_1

17 .LBB4_4:

18 mov rdi, qword ptr [rsp + 144]

19 mov rsi, qword ptr [rsp + 144]

20 lea rdx, [rip + minusp]

21 call add

22 mov rax, qword ptr [rsp + 144]

23 mov ecx, dword ptr [rax + 124]

24 shr ecx, 7

25 and ecx, 1

26 xor eax, eax

27 sub eax, ecx

28 mov dword ptr [rsp + 8], eax

29 mov dword ptr [rsp + 12], 0

30 .LBB4_5: # =>This Inner Loop Header: Depth=1
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31 cmp dword ptr [rsp + 12], 32

32 jae .LBB4_8

33 mov edx, dword ptr [rsp + 8]

34 mov eax, dword ptr [rsp + 12]

35 mov eax, dword ptr [rsp + 4*rax + 16]

36 mov rcx, qword ptr [rsp + 144]

37 mov esi, dword ptr [rsp + 12]

38 xor eax, dword ptr [rcx + 4*rsi]

39 and edx, eax

40 mov rax, qword ptr [rsp + 144]

41 mov ecx, dword ptr [rsp + 12]

42 xor edx, dword ptr [rax + 4*rcx]

43 mov dword ptr [rax + 4*rcx], edx

44 mov eax, dword ptr [rsp + 12]

45 add eax, 1

46 mov dword ptr [rsp + 12], eax

47 jmp .LBB4_5

48 .LBB4_8:

49 add rsp, 152

50 ret

5. curve25519: freeze (optimization O3)

1 vzeroupper

2 call squeeze

3 vmovups ymm0, ymmword ptr [rbx]

4 vmovups ymm1, ymmword ptr [rbx + 32]

5 vmovups ymm2, ymmword ptr [rbx + 64]

6 vmovups ymm3, ymmword ptr [rbx + 96]

7 lea rdx, [rip + minusp]

8 mov rdi, rbx

9 mov rsi, rbx

10 vmovups ymmword ptr [rsp + 1200], ymm3

11 vmovups ymmword ptr [rsp + 1168], ymm2

12 vmovups ymmword ptr [rsp + 1136], ymm1

13 vmovups ymmword ptr [rsp + 1104], ymm0

14 vzeroupper

15 call add

16 mov eax, dword ptr [rsp + 2508]

17 test al, al

18 jns .LBB0_999

19 vmovups ymm0, ymmword ptr [rsp + 1104]

20 vmovups ymm1, ymmword ptr [rsp + 1136]

21 vmovups ymm2, ymmword ptr [rsp + 1168]

22 vmovups ymm3, ymmword ptr [rsp + 1200]

23 vmovups ymmword ptr [rbx + 96], ymm3

24 vmovups ymmword ptr [rbx + 64], ymm2

25 vmovups ymmword ptr [rbx + 32], ymm1

26 vmovups ymmword ptr [rbx], ymm0

27 .LBB0_999:
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6. kummer: cswap4x (no optimization)

1 cswap4x: # @cswap4x

2 mov qword ptr [rsp - 8], rdi

3 mov qword ptr [rsp - 16], rsi

4 mov dword ptr [rsp - 20], edx

5 xor eax, eax

6 sub eax, dword ptr [rsp - 20]

7 mov dword ptr [rsp - 24], eax

8 mov dword ptr [rsp - 32], 0

9 .LBB1_1: # =>This Loop Header: Depth=1

10 cmp dword ptr [rsp - 32], 4

11 jge .LBB1_8

12 mov dword ptr [rsp - 36], 0

13 .LBB1_3: # Parent Loop BB1_1 Depth=1

14 cmp dword ptr [rsp - 36], 5

15 jge .LBB1_6

16 mov rax, qword ptr [rsp - 8]

17 movsxd rcx, dword ptr [rsp - 32]

18 imul rcx, rcx, 20

19 add rax, rcx

20 movsxd rcx, dword ptr [rsp - 36]

21 mov eax, dword ptr [rax + 4*rcx]

22 mov rcx, qword ptr [rsp - 16]

23 movsxd rdx, dword ptr [rsp - 32]

24 imul rdx, rdx, 20

25 add rcx, rdx

26 movsxd rdx, dword ptr [rsp - 36]

27 xor eax, dword ptr [rcx + 4*rdx]

28 mov dword ptr [rsp - 28], eax

29 mov eax, dword ptr [rsp - 24]

30 and eax, dword ptr [rsp - 28]

31 mov dword ptr [rsp - 28], eax

32 mov edx, dword ptr [rsp - 28]

33 mov rax, qword ptr [rsp - 8]

34 movsxd rcx, dword ptr [rsp - 32]

35 imul rcx, rcx, 20

36 add rax, rcx

37 movsxd rcx, dword ptr [rsp - 36]

38 xor edx, dword ptr [rax + 4*rcx]

39 mov dword ptr [rax + 4*rcx], edx

40 mov edx, dword ptr [rsp - 28]

41 mov rax, qword ptr [rsp - 16]

42 movsxd rcx, dword ptr [rsp - 32]

43 imul rcx, rcx, 20

44 add rax, rcx

45 movsxd rcx, dword ptr [rsp - 36]

46 xor edx, dword ptr [rax + 4*rcx]

47 mov dword ptr [rax + 4*rcx], edx

48 mov eax, dword ptr [rsp - 36]

49 add eax, 1

50 mov dword ptr [rsp - 36], eax

51 jmp .LBB1_3

52 .LBB1_6: # in Loop: Header=BB1_1 Depth=1
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53 jmp .LBB1_7

54 .LBB1_7: # in Loop: Header=BB1_1 Depth=1

55 mov eax, dword ptr [rsp - 32]

56 add eax, 1

57 mov dword ptr [rsp - 32], eax

58 jmp .LBB1_1

59 .LBB1_8:

60 ret

7. kummer: cswap4x (optimization O3)

1 .LBB0_1: # =>This Loop Header: Depth=1

2 mov qword ptr [rsp + 8], rcx # 8-byte Spill

3 .LBB0_2: # Parent Loop BB0_1 Depth=1

4 mov dword ptr [rsp + 4], esi # 4-byte Spill

5 mov eax, ebx

6 mov rcx, qword ptr [rsp + 8] # 8-byte Reload

7 mov rdx, qword ptr [rsp + 272] # 8-byte Reload

8 movzx ecx, byte ptr [rdx + rcx]

9 shrx ebx, ecx, esi

10 and ebx, 1

11 xor eax, ebx

12 vmovdqu ymm0, ymmword ptr [rsp + 176]

13 neg eax

14 vpbroadcastd ymm1, eax

15 vmovdqu ymm2, ymmword ptr [rsp + 96]

16 vmovdqu ymm3, ymmword ptr [rsp + 128]

17 vmovdqa ymm4, ymm1

18 vpternlogd ymm4, ymm0, ymm2, 96

19 vpxor ymm2, ymm4, ymm2

20 vmovdqu ymmword ptr [rsp + 96], ymm2

21 vmovdqu ymm2, ymmword ptr [rsp + 208]

22 vmovdqa ymm5, ymm1

23 vpternlogd ymm5, ymm2, ymm3, 96

24 vperm2i128 ymm6, ymm4, ymm5, 33 # ymm6 = ymm4[2,3],ymm5[0,1]

25 vperm2i128 ymm0, ymm0, ymm2, 33 # ymm0 = ymm0[2,3],ymm2[0,1]

26 vpxor ymm0, ymm6, ymm0

27 vmovdqu ymmword ptr [rsp + 192], ymm0

28 vpxor ymm0, ymm5, ymm3

29 vmovdqu ymmword ptr [rsp + 128], ymm0

30 vmovdqa xmm0, xmmword ptr [rsp + 160]

31 vmovdqa xmm2, xmmword ptr [rsp + 240]

32 vpternlogd xmm1, xmm2, xmm0, 96

33 vinserti128 ymm3, ymm1, xmm4, 1

34 vinserti128 ymm4, ymm0, xmmword ptr [rsp + 176], 1

35 vpblendd ymm0, ymm4, ymm0, 15 # ymm0 = ymm0[0,1,2,3],ymm4[4,5,6,7]

36 vpxor ymm0, ymm3, ymm0

37 vmovdqu ymmword ptr [rsp + 160], ymm0

38 vextracti128 xmm0, ymm5, 1

39 vinserti128 ymm0, ymm0, xmm1, 1

40 vmovdqu ymm1, ymmword ptr [rsp + 224]

41 vinserti128 ymm1, ymm1, xmm2, 1

42 vpxor ymm0, ymm0, ymm1
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43 vmovdqu ymmword ptr [rsp + 224], ymm0
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